Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = tissue temperature depression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19567 KiB  
Article
Rice Cytochrome P450 Protein CYP71P1 Is Required for Heat Stress Tolerance by Regulating Serotonin Biosynthesis and ROS Homeostasis
by Xuantong Lv, Xunan Zhao, Fang Wang, Haili Wang, Yanli Zhang, Banpu Ruan, Guojun Dong, Yanchun Yu, Limin Wu and Fei Chen
Plants 2025, 14(7), 1072; https://doi.org/10.3390/plants14071072 - 1 Apr 2025
Cited by 2 | Viewed by 774
Abstract
Heat stress is one of the major factors affecting crop growth and yield. However, the molecular mechanisms underlying rice heat stress tolerance remain largely unclear. In this study, we identified and characterized the rice high temperature sensitive 2 (hts2) mutant, which [...] Read more.
Heat stress is one of the major factors affecting crop growth and yield. However, the molecular mechanisms underlying rice heat stress tolerance remain largely unclear. In this study, we identified and characterized the rice high temperature sensitive 2 (hts2) mutant, which is highly susceptible to heat stress. Map-based cloning revealed that the HTS2 encodes a cytochrome P450 protein (CYP71P1) involved in serotonin biosynthesis. HTS2 is ubiquitously expressed across plant tissues and shows strong upregulation in response to heat stress. The HTS2 mutation significantly impairs basal serotonin synthesis in rice, and the heat-sensitive phenotype of the hts2 mutant is completely rescued by exogenous serotonin supplementation. Compared to the wild type, the hts2 mutant exhibits reduced antioxidant capacity, leading to excessive reactive oxygen species (ROS) accumulation and severe oxidative damage, ultimately reducing heat stress tolerance. Furthermore, disruption of HTS2 significantly affects the rice heat shock response, with the heat-induced expression of HsfA2s and their downstream target genes, such as HSP18.0 (heat shock protein 18.0) and OsAPX2 (ascorbate peroxidase 2), markedly depressed in hts2 mutant. Our results suggest a pivotal role of HTS2 in modulating serotonin metabolism and maintaining ROS homeostasis during heat stress, offering new perspectives on the mechanisms underlying heat tolerance and potential strategies to enhance rice resilience to heat stress. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

18 pages, 18567 KiB  
Article
Effects of Coverlys TF150® on the Photosynthetic Characteristics of Grape
by Zhonghan Li, Enshun Jiang, Minghui Liu, Qinghua Sun, Zhen Gao and Yuanpeng Du
Int. J. Mol. Sci. 2023, 24(23), 16659; https://doi.org/10.3390/ijms242316659 - 23 Nov 2023
Cited by 1 | Viewed by 1403
Abstract
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal [...] Read more.
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal antifoggy PE coating that has not yet been popularized as a rain shelter film for grapes in China. To investigate the effects of Coverlys TF150® on grapes, we measured the microdomain environment, leaf development, and photosynthetic characteristics of ‘Miguang’ (Vitis vinifera × V. labrusca) under rain-shelter cultivation and performed transcriptome analysis. The results showed that Coverlys TF150® significantly reduced (p < 0.05) the light intensity, temperature, and humidity compared with PO film, increased the chlorophyll content and leaf thickness (particularly palisade tissue thickness), and increased stomatal density and stomatal opening from 10:00 to 14:00. Coverlys TF150® was observed to improve the maximum efficiency of photosystem II (Fv/Fm), photochemical quenching (qP), the electron transfer rate (ETR), and the actual photochemical efficiency (ΦPSII) from 10:00 to 14:00. Moreover, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) of grape leaves significantly increased (p < 0.05) from 10:00 to 14:00. RNA-Seq analysis of the grape leaves at 8:00, 10:00, and 12:00 revealed 1388, 1562, and 1436 differential genes at these points in time, respectively. KEGG enrichment analysis showed the occurrence of protein processing in the endoplasmic reticulum. Plant hormone signal transduction and plant-pathogen interaction were identified as the metabolic pathways with the highest differential gene expression enrichment. The psbA encoding D1 protein was significantly up-regulated in both CO10vsPO10 and CO12vsPO12, while the sHSPs family genes were significantly down-regulated in all time periods, and thus may play an important role in the maintenance of the photosystem II (PSII) activity in grape leaves under Coverlys TF150®. Compared with PO film, the PSI-related gene psaB was up-regulated, indicating the ability of Coverlys TF150® to better maintain PSI activity. Compared with PO film, the abolic acid receptacle-associated gene PYL1 was down-regulated at all time periods under the Coverlys TF150® treatment, while PP2C47 was significantly up-regulated in CO10vsPO10 and CO12vsPO12, inducing stomatal closure. The results reveal that Coverlys TF150® alleviates the stress of high temperature and strong light compared with PO film, improves the photosynthetic capacity of grape leaves, and reduces the midday depression of photosynthesis. Full article
(This article belongs to the Special Issue Molecular Research in Fruit Crop)
Show Figures

Figure 1

23 pages, 5249 KiB  
Article
Impact of Phytase Supplementation on Meat Quality of Heat-Stressed Broilers
by Clay J. Maynard, Craig W. Maynard, Garrett J. Mullenix, Alison Ramser, Elizabeth S. Greene, Mike R. Bedford and Sami Dridi
Animals 2023, 13(12), 2043; https://doi.org/10.3390/ani13122043 - 20 Jun 2023
Cited by 10 | Viewed by 2820
Abstract
Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and [...] Read more.
Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and consequently growth, we undertook the present study to evaluate the effects of dietary phytase on growth and meat quality in heat-stressed broilers. A total of 720 day-old hatch Cobb 500 chicks were assigned to 24 pens within controlled environmental chambers and fed three diets: Negative Control (NC), Positive Control (PC), and NC diet supplemented with 2000 phytase units (FTU)/kg) of quantum blue (QB). On day 29, birds were exposed to two environmental conditions: thermoneutral (TN, 25 °C) or cyclic heat stress (HS, 35 °C, 8 h/d from 9 a.m. to 5 p.m.) in a 3 × 2 factorial design. Feed intake (FI), water consumption (WI), body weight (BW), and mortality were recorded. On day 42, birds were processed, carcass parts were weighed, and meat quality was assessed. Breast tissues were collected for determining the expression of target genes by real-time quantitative PCR using the 2−ΔΔCt method. HS significantly increased core body temperature, reduced feed intake and BW, increased water intake (WI), elevated blood parameters (pH, SO2, and iCa), and decreased blood pCO2. HS reduced the incidence of woody breast (WB) and white striping (WS), significantly decreased drip loss, and increased both 4- and 24-h postmortem pH. Instrumental L* and b* values were reduced (p < 0.05) by the environmental temperature at both 4- and 24-h postmortem. QB supplementation reduced birds’ core body temperature induced by HS and improved the FCR and water conversion ratio (WCR) by 1- and 0.5-point, respectively, compared to PC under HS. QB increased blood SO2 and reduced the severity of WB and WS under TN conditions, but it increased it under an HS environment. The abovementioned effects were probably mediated through the modulation of monocarboxylate transporter 1, heat shock protein 70, mitogen-activated protein kinase, and/or glutathione peroxidase 1 gene expression, however, further mechanistic studies are warranted. In summary, QB supplementation improved growth performance and reduced muscle myopathy incidence under TN conditions. Under HS conditions, however, QB improved growth performance but increased the incidence of muscle myopathies. Therefore, further QB titration studies are needed. Full article
(This article belongs to the Special Issue Second Edition of Stress Management in Poultry)
Show Figures

Graphical abstract

16 pages, 3178 KiB  
Article
Abscisic-Acid-Modulated Stomatal Conductance Governs High-Temperature Stress Tolerance in Rice Accessions
by M. K. Malini, Sourabh Karwa, Payal Priyadarsini, Pramod Kumar, Shivani Nagar, Mahesh Kumar, Sudhir Kumar, Viswanathan Chinnusamy, Renu Pandey and Madan Pal
Agriculture 2023, 13(3), 545; https://doi.org/10.3390/agriculture13030545 - 23 Feb 2023
Cited by 7 | Viewed by 2785
Abstract
Rising air temperature is a major constraint for crop productivity under the current climate change scenario. Rice crops are known to be sensitive to high-temperature (HT) stress at anthesis and post-anthesis stages. Photosynthesis is an important metabolic process and is affected by HT [...] Read more.
Rising air temperature is a major constraint for crop productivity under the current climate change scenario. Rice crops are known to be sensitive to high-temperature (HT) stress at anthesis and post-anthesis stages. Photosynthesis is an important metabolic process and is affected by HT stress. A pot study was planned to screen a set of seventy-three Indian rice accessions based upon changes in the rate of photosynthesis (Pn) and related gas exchange traits under HT, and to characterize the contrasting rice accessions for component traits of HT stress tolerance. All accessions were raised under ambient temperature (AT) until the booting stage and exposed to HT using controlled chambers at anthesis and post-anthesis. HT exposure led to a large reduction (up to 50%) in Pn, but stomatal conductance (gs) and the rate of transpiration (E) increased significantly across the rice accessions. Based on the photosynthetic response under HT, two contrasting rice accessions (IRGC 135883, tolerant, and IRGC 127222, sensitive) were selected and characterized for HT tolerance, along with an NL-44 check. Among them, Pn decreased marginally but gs and E showed significant increases under HT in the tolerant accession, while sensitive accession showed an up to 50% reduction in Pn and marginal increase in gs and E. No significant changes were recorded for chlorophyll fluorescence (Fv/Fm) in both the genotypes, but tissue temperature depression (TTD) was higher in IRGC 135883 accession under HT. Endogenous abscisic acid (ABA) content increased under HT in the flag leaf of both the accessions, and the highest increase was observed in the sensitive accession. Similarly, spikelet fertility and grain yield showed large reductions in sensitive rice accession under HT. A large increase in ABA concentration in the leaves of the sensitive rice accession might be affecting its gs and cooling capacity under an HT environment. Finally, the study concludes that tolerant rice accessions can be recommended as donors and exploited in future rice breeding programs for developing climate-resilient rice genotypes. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

18 pages, 837 KiB  
Review
Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking
by Marlene Davis Ekpo, Jingxian Xie, Yuying Hu, Xiangjian Liu, Fenglin Liu, Jia Xiang, Rui Zhao, Bo Wang and Songwen Tan
Int. J. Mol. Sci. 2022, 23(5), 2639; https://doi.org/10.3390/ijms23052639 - 27 Feb 2022
Cited by 39 | Viewed by 8704
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing [...] Read more.
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future. Full article
(This article belongs to the Special Issue Biophysics in Membrane of Cells)
Show Figures

Figure 1

14 pages, 21150 KiB  
Article
AQP4 Attenuated TRAF6/NFκB Activation in Acrylamide-Induced Neurotoxicity
by Chia-Yu Hung, Chih-Han Chang, Tzu-Jung Lin, Hsin-Hui Yi, Nian-Zhen Tsai, Yu-Ru Chen and Yng-Tay Chen
Molecules 2022, 27(3), 1066; https://doi.org/10.3390/molecules27031066 - 4 Feb 2022
Cited by 5 | Viewed by 3018
Abstract
Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR [...] Read more.
Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR (0, 15, or 30 mg/kg) to rats. We conducted RNA sequencing and Western blot analyses to identify differences in mRNA expression in the blood and in protein expression in the brain tissues, respectively, of the rats. AQP4 transient transfection was performed to identify potential associations with protein regulation. The rats treated with 30 mg/kg ACR exhibited hind-limb muscle weakness. Matrix metalloproteinase (MMP9) expression was higher in the ACR-treated group than in the control group. ACR induced MMP-9 and AQP4 protein expression in the brain tissues of the rats, which subsequently presented with neurotoxicity. In the in vitro study, Neuro-2a cells were transiently transfected with AQP4, which inhibited MMP-9 and TNF receptor-associated factor 6 (TRAF6) expression, and inhibited ACR induced expression of TRAF6, IκBα, and nuclear factor κB (NFκB). Using a combination of in vivo and in vitro experiments, this study revealed that depressive symptoms associated with ACR-induced neurotoxicity are associated with downregulation of AQP4 and induction of the TRAF6 pathway. Full article
(This article belongs to the Special Issue Natural Antioxidants Are Associated with ROS and Diseases)
Show Figures

Figure 1

11 pages, 32824 KiB  
Article
Thiol-Responsive Gold Nanodot Swarm with Glycol Chitosan for Photothermal Cancer Therapy
by SeongHoon Jo, In-Cheol Sun, Wan Su Yun, Jinseong Kim, Dong-Kwon Lim, Cheol-Hee Ahn and Kwangmeyung Kim
Molecules 2021, 26(19), 5980; https://doi.org/10.3390/molecules26195980 - 2 Oct 2021
Cited by 9 | Viewed by 2422
Abstract
Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively [...] Read more.
Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment. Full article
(This article belongs to the Special Issue Nanomaterials for Everyday Life)
Show Figures

Figure 1

12 pages, 1718 KiB  
Article
Modulating the Thermoresponse of Polymer-Protein Conjugates with Hydrogels for Controlled Release
by Vincent Huynh, Natalie Ifraimov and Ryan G. Wylie
Polymers 2021, 13(16), 2772; https://doi.org/10.3390/polym13162772 - 18 Aug 2021
Cited by 9 | Viewed by 3016
Abstract
Sustained release is being explored to increase plasma and tissue residence times of polymer-protein therapeutics for improved efficacy. Recently, poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) polymers have been established as potential PEG alternatives to further decrease immunogenicity and introduce responsive or sieving properties. [...] Read more.
Sustained release is being explored to increase plasma and tissue residence times of polymer-protein therapeutics for improved efficacy. Recently, poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) polymers have been established as potential PEG alternatives to further decrease immunogenicity and introduce responsive or sieving properties. We developed a drug delivery system that locally depresses the lower critical solution temperature (LCST) of PEGMA-protein conjugates within zwitterionic hydrogels for controlled release. Inside the hydrogel the conjugates partially aggregate through PEGMA-PEGMA chain interactions to limit their release rates, whereas conjugates outside of the hydrogel are completely solubilized. Release can therefore be tuned by altering hydrogel components and the PEGMA’s temperature sensitivity without the need for traditional controlled release mechanisms such as particle encapsulation or affinity interactions. Combining local LCST depression technology and degradable zwitterionic hydrogels, complete release of the conjugate was achieved over 13 days. Full article
(This article belongs to the Special Issue Advances in Thermoresponsive Polymers)
Show Figures

Graphical abstract

13 pages, 1949 KiB  
Article
Combined Extract of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi Improved Hot Flashes and Depression in an Ovariectomized Rat Model of Menopause
by Eun Young Kang, Hyun Kyung Kim, Ji Yeon Jung, Ji Hyun Kim, Tan Kyung Woo, Jeong In Choi, Jong Hoon Kim, Changwon Ahn, Hyeon Gyu Lee and Gwang-Woong Go
Foods 2021, 10(1), 180; https://doi.org/10.3390/foods10010180 - 18 Jan 2021
Cited by 12 | Viewed by 5234
Abstract
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women’s quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata [...] Read more.
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women’s quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi (LEPE) would alleviate menopausal symptoms in an ovariectomized menopausal rat model. Bilateral ovariectomy was performed and animals were assigned to five groups: (1) Sham, (2) Vehicle, (-) Control, (3) LEPE (100 mg/kg bw), (4) LEPE (200 mg/kg bw), and (5) Estradiol (3 μg/kg bw). LEPE was orally administered daily for 12 weeks. LEPE supplementation did not affect growth performance (body weight and feed intake) or body composition (lean mass and fat in tissue). LEPE did not cause deviations in aspartate aminotransferase, alanine aminotransferase, estradiol, and follicle-stimulating hormone levels, indicating no hepatotoxicity or endocrine disturbance. LEPE decreased type I collagen (CTX-1) but did not affect bone mineral density or osteocalcin. LEPE decreased tail temperature and increased rectal temperature, improving menopause-related vasomotor symptoms. Furthermore, LEPE ameliorated depression-related behavior, including in forced swimming and tail suspension tests. Thus, LEPE may improve menopausal symptoms by enhancing vasomotor symptoms and depression in an ovariectomized rat menopause model. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

15 pages, 4454 KiB  
Article
Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique
by Adiel F. Perez, Kyle R. Taing, Justin C. Quon, Antonia Flores and Yong Ba
Crystals 2019, 9(7), 352; https://doi.org/10.3390/cryst9070352 - 11 Jul 2019
Cited by 11 | Viewed by 5360
Abstract
Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues [...] Read more.
Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal’s formation at low temperatures. To assess AFP’s function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications. Full article
(This article belongs to the Special Issue Ice Crystals)
Show Figures

Figure 1

22 pages, 474 KiB  
Article
Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response
by Gisela Lannig, Silke Eilers, Hans O. Pörtner, Inna M. Sokolova and Christian Bock
Mar. Drugs 2010, 8(8), 2318-2339; https://doi.org/10.3390/md8082318 - 11 Aug 2010
Cited by 365 | Viewed by 26999
Abstract
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. [...] Read more.
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks. Full article
(This article belongs to the Special Issue Metabolomic Approaches to Marine Organisms)
Show Figures

Back to TopTop