Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = titanium boride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 26634 KiB  
Article
The Microstructure and Properties of Laser-Cladded Ni-Based Self-Fluxing Alloy Coatings Reinforced by TiC Particles
by Jacek Górka, Aleksandra Lont and Tomasz Poloczek
Coatings 2025, 15(5), 527; https://doi.org/10.3390/coatings15050527 - 28 Apr 2025
Cited by 1 | Viewed by 934
Abstract
In this study, NiCrBSi composite coatings reinforced with 5–15 wt.% TiC particles were prepared using laser cladding to investigate the influence of the TiC content and laser beam power on the coatings’ quality, structure, and properties. Penetrant tests revealed the presence of cracks [...] Read more.
In this study, NiCrBSi composite coatings reinforced with 5–15 wt.% TiC particles were prepared using laser cladding to investigate the influence of the TiC content and laser beam power on the coatings’ quality, structure, and properties. Penetrant tests revealed the presence of cracks in the composite coatings, which were reduced with the higher laser power due to a decrease in cooling rate. A macroscopic analysis showed that pure NiCrBSi coatings exhibited a high quality and were free of defects, while the addition of TiC particles led to the formation of large pores, particularly in coatings produced with a lower laser power. Microstructural characterization was conducted using Scanning Electron Microscopy (SEM), Energy-Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD). The microstructure of the pure NiCrBSi coatings consisted of an austenitic matrix with chromium-based precipitates (carbides and borides). Variations in structural morphology across different regions of the coatings and under varying laser powers were described. When TiC particles were added, partial dissolution occurred in the molten pool, enriching it with titanium and carbon, which subsequently led to the precipitation of titanium carbides. The average microhardness of the composite coatings increased by 28%–40% compared to the pure NiCrBSi coating, while the erosion resistance remained comparable. Solid particle erosion tests in accordance with the ASTM G76-18 standard resulted in average erosion values of the pure NiCrBSi coating of 0.0056 and 0.0025 mm3/g for the 30° and 90° impingement angles, respectively. Full article
(This article belongs to the Special Issue Welding Techniques in Surface Engineering)
Show Figures

Graphical abstract

25 pages, 17504 KiB  
Article
The Influence of Rare Earth Metals on the Microstructure and Mechanical Properties of 220 and 356.1 Alloys for Automotive Industry
by Herbert W. Doty, Shimaa El-Hadad, Ehab Samuel, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(5), 941; https://doi.org/10.3390/ma18050941 - 21 Feb 2025
Cited by 1 | Viewed by 627
Abstract
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. [...] Read more.
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. Strontium (Sr) was used as a modifier, while titanium boride (TiB2) was added as a grain refiner. Measured amounts of Ce and La were added to both alloys (max. 1 wt.%). The alloy melts were poured in a preheated metallic mold. The main part of the study was conducted on tensile testing at room temperature. The results show that although RE would cause grain refining to be about 30–40% through the constitutional undercooling mechanism, grain refining with TiB2 would lead to approximately 90% refining (heterogenous nucleation mechanism). The addition of high purity Ce or La (99.9% purity) has no modification effect regardless of the alloy composition or the concentration of RE. Depending on the alloy ductility, the addition of 0.2 wt.%RE has a hardening effect that causes precipitation of RE in the form of dispersoids (300–700 nm). However, this increase vanishes with the decrease in alloy ductility, i.e., with T6 treatment, due to intensive precipitation of ultra-fine coherent Mg2Si-phase particles. There is no definite distinction in the behavior of Ce or La in terms of their high affinity to interact with other transition elements in the matrix, particularly Ti, Fe, Cu, and Sr. When the melt was properly degassed using high-purity argon and filtered using a 20 ppi ceramic foam filter, prior to pouring the liquid metal into the mold sprue, no measurable number of RE oxides was observed. In conclusion, the application of RE to aluminum castings would only lead to formation of a significant volume fraction of brittle intermetallics. In Ti-free alloys, identification of Ce- or La-intermetallics is doubtful due to the fairly thin thickness of the precipitated platelets (about 1 µm) and the possibility that most of the reported Al, Si, and other elements make the reported values for RE rather ambiguous. Full article
Show Figures

Figure 1

27 pages, 14685 KiB  
Review
A Review on the Interface Structure and Control Between Graphene Nanoplatelets (GNPs) and Ti Matrix of GNPs/Ti Matrix Composites
by Zongan Li, Shilong Xing, Shuo Wu, Jiabin Hou and Shaoqian Wu
Metals 2024, 14(12), 1316; https://doi.org/10.3390/met14121316 - 21 Nov 2024
Cited by 1 | Viewed by 1023
Abstract
Graphene nanoplatelets (GNPs)-reinforced titanium matrix composites (GNPs/Ti) have been found in extensive applications in aerospace and deep-sea industries, owing to their exceptional properties, including low density, high specific strength, and superior plasticity. GNPs are often incorporated into titanium matrix composites because of their [...] Read more.
Graphene nanoplatelets (GNPs)-reinforced titanium matrix composites (GNPs/Ti) have been found in extensive applications in aerospace and deep-sea industries, owing to their exceptional properties, including low density, high specific strength, and superior plasticity. GNPs are often incorporated into titanium matrix composites because of their excellent properties. GNPs/Ti matrix composites have strong deformation resistance at room temperature and need to be manufactured at high temperatures. However, high temperatures could result in an interfacial reaction between Ti and GNPs, forming large TiC particles and damaging the GNPs structure, hindering the enhancement effect. Therefore, controlling the interface reaction is crucial for addressing these challenges. This study thoroughly explores existing literature on GNPs/Ti matrix composites, focusing on preparation techniques, interface structure, and interface management. At the same time, the properties of some graphene nanoplatelets or the borides nanowires-reinforced metal matrix composites are also analyzed. It particularly emphasizes challenges in interface control, encompassing the surface modification of GNPs and its effects on microstructure and mechanical properties, control of the interface reaction, and the structure design of a 3D network interface and its effects on mechanical properties. Currently, optimizing the performance of GNPs/Ti matrix composites remains elusive. However, by improving the preparation method, modifying the surface of graphene, controlling the interface reaction and adjusting the interface structure, the interface characteristics can be improved, thereby improving the performance of GNPs/Ti composites. Full article
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Characterization and Growth Kinetics of Borides Layers on Near-Alpha Titanium Alloys
by Rongxun Piao, Wensong Wang, Biao Hu and Haixia Hu
Materials 2024, 17(19), 4815; https://doi.org/10.3390/ma17194815 - 30 Sep 2024
Cited by 3 | Viewed by 1073
Abstract
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy [...] Read more.
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy was mainly composed of a monolithic TiB2 outer layer, inner whisker TiB and sub-micron sized flake-like TiB layer. The growth kinetics of the TiB2 and TiB layers obeyed the parabolic diffusion model. The diffusion coefficient of boron in the boride layers obtained in the present study was well within the ranges reported in the literature. The activation energies of boron in the TiB2 and TiB layers during the pack boriding were estimated to be 166.4 kJ/mol and 122.8 kJ/mol, respectively. Friction tests showed that alloys borided at moderate temperatures and times had lower friction coefficients, which may have been due to the fine grain strengthening effect of TiB whiskers. The alloy borided at 1273 K for 10 h had a minimum friction coefficient of 0.73. Full article
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Characterization of Wear Resistance and Corrosion Resistance of Plasma Paste Borided Layers Produced on Pure Titanium
by Piotr Dziarski and Natalia Makuch
Materials 2024, 17(16), 3922; https://doi.org/10.3390/ma17163922 - 7 Aug 2024
Cited by 1 | Viewed by 1134
Abstract
Commercially pure titanium was plasma paste borided using various temperatures of the process. An increase in the boriding temperature resulted in an increase in the thickness of the borided layer. All the layers produced consisted of an outer compact TiB2 zone and [...] Read more.
Commercially pure titanium was plasma paste borided using various temperatures of the process. An increase in the boriding temperature resulted in an increase in the thickness of the borided layer. All the layers produced consisted of an outer compact TiB2 zone and an inner TiB zone in the form of whiskers penetrating into the substrate. The presence of hard titanium borides resulted in a significant increase in wear resistance compared to non-borided pure titanium. However, the thickness of the layer produced strongly influenced the wear behavior, in respect of the time required for complete destruction of the layer. Higher wear resistance was characteristic of the TiB2 layer due to its compact nature, whereas the specific morphology of TiB whiskers resulted in their lower wear resistance compared to the outer TiB2 layer. Plasma paste boriding of pure titanium also had an advantageous effect on corrosion resistance compared to non-borided pure titanium. Simultaneously, due to the higher thickness of TiB2 layer, the specimen borided at a higher temperature showed higher corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

20 pages, 18132 KiB  
Article
Processing, Microstructure and Mechanical Properties of TiB2-MoSi2-C Ceramics
by Maria Sajdak, Kamil Kornaus, Dariusz Zientara, Norbert Moskała, Sebastian Komarek, Kinga Momot, Edmund Golis, Łukasz Zych and Agnieszka Gubernat
Crystals 2024, 14(3), 212; https://doi.org/10.3390/cryst14030212 - 23 Feb 2024
Cited by 7 | Viewed by 2430
Abstract
Titanium boride (TiB2) is a material classified as an ultra-high-temperature ceramic. The TiB2 structure is dominated by covalent bonds, which gives the materials based on TiB2 very good mechanical and thermal properties, making them difficult to sinter at the [...] Read more.
Titanium boride (TiB2) is a material classified as an ultra-high-temperature ceramic. The TiB2 structure is dominated by covalent bonds, which gives the materials based on TiB2 very good mechanical and thermal properties, making them difficult to sinter at the same time. Obtaining dense TiB2 polycrystals requires a chemical or physical sintering activation. Carbon and molybdenum disilicide (MoSi2) were chosen as sintering activation additives. Three series of samples were made, the first one with carbon additives: 0 to 4 wt.%; the second used 2.5, 5 and 10 wt.% MoSi2; and the third with both additions of 2 wt.% carbon and 2.5, 5 and 10 wt.% MoSi2. On the basis of the dilatometric sintering analysis, all additives were found to have a favourable effect on the sinterability of TiB2, and it was determined that sintering TiB2 with the addition of carbon can be carried at 2100 °C and with MoSi2 and both additives at 1800 °C. The polycrystals were sintered using the hot-pressing technique. On the basis of the studies conducted in this work, it was found that the addition of 1 wt.% of carbon allows single-phase TiB2 polycrystals of high density (>90%) to be obtained. The minimum MoSi2 addition, required to obtain dense sinters with a cermet-like microstructure, was 5 wt.%. High density was also achieved by the materials containing both additives. The samples with higher MoSi2 content, i.e., 5 and 10%, showed densities close to 100%. The mechanical properties, such as Young’s modulus, hardness and fracture toughness (KIc), of the polycrystals and composites were similar for samples with densities exceeding 95%. The Vickers hardness was 23 to 27 GPa, fracture toughness (KIC) was 4 to 6 MPa·m0.5 and the Young’s modulus was 480 to 540 GPa. The resulting TiB2-based materials showed potential in high-temperature applications. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

14 pages, 4563 KiB  
Article
Fabrication and Characterization of Titanium Borides by Electron Beam Surface Alloying
by Fatme Padikova, Daniela Nedeva, Vladimir Dunchev, Borislav Stoyanov, Maria Ormanova, Nikolay Nedyalkov and Stefan Valkov
Coatings 2023, 13(11), 1941; https://doi.org/10.3390/coatings13111941 - 14 Nov 2023
Viewed by 1627
Abstract
This study shows the possibility of the fabrication of titanium borides by an alloying of a titanium substrate with boron powder via a scanning electron beam. During the electron beam alloying experiments, the speed movement of the specimens was varied, where it was [...] Read more.
This study shows the possibility of the fabrication of titanium borides by an alloying of a titanium substrate with boron powder via a scanning electron beam. During the electron beam alloying experiments, the speed movement of the specimens was varied, where it was 4 and 6 mm/s. The thickness of the alloyed zone formed by the lower velocity of the movement of the workpiece is greater than that of the coating obtained by the higher speed movement. The phase composition of the coatings is in the form of the TiB2 phase, as well as some amount of undissolved boron in both considered cases. In the case of the lower speed of the movement of the sample, the undissolved boron is within the whole volume of the alloyed zone, while at the higher speed movement, it is on the top of the specimen. The hardness of the obtained coatings by the higher speed of the specimen movement reached values of about 4500 HV. Considering the values of the surface alloy fabricated via the lower velocity movement of 4 mm/s, it is about 2600 HV, which is lower than that of the one obtained by the 6 mm/s speed of the sample movement. The result obtained for the friction coefficient (COF) for the specimen alloyed by the speed of the specimen motion of 4 mm/s is 0.40; the value for the coating obtained at a speed movement of 6 mm/s is 0.34. In both cases, these values are lower than that of the titanium substrate. Full article
(This article belongs to the Special Issue Enhanced Mechanical Properties of Metals by Surface Treatments)
Show Figures

Figure 1

14 pages, 3061 KiB  
Article
Compactability Regularities Observed during Cold Uniaxial Pressing of Layered Powder Green Samples Based on Ti-Al-Nb-Mo-B and Ti-B
by Pavel Bazhin, Alexander Konstantinov, Andrey Chizhikov, Mikhail Antipov, Pavel Stolin, Varvara Avdeeva and Anna Antonenkova
Metals 2023, 13(11), 1827; https://doi.org/10.3390/met13111827 - 30 Oct 2023
Cited by 1 | Viewed by 2714
Abstract
We determined the compactability regularities observed during the cold uniaxial pressing of layered powder green samples, taking into account factors such as composition, height, and number of Ti–B (TiB) and Ti–Al–Nb–Mo–B (TNM) layers. The following composition was chosen for the TNM layer at [...] Read more.
We determined the compactability regularities observed during the cold uniaxial pressing of layered powder green samples, taking into account factors such as composition, height, and number of Ti–B (TiB) and Ti–Al–Nb–Mo–B (TNM) layers. The following composition was chosen for the TNM layer at %: 51.85Ti–43Al–4Nb–1Mo–0.15B, while for the Ti-B layer we selected the composition wt %: Ti-B-(20, 30, 40) Ti. Green samples were made containing both 100 vol % TiB and TNM, and those taken in the following proportions, vol %: 70TiB/30TNM, 50TiB/50TNM, 30TiB/70TNM; multilayer green samples were studied in the following proportions, vol %: 35TiB/30TNM/35TiB, 25TiB/25TNM/25TiB/25TNM, 35TNM/30TiB/35TNM. Based on the obtained rheological data, we determined the rheological characteristics of the layered green samples, including compressibility modulus, compressibility coefficient, relaxation time, and limiting value of linear section deformation. These characteristics were found to vary depending on the composition, height, and number of layers. Our findings revealed that reducing the TNM content in the charge billet composition improves the compaction of powder materials under the given technological parameters of uniaxial cold pressing. Moreover, we observed that increasing the boron content and decreasing the amount of titanium in the Ti–B composition enhances the compactability of powder materials. We also established a relationship between the compaction pressure interval and the density of the layered powder green sample. Full article
(This article belongs to the Special Issue Feature Papers in Metal Matrix Composites)
Show Figures

Figure 1

11 pages, 4269 KiB  
Article
Prediction and Experimental Evaluation of Mechanical Properties of SiC-Reinforced Ti-4.25Al-2V Matrix Composites Produced by Laser Direct Energy Deposition
by Ilya Magidov, Konstanitin Mikhaylovskiy, Svetlana Shalnova, Ilya Topalov, Marina Gushchina, Sergey Zherebtsov and Olga Klimova-Korsmik
Materials 2023, 16(15), 5233; https://doi.org/10.3390/ma16155233 - 25 Jul 2023
Cited by 3 | Viewed by 1586
Abstract
An important direction in the development of additive technologies is associated with the addition of ceramic particles (oxide, carbide, boride, and nitride ceramics) to metal powders. The prediction of the physical and mechanical characteristics of SiC-particle-reinforced composite materials (PRCMs) in comparison with experimental [...] Read more.
An important direction in the development of additive technologies is associated with the addition of ceramic particles (oxide, carbide, boride, and nitride ceramics) to metal powders. The prediction of the physical and mechanical characteristics of SiC-particle-reinforced composite materials (PRCMs) in comparison with experimental results was studied. A near-α Ti-4.25Al-2V titanium-alloy-based composite reinforced by 1 vol.% of SiC ceramic particles was produced using laser direct energy deposition. A multiscale modeling approach at the micro and macro levels was applied. At the micro level, the toughness and strength characteristics for a temperature interval of T = 20–450 °C were predicted using a representative volume element of PRCM with the nearly real shape of SiC particles. At the macro level, the features of plastic deformation and fracture of the PRCM were predicted by numerical modeling using the commercial software Digimat Student Edition ver. 2022.4 and Ansys Student 2023 R2. The addition of SiC particles was found to improve the physical and mechanical properties in the whole temperature range. The results of the numerical modeling were consistent with the experimental data (the deviation did not exceed 10%). The proposed approach for predicting the physical and mechanical properties of Ti-4.25Al-2V/SiC can also be used for other PRCMs obtained by laser direct energy deposition. Full article
Show Figures

Figure 1

15 pages, 22933 KiB  
Article
Effect of Boron on the Microstructure, Superplastic Behavior, and Mechanical Properties of Ti-4Al-3Mo-1V Alloy
by Maria N. Postnikova, Anton D. Kotov, Andrey I. Bazlov, Ahmed O. Mosleh, Svetlana V. Medvedeva and Anastasia V. Mikhaylovskaya
Materials 2023, 16(10), 3714; https://doi.org/10.3390/ma16103714 - 13 May 2023
Cited by 6 | Viewed by 2345
Abstract
The decrease of superplastic forming temperature and improvement of post-forming mechanical properties are important issues for titanium-based alloys. Ultrafine-grained and homogeneous microstructure are required to improve both processing and mechanical properties. This study focuses on the influence of 0.01–2 wt.% B (boron) on [...] Read more.
The decrease of superplastic forming temperature and improvement of post-forming mechanical properties are important issues for titanium-based alloys. Ultrafine-grained and homogeneous microstructure are required to improve both processing and mechanical properties. This study focuses on the influence of 0.01–2 wt.% B (boron) on the microstructure and properties of Ti-4Al-3Mo-1V (wt.%) alloys. The microstructure evolution, superplasticity, and room temperature mechanical properties of boron-free and boron-modified alloys were investigated using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, X-ray diffraction analysis, and uniaxial tensile tests. A trace addition of 0.01 to 0.1 wt.% B significantly refined prior β-grains and improved superplasticity. Alloys with minor B and B-free alloy exhibited similar superplastic elongations of 400–1000% in a temperature range of 700–875 °C and strain rate sensitivity coefficient m of 0.4–0.5. Along with this, a trace boron addition provided a stable flow and effectively reduced flow stress values, especially at low temperatures, that was explained by the acceleration of the recrystallization and globularization of the microstructure at the initial stage of superplastic deformation. Recrystallization-induced decrease in yield strength from 770 MPa to 680 MPa was observed with an increase in boron content from 0 to 0.1%. Post-forming heat treatment, including quenching and ageing, increased strength characteristics of the alloys with 0.01 and 0.1% boron by 90–140 MPa and insignificantly decreased ductility. Alloys with 1–2% B exhibited an opposite behavior. For the high-boron alloys, the refinement effect of the prior β-grains was not detected. A high fraction of borides of ~5–11% deteriorated the superplastic properties and drastically decreased ductility at room temperature. The alloy with 2% B demonstrated non-superplastic behavior and low level of strength properties; meanwhile, the alloy with 1% B exhibited superplasticity at 875 °C with elongation of ~500%, post-forming yield strength of 830 MPa, and ultimate tensile strength of 1020 MPa at room temperature. The differences between minor boron and high boron influence on the grain structure and properties were discussed and the mechanisms of the boron influence were suggested. Full article
Show Figures

Graphical abstract

42 pages, 7626 KiB  
Review
Ceramic Matrix Composites for Aero Engine Applications—A Review
by George Karadimas and Konstantinos Salonitis
Appl. Sci. 2023, 13(5), 3017; https://doi.org/10.3390/app13053017 - 26 Feb 2023
Cited by 107 | Viewed by 29602
Abstract
Ceramic matrix materials have attracted great attention from researchers and industry due to their material properties. When used in engineering systems, and especially in aero-engine applications, they can result in reduced weight, higher temperature capability, and/or reduced cooling needs, each of which increases [...] Read more.
Ceramic matrix materials have attracted great attention from researchers and industry due to their material properties. When used in engineering systems, and especially in aero-engine applications, they can result in reduced weight, higher temperature capability, and/or reduced cooling needs, each of which increases efficiency. This is where high-temperature ceramics have made considerable progress, and ceramic matrix composites (CMCs) are in the foreground. CMCs are classified into non-oxide and oxide-based ones. Both families have material types that have a high potential for use in high-temperature propulsion applications. The oxide materials discussed will focus on alumina and aluminosilicate/mullite base material families, whereas for non-oxides, carbon, silicon carbide, titanium carbide, and tungsten carbide CMC material families will be discussed and analyzed. Typical oxide-based ones are composed of an oxide fiber and oxide matrix (Ox-Ox). Some of the most common oxide subcategories are alumina, beryllia, ceria, and zirconia ceramics. On the other hand, the largest number of non-oxides are technical ceramics that are classified as inorganic, non-metallic materials. The most well-known non-oxide subcategories are carbides, borides, nitrides, and silicides. These matrix composites are used, for example, in combustion liners of gas turbine engines and exhaust nozzles. Until now, a thorough study on the available oxide and non-oxide-based CMCs for such applications has not been presented. This paper will focus on assessing a literature survey of the available oxide and non-oxide ceramic matrix composite materials in terms of mechanical and thermal properties, as well as the classification and fabrication methods of those CMCs. The available manufacturing and fabrication processes are reviewed and compared. Finally, the paper presents a research and development roadmap for increasing the maturity of these materials allowing for the wider adoption of aero-engine applications. Full article
(This article belongs to the Special Issue Processing, Properties and Applications of Composite Materials)
Show Figures

Figure 1

10 pages, 9049 KiB  
Article
Microstructure and Mechanical Properties of Core-Shell B4C-Reinforced Ti Matrix Composites
by Ziyang Xiu, Boyu Ju, Junhai Zhan, Ningbo Zhang, Pengjun Wang, Keguang Zhao, Mingda Liu, Aiping Yin, Weidi Chen, Yang Jiao, Hao Wang, Shuyang Li, Xiaolin Zhu, Ping Wu and Wenshu Yang
Materials 2023, 16(3), 1166; https://doi.org/10.3390/ma16031166 - 30 Jan 2023
Cited by 5 | Viewed by 2265
Abstract
Composite material uses ceramic reinforcement to add to the metal matrix to obtain higher material properties. Structural design is an important direction of composite research. The reinforcement distribution of the core-shell structure has the unique advantages of strong continuity and uniform stress distribution. [...] Read more.
Composite material uses ceramic reinforcement to add to the metal matrix to obtain higher material properties. Structural design is an important direction of composite research. The reinforcement distribution of the core-shell structure has the unique advantages of strong continuity and uniform stress distribution. In this paper, a method of preparing boron carbide (B4C)-coated titanium (Ti) powder particles by ball milling and preparing core-shell B4C-reinforced Ti matrix composites by Spark Plasma Sintering was proposed. It can be seen that B4C coated on the surface of the spherical Ti powder to form a shell structure, and B4C had a certain continuity. Through X-ray diffraction characterization, it was found that B4C reacted with Ti to form layered phases of titanium boride (TiB) and titanium carbide (TiC). The compressive strength of the composite reached 1529.1 MPa, while maintaining a compressive strain rate of 5%. At the same time, conductivity and thermal conductivity were also characterized. The preparation process of the core-shell structure composites proposed in this paper has high feasibility and universality, and it is expected to be applied to other ceramic reinforcements. This result provides a reference for the design, preparation and performance research of core-shell composite materials. Full article
(This article belongs to the Special Issue Phase and Structure Analysis of Alloys and Metal Matrix Composites)
Show Figures

Figure 1

16 pages, 8241 KiB  
Article
Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding
by Serhii Lavrys, Iryna Pohrelyuk, Oleh Tkachuk, Juozas Padgurskas, Vasyl Trush and Roman Proskurnyak
Coatings 2023, 13(2), 282; https://doi.org/10.3390/coatings13020282 - 26 Jan 2023
Cited by 11 | Viewed by 2866
Abstract
The surface characteristics and friction behaviour of titanium Grade 2 with modified nitride (TiN, Ti2N) and boride (TiB) compound layers were investigated. It was shown that during non-contact boriding in oxygen-containing medium of titanium, the diffusion processes take place mainly by [...] Read more.
The surface characteristics and friction behaviour of titanium Grade 2 with modified nitride (TiN, Ti2N) and boride (TiB) compound layers were investigated. It was shown that during non-contact boriding in oxygen-containing medium of titanium, the diffusion processes take place mainly by the interscale mechanism; however, during nitriding, besides the traditional interscale diffusion mechanism, the grain boundary mechanism of diffusion of nitrogen atoms is also realized. The optimal set of surface roughness parameters (height and step parameters, a combination of kurtosis and asymmetry, and profile reference curve parameters) was obtained after boriding. It was determined that the intensity of the adhesive wear of the tribo-pairs with stainless steel and ultrahigh molecular weight polyethylene under dry sliding conditions was influenced not only by the hardness but also roughness of the modified surface layer. The lowest friction coefficient was fixed for the TiB compound layer in both tribo-pairs. Full article
(This article belongs to the Special Issue Coatings and Surface Modification for Tribological Applications)
Show Figures

Figure 1

13 pages, 4330 KiB  
Article
Spark Plasma Sintering (SPS) of Multi-Principal Element Alloys of Copper-Niobium-Titanium-Di-Boride-Graphite, Investigation of Microstructures, and Properties
by Azunna Agwo Eze, Emmanuel Rotimi Sadiku, Williams Kehinde Kupolati, Jacques Snyman, Julius Musyoka Ndambuki and Idowu David Ibrahim
Crystals 2022, 12(12), 1754; https://doi.org/10.3390/cryst12121754 - 3 Dec 2022
Cited by 2 | Viewed by 1817
Abstract
A near-equiatomic multi-principal element alloy of Cu40Nb30(TiB2)20C10 with both nano-particle size (14 nm) and micron-particle sizes (−44 µm) of Nb was designed and made via the spark plasma sintering technique at two different sintered [...] Read more.
A near-equiatomic multi-principal element alloy of Cu40Nb30(TiB2)20C10 with both nano-particle size (14 nm) and micron-particle sizes (−44 µm) of Nb was designed and made via the spark plasma sintering technique at two different sintered temperatures of 650 °C and 700 °C with other SPS parameters being constant. The sintering mode, microstructures, microhardness, density, relative density, wear behavior, and corrosion properties of the alloys were investigated and compared to ascertain the best for aerospace applications. The SPS technique was applied to produce the tested samples in this study. The results showed that the alloys with nano-particles of Nb sintered faster, with the lowest wear rate, and their microstructure shows a dendritic configuration with the existence of graphite-rich and niobium-rich nano-segregations in the inter-dendritic areas with the lowest coefficient of friction, Cu-NbTiB2C with nano-particles of Nb sintered at 650 °C recorded the highest microhardness value (786.03 HV0.2), and CuNbTiB2C with micro-particles of Nb sintered at 700 °C exhibited the best anti-corrosion characteristics in a sulphuric acid environment. The results obtained in this study correspond to the requirements for high-performance engineering materials, which will make the novel materials relevant in the aerospace industry. Full article
Show Figures

Figure 1

18 pages, 7120 KiB  
Article
Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides
by Věra Vodičková, Martin Švec, Pavel Hanus, Šárka Bukovská and Petra Pazourková Prokopčáková
Materials 2022, 15(20), 7189; https://doi.org/10.3390/ma15207189 - 15 Oct 2022
Cited by 5 | Viewed by 1652
Abstract
The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On [...] Read more.
The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition. Full article
(This article belongs to the Special Issue Application, Processing, and Testing of New Progressive Materials)
Show Figures

Figure 1

Back to TopTop