Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = tissue inhibitor of metalloproteases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1059 KiB  
Article
Kidney Transplant Recipients with Acute Antibody-Mediated Rejection Show Altered Levels of Matrix Metalloproteinases and Their Inhibitors: Evaluation of Circulating MMP and TIMP Profiles
by Miguel A. Vázquez-Toledo, Fausto Sánchez-Muñoz, Iván Zepeda-Quiroz, Carlos A. Guzmán-Martín, Horacio Osorio-Alonso, Juárez-Villa Daniel, Ma. Virgilia Soto-Abraham, Bernardo Moguel-González, Rommel Chacón-Salinas, César Flores-Gama and Rashidi Springall
Int. J. Mol. Sci. 2025, 26(13), 6011; https://doi.org/10.3390/ijms26136011 - 23 Jun 2025
Viewed by 716
Abstract
Antibody-mediated rejection (ABMR) remains a major cause of renal graft dysfunction and loss. The histological hallmark of antibody-mediated rejection is progressive tissue damage, in which extracellular matrix turnover plays an important role. This turnover is mainly regulated by matrix metalloproteinases (MMPs) and tissue [...] Read more.
Antibody-mediated rejection (ABMR) remains a major cause of renal graft dysfunction and loss. The histological hallmark of antibody-mediated rejection is progressive tissue damage, in which extracellular matrix turnover plays an important role. This turnover is mainly regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Recent studies suggest that MMP/TIMP imbalance may favor the progression of renal damage, inflammation, and fibrosis, but the utility of these molecules as a biomarker of antibody-mediated turnover has not been fully explored. We measured plasma MMP and TIMP levels by ELISA in 15 patients with antibody-mediated renal transplant rejection and 12 patients without rejection. There was a significant increase in MMP-1, MMP-2, and MMP-3 concentrations in the plasma of patients with rejection, directly correlating with the severity of different renal lesions. In contrast, TIMP-3 levels were elevated in patients without rejection, showing a negative correlation with the severity of histopathological lesions. The concentrations of these molecules demonstrated good diagnostic capacity for patients with rejection. Our results show that MMP-1, MMP-2, MMP-3, and TIMP-3 could be potential biomarkers of rejection. Full article
(This article belongs to the Special Issue Advances in Kidney Transplantation)
Show Figures

Figure 1

17 pages, 1736 KiB  
Article
Electrical Cell Impedance Sensing (ECIS): Feasibility of a Novel In Vitro Approach to Studying Venom Toxicity and Potential Therapeutics
by Abhinandan Choudhury, Kaitlin Linne, Tommaso C. Bulfone, Tanvir Hossain, Abu Ali Ibn Sina, Philip L. Bickler, Bryan G. Fry and Matthew R. Lewin
Toxins 2025, 17(4), 193; https://doi.org/10.3390/toxins17040193 - 11 Apr 2025
Viewed by 1886
Abstract
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are [...] Read more.
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are challenging to study in live animals and can be ethically fraught due to animal welfare concerns such that attention to the 3Rs of animal welfare motivates the development of in vitro techniques in this arena. Herein, we tested the use of a wound-healing study technique known as Electric Cell-Substrate Impedance Sensing (ECIS) to assess populations of cultured cells exposed to venom with or without sPLA2 and/or metalloprotease inhibitors (varespladib and marimastat, respectively). For comparison, the StarMax coagulation analyzer for coagulotoxicity was further used to evaluate the venoms and the neutralizing capabilities of the abovementioned direct toxin inhibitors (DTIs) against the same venoms examined using ECIS. Three viper and three elapid venoms that were examined for their effects on H1975 cells were Agkistrodon contortrix (Eastern Copperhead), Crotalus helleri (Southern Pacific Rattlesnake), and Vipera ammodytes (Horned Viper) and Naja atra (Chinese Cobra), Naja mossambica (Mozambique Spitting Cobra), and Naja nigricollis (Black-necked Spitting Cobra), respectively. The combination of cellular and coagulation techniques appears to usefully discriminate the in vitro capabilities and limitations of specific inhibitors to inhibit specific venom effects. This study suggests that ECIS with or without concomitant coagulation testing is a feasible method to generate reproducible, meaningful preclinical data and could be used with any type of cell line. Importantly, this approach is both quantitative and has the potential of reducing animal use and suffering during the evaluation of potential therapeutics. To further evaluate the potential of this method, rescue studies should be performed. Full article
(This article belongs to the Special Issue Venoms and Drugs)
Show Figures

Figure 1

18 pages, 1035 KiB  
Review
Exploring Proteases as Alternative Molecular Targets to Tackle Inflammation in Cystic Fibrosis Respiratory Infections
by Angela Sandri and Federico Boschi
Int. J. Mol. Sci. 2025, 26(5), 1871; https://doi.org/10.3390/ijms26051871 - 21 Feb 2025
Viewed by 1053
Abstract
Cystic fibrosis (CF) is characterized by chronic respiratory infections and excessive inflammation, driven by both host- and pathogen-derived proteases. The dysregulated activity of proteolytic enzymes such as neutrophil elastase (NE), cathepsin G, and matrix metalloproteases (MMPs) degrades lung tissue, exacerbates airway remodeling, and [...] Read more.
Cystic fibrosis (CF) is characterized by chronic respiratory infections and excessive inflammation, driven by both host- and pathogen-derived proteases. The dysregulated activity of proteolytic enzymes such as neutrophil elastase (NE), cathepsin G, and matrix metalloproteases (MMPs) degrades lung tissue, exacerbates airway remodeling, and perpetuates inflammatory cycles. Concurrently, bacterial proteases from pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus contribute to immune evasion and tissue destruction, compounding disease severity. Despite advances in antimicrobial and anti-inflammatory therapies, protease-driven lung damage remains a critical challenge. This review examines the dual role of host and bacterial proteases in CF pathophysiology, highlighting emerging protease-targeted therapies aimed at mitigating lung damage and inflammation. Strategies explored include the inhibition of NE, MMPs, and bacterial proteases, with a focus on innovative therapeutic approaches such as dual-function inhibitors, biologics, and advanced drug delivery systems. By restoring the protease–antiprotease balance, these interventions offer the potential to improve clinical outcomes and quality of life for CF patients. Full article
(This article belongs to the Special Issue Molecular Insight into Approaches against Cystic Fibrosis Infections)
Show Figures

Figure 1

17 pages, 1743 KiB  
Article
Fabrication and Characterization of Electrospun DegraPol® Tubes Releasing TIMP-1 Protein to Modulate Tendon Healing
by Julia Rieber, Roger Khalid Niederhauser, Pietro Giovanoli and Johanna Buschmann
Materials 2025, 18(3), 665; https://doi.org/10.3390/ma18030665 - 3 Feb 2025
Cited by 3 | Viewed by 1083
Abstract
Background: Tendon rupture repair can result from fibrotic scar formation through imbalanced ECM deposition during remodeling. The tissue inhibitors of matrix metalloprotease (TIMPs) not only decrease ECM degradation, regulated by matrix metalloproteases (MMPs), but also restrict TGF-β1 activation and thus diminish fibrosis. Methods: [...] Read more.
Background: Tendon rupture repair can result from fibrotic scar formation through imbalanced ECM deposition during remodeling. The tissue inhibitors of matrix metalloprotease (TIMPs) not only decrease ECM degradation, regulated by matrix metalloproteases (MMPs), but also restrict TGF-β1 activation and thus diminish fibrosis. Methods: Rabbit tenocytes (rbTenocytes) and rabbit adipose-derived stem cells (rbASCs) were cultivated under different TIMP-1 concentrations. Proliferation and gene expression were assessed. TIMP-1 was incorporated into emulsion electrospun DegraPol® (DP) tubes that were characterized by SEM for fiber thickness, pore size, and wall thickness. Static and dynamic water contact angles, FTIR spectra, and TIMP-1 release kinetics were determined. Results: While the proliferation of rbTenocytes and rbACS was not affected by TIMP-1 supplementation in vitro, the gene expression of Col1A1 was increased in rbTenocytes, the gene expression of ki67 was increased in both cell types, the gene expression of tenomodulin was increased in both cell types at 100 ng/mL TIMP-1, and alkaline phosphatase expression ALP rose significantly in rbASCs. Electrospun TIMP-1/DP fibers had a ~5 μm diameter, a ~10 μm pore size, and a mesh thickness of ~200 μm. TIMP-1/DP meshes were more hydrophilic than pure DP meshes. TIMP-1 was released from the meshes with a sustained release of up to 7 days. Conclusions: TIMP-1/DP tubes may be used to modulate the fibrotic tissue reaction when applied around conventionally sutured tendon ruptures. Full article
(This article belongs to the Special Issue Physico-Chemical Modification of Materials for Biomedical Application)
Show Figures

Figure 1

22 pages, 94356 KiB  
Article
Propolis Reduces Inflammation and Dyslipidemia Caused by High-Cholesterol Diet in Mice by Lowering ADAM10/17 Activities
by Ertugrul Yigit, Orhan Deger, Katip Korkmaz, Merve Huner Yigit, Huseyin Avni Uydu, Tolga Mercantepe and Selim Demir
Nutrients 2024, 16(12), 1861; https://doi.org/10.3390/nu16121861 - 13 Jun 2024
Cited by 7 | Viewed by 2708
Abstract
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis [...] Read more.
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1β (IL-1β), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1β, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

14 pages, 442 KiB  
Review
Genome-Wide Association Screens for Anterior Cruciate Ligament Tears
by Vincenzo Candela, Umile Giuseppe Longo, Alessandra Berton, Giuseppe Salvatore, Francisco Forriol, Alessandro de Sire and Vincenzo Denaro
J. Clin. Med. 2024, 13(8), 2330; https://doi.org/10.3390/jcm13082330 - 17 Apr 2024
Cited by 3 | Viewed by 2010
Abstract
Background: The etiopathogenesis of ACL rupture is not clarified. The aim of this study is to identify genomic regions and genetic variants relevant to anterior cruciate ligament injury susceptibility that could be involved in non-contact anterior cruciate ligament ruptures. Methods: A systematic review [...] Read more.
Background: The etiopathogenesis of ACL rupture is not clarified. The aim of this study is to identify genomic regions and genetic variants relevant to anterior cruciate ligament injury susceptibility that could be involved in non-contact anterior cruciate ligament ruptures. Methods: A systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines with a PRISMA checklist and algorithm. A search of PubMed, MEDLINE, CINAHL, Cochrane, EMBASE, and Google Scholar databases was conducted using combinations of the terms “anterior cruciate ligament”, “ACL”, “rupture”, “genetics”, “single nucleotide polymorphisms”, and “SNP” since the inception of the databases until 2021. Results: Twenty-three studies were included. A total of 7724 patients were analyzed. In total, 3477 patients had ACL ruptures and 4247 patients were controls. Genetic variants in genes encoding for collagens, elastin, fibrillin, matrix metalloproteinases, proteoglycans, angiogenesis-associated signaling cascade proteins, growth differentiation factors, tissue inhibitors of metalloproteases, interleukins, and fibrinogen were analyzed. Conclusion: Findings regarding the association between genes encoding for collagen (COL3A1, COL1A1, and COL12A1), aggrecan (ACAN), decorin (DCN), matrix metalloproteinase (MMP3), interleukin 6 (IL-6), vascular endothelial growth factor A (VEGFA), biglycan (BGN), fibrinogen (FGB), and ACL injuries were found to be inconclusive. Additional evidence is required in order to establish substantial conclusions regarding the association between genetic variants and ACL rupture. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

21 pages, 6749 KiB  
Article
The Role of Matrix Metalloproteinases in Thoracic Aortic Disease: Are They Indicators for the Pathogenesis of Dissections?
by Marc Irqsusi, Lan Anh Dong, Fiona R. Rodepeter, Rabia Ramzan, Ildar Talipov, Tamer Ghazy, Madeline Günther, Sebastian Vogt and Ardawan J. Rastan
Biomedicines 2024, 12(3), 619; https://doi.org/10.3390/biomedicines12030619 - 9 Mar 2024
Cited by 5 | Viewed by 1847
Abstract
The pathogenesis of aortic aneurysm and dissection continues to be under discussion. Extracellular matrix (ECM) remodeling processes in the aortic wall are hypothesized to be involved in the development of the disorders. Therefore, in a histological study, we investigated the expression of metalloproteases [...] Read more.
The pathogenesis of aortic aneurysm and dissection continues to be under discussion. Extracellular matrix (ECM) remodeling processes in the aortic wall are hypothesized to be involved in the development of the disorders. Therefore, in a histological study, we investigated the expression of metalloproteases 1 and 9 (MMP1 and MMP9) and their inhibitors (TIMP 1 and TIMP 2) in cardiac surgery patients. In parallel, we studied the aortic roots by echocardiography. Clinical reports of 111 patients (30 women and 81 men) who suffered from aortic aneurysms and aortic dissection were evaluated and studied by transesophageal echocardiography. Seven patients who had coronary heart disease served as “healthy controls”. All patients underwent the necessary surgical procedure according to the diagnosed aortic disease in the period from 2007 to 2015. A tissue sample of the aortic biopsies was collected from each patient during surgery. Immunohistochemical staining was performed for MMP1 and MMP9 and TIMP1 and TIMP2 as well. Vascularization was monitored by a CD 31 antibody. In direct comparison, the expressions are not homogeneous. We found the smallest changes in the intima area at all. TIMP 1 and TIMP 2 distribution increases from the lumen of the vessel outward in the wall layers of the aorta. In the case of arteriosclerotic changes, intima had a capillarization, but not in the media. An opposite pattern was found in the dissected aortas. There are differences in the vascularization between the aneurysm and dissection and the different layers, respectively. A different remodeling process of the ECM in comparison to the vascular layers must be hypothesized. Reading the patterns of staining and with regard to the known inhibitory effect of MMP9 on ECM remodeling, but especially TIMP 2 on neoangiogenesis, disturbed nutrition, and dysfunctional vasa vasorum remodeling must be assumed as causes of dissection. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: From Bench to Bedside)
Show Figures

Figure 1

20 pages, 6723 KiB  
Article
Inflammatory Mesenchymal Stem Cells Express Abundant Membrane-Bound and Soluble Forms of C-Type Lectin-like CD248
by Melissa Payet, Franck Ah-Pine, Xavier Guillot and Philippe Gasque
Int. J. Mol. Sci. 2023, 24(11), 9546; https://doi.org/10.3390/ijms24119546 - 31 May 2023
Cited by 8 | Viewed by 2826
Abstract
CD248 (endosialin) belongs to a glycoprotein family that also includes thrombomodulin (CD141), CLEC14A, and CD93 (AA4) stem cell markers. We analyzed the regulated expression of CD248 in vitro using skin (HFFF) and synovial (FLS) mesenchymal stem cell lines, and in fluid and tissue [...] Read more.
CD248 (endosialin) belongs to a glycoprotein family that also includes thrombomodulin (CD141), CLEC14A, and CD93 (AA4) stem cell markers. We analyzed the regulated expression of CD248 in vitro using skin (HFFF) and synovial (FLS) mesenchymal stem cell lines, and in fluid and tissue samples of rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Cells were incubated with either rhVEGF165, bFGF, TGF-β1, IL1-β, TNF-α, TGFβ1, IFN-γ, or PMA (Phorbol ester). There was no statistically significant change in membrane expression. A soluble (s) form of cleaved CD248 (sCD248) was detected after cell treatment with IL1-β and PMA. Matrix metalloprotease (MMP) MMP-1 and MMP-3 mRNAs were significantly up-regulated by IL1-β and PMA. A broad MMP inhibitor blocked the release of soluble CD248. In RA synovial tissue, we identified CD90+ perivascular MSCs double-stained for CD248 and VEGF. High sCD248 levels were detected in synovial fluid from RA. In culture, subpopulations of CD90+ CD14 RA MSCs were either identified as CD248+ or CD141+ cells but CD93. CD248 is abundantly expressed by inflammatory MSCs and shed in an MMP-dependent manner in response to cytokines and pro-angiogenic growth factors. Both membrane-bound and soluble CD248 (acting as a decoy receptor) may contribute to RA pathogenesis. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells in Health and Disease 2.0)
Show Figures

Figure 1

16 pages, 5396 KiB  
Article
Evaluation of Matrix Metalloproteases by Artificial Intelligence Techniques in Negative Biopsies as New Diagnostic Strategy in Prostate Cancer
by Noemi Eiro, Antonio Medina, Luis O. Gonzalez, Maria Fraile, Ana Palacios, Safwan Escaf, Jesús M. Fernández-Gómez and Francisco J. Vizoso
Int. J. Mol. Sci. 2023, 24(8), 7022; https://doi.org/10.3390/ijms24087022 - 10 Apr 2023
Cited by 5 | Viewed by 2267
Abstract
Usually, after an abnormal level of serum prostate-specific antigen (PSA) or digital rectal exam, men undergo a prostate needle biopsy. However, the traditional sextant technique misses 15–46% of cancers. At present, there are problems regarding disease diagnosis/prognosis, especially in patients’ classification, because the [...] Read more.
Usually, after an abnormal level of serum prostate-specific antigen (PSA) or digital rectal exam, men undergo a prostate needle biopsy. However, the traditional sextant technique misses 15–46% of cancers. At present, there are problems regarding disease diagnosis/prognosis, especially in patients’ classification, because the information to be handled is complex and challenging to process. Matrix metalloproteases (MMPs) have high expression by prostate cancer (PCa) compared with benign prostate tissues. To assess the possible contribution to the diagnosis of PCa, we evaluated the expression of several MMPs in prostate tissues before and after PCa diagnosis using machine learning, classifiers, and supervised algorithms. A retrospective study was conducted on 29 patients diagnosed with PCa with previous benign needle biopsies, 45 patients with benign prostatic hyperplasia (BHP), and 18 patients with high-grade prostatic intraepithelial neoplasia (HGPIN). An immunohistochemical study was performed on tissue samples from tumor and non-tumor areas using specific antibodies against MMP -2, 9, 11, and 13, and the tissue inhibitor of MMPs -3 (TIMP-3), and the protein expression by different cell types was analyzed to which several automatic learning techniques have been applied. Compared with BHP or HGPIN specimens, epithelial cells (ECs) and fibroblasts from benign prostate biopsies before the diagnosis of PCa showed a significantly higher expression of MMPs and TIMP-3. Machine learning techniques provide a differentiable classification between these patients, with greater than 95% accuracy, considering ECs, being slightly lower when considering fibroblasts. In addition, evolutionary changes were found in paired tissues from benign biopsy to prostatectomy specimens in the same patient. Thus, ECs from the tumor zone from prostatectomy showed higher expressions of MMPs and TIMP-3 compared to ECs of the corresponding zone from the benign biopsy. Similar differences were found for expressions of MMP-9 and TIMP-3, between fibroblasts from these zones. The classifiers have determined that patients with benign prostate biopsies before the diagnosis of PCa showed a high MMPs/TIMP-3 expression by ECs, so in the zone without future cancer development as in the zone with future tumor, compared with biopsy samples from patients with BPH or HGPIN. Expression of MMP -2, 9, 11, and 13, and TIMP-3 phenotypically define ECs associated with future tumor development. Also, the results suggest that MMPs/TIMPs expression in biopsy tissues may reflect evolutionary changes from prostate benign tissues to PCa. Thus, these findings in combination with other parameters might contribute to improving the suspicion of PCa diagnosis. Full article
(This article belongs to the Special Issue Bioinformatics in Genetic Diseases and Cancer)
Show Figures

Figure 1

13 pages, 785 KiB  
Article
Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI)
by Giovanni Cirillo, Roberta Pepe, Mattia Siciliano, Domenico Ippolito, Dario Ricciardi, Manuela de Stefano, Daniela Buonanno, Danilo Atripaldi, Salvatore Abbadessa, Brunella Perfetto, Minoo Sharbafshaaer, Giovanna Sepe, Simona Bonavita, Alessandro Iavarone, Vincenzo Todisco, Michele Papa, Gioacchino Tedeschi, Sabrina Esposito and Francesca Trojsi
Int. J. Mol. Sci. 2023, 24(4), 3231; https://doi.org/10.3390/ijms24043231 - 6 Feb 2023
Cited by 23 | Viewed by 3828
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer’s disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, [...] Read more.
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer’s disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Dementia)
Show Figures

Figure 1

15 pages, 2622 KiB  
Article
Comparing TIMP-1 and Hsp70 in Blood and Saliva as Potential Prognostic Markers in HNSCC
by Jakob Rinecker, Romina Roesch, Sara Krippgans, Markus Nieberler, Leonhard Stark, Stefan Stangl, Bernhard Haller, Kristin Fritsche, Gabriele Multhoff, Andreas Knopf, Christof Winter, Barbara Wollenberg and Markus Wirth
Biomedicines 2022, 10(12), 3225; https://doi.org/10.3390/biomedicines10123225 - 12 Dec 2022
Cited by 2 | Viewed by 1823
Abstract
(1) Background: Currently, there is no clinically used liquid biomarker in head and neck squamous cell carcinoma (HNSCC) patients. One reason could be the limited shedding of tumor material in early disease stages. Molecular diagnostics assessing both blood and especially saliva could potentially [...] Read more.
(1) Background: Currently, there is no clinically used liquid biomarker in head and neck squamous cell carcinoma (HNSCC) patients. One reason could be the limited shedding of tumor material in early disease stages. Molecular diagnostics assessing both blood and especially saliva could potentially improve the accuracy of biomarkers. In this prospective study, two markers, tissue inhibitor of metalloprotease-1 (TIMP-1) and heat shock protein 70 (Hsp70), were analyzed in HNSCC patients. The purpose of the study was to evaluate differences between saliva and serum as sample material. Further, their prognostic and predictive value and usefulness for early detection was assessed. (2) Methods: A total of 73 HNSCC patients were prospectively monitored by collecting blood and saliva before, during, and after therapy, as well as in the follow-up period between 2018 and 2021. In total, 212 serum and 194 saliva samples were collected. A control group consisting of 40 subjects (15 patients with local infections in the head and neck area and 25 without infections) were examined as well. The collected samples were evaluated for the two proteins by using an enzyme-linked immunosorbent assay (ELISA). (3) RESULTS: The TIMP-1 concentration correlated significantly in blood and saliva, whereas the Hsp70 concentration did not. Saliva TIMP-1 was significantly higher in tumor patients compared to the control group (p = 0.013). High pretreatment TIMP-1 saliva levels were associated with significantly poorer disease-free survival (DFS) (p = 0.02). A high saliva TIMP-1/Hsp70 ratio was significantly associated with poorer DFS (HR: 1.4; 95% CI: 1.04–1.88; p = 0.026) and a high TIMP-1 serum concentration was significantly associated with poorer PFS (HR: 1.9; 95% CI: 1.2, 2.8; p = 0.003) and poorer overall survival (OS) (HR: 2.9; 95% CI: 1.4, 5.9; p = 0.003) in the Cox proportional hazards model. The saliva TIMP-1 to Hsp70 ratio was significantly higher at the time of recurrence (p = 0.015). Conclusion: TIMP-1 in serum is a promising prognostic marker for HNSCC. Saliva TIMP-1 and the saliva TIMP-1 to Hsp70 ratio provides additional information on the disease-free survival. Full article
(This article belongs to the Special Issue Head and Neck Tumors 2.0)
Show Figures

Figure 1

11 pages, 3764 KiB  
Article
Antioxidant, Anti-Inflammation and Antiaging Activities of Artocarpus altilis Methanolic Extract on Urban Particulate Matter-Induced HaCaT Keratinocytes Damage
by Chun-Yin Yang, Cheng-Chang Pan, Chih-Hua Tseng and Feng-Lin Yen
Antioxidants 2022, 11(11), 2304; https://doi.org/10.3390/antiox11112304 - 21 Nov 2022
Cited by 11 | Viewed by 4917
Abstract
Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution [...] Read more.
Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 μg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function. Full article
(This article belongs to the Special Issue Natural Antioxidants: Multiple Mechanisms for Skin Protection)
Show Figures

Figure 1

14 pages, 851 KiB  
Review
The Repertoire of Tissue Inhibitors of Metalloproteases: Evolution, Regulation of Extracellular Matrix Proteolysis, Engineering and Therapeutic Challenges
by Salvatore Costa, Maria Antonietta Ragusa, Gabriele Lo Buglio, Simone Dario Scilabra and Aldo Nicosia
Life 2022, 12(8), 1145; https://doi.org/10.3390/life12081145 - 28 Jul 2022
Cited by 13 | Viewed by 3543
Abstract
Tissue inhibitors of metalloproteases (TIMPs) belong to a fascinating protein family expressed in all Metazoa. They act as regulators of the turnover of the extracellular matrix, and they are consistently involved in essential processes. Herein, we recapitulate the main activities of mammalian TIMPs [...] Read more.
Tissue inhibitors of metalloproteases (TIMPs) belong to a fascinating protein family expressed in all Metazoa. They act as regulators of the turnover of the extracellular matrix, and they are consistently involved in essential processes. Herein, we recapitulate the main activities of mammalian TIMPs (TIMP1–4) in the control of extracellular-matrix degradation and pathologies associated with aberrant proteostasis. We delineate the activity of TIMPs in the control of extracellular matrix (ECM) homeostasis and discuss the diversity of TIMPs across metazoans taking into account the emergence of the components of the ECM during evolution. Thus, the TIMP repertoire herein analysed includes the homologues from cnidarians, which are coeval with the origins of ECM components; protostomes (molluscs, arthropods and nematodes); and deuterostomes (echinoderms and vertebrates). Several questions, including the maintenance of the structure despite low sequence similarity and the strategies for TIMP engineering, shed light on the possibility to use recombinant TIMPs integrating unique features and binding selectivity for therapeutic applications in the treatment of inflammatory pathologies. Full article
(This article belongs to the Special Issue Early Career Stars in Physiology and Pathology)
Show Figures

Figure 1

13 pages, 660 KiB  
Review
Genipin, an Inhibitor of UCP2 as a Promising New Anticancer Agent: A Review of the Literature
by Young Seok Cho
Int. J. Mol. Sci. 2022, 23(10), 5637; https://doi.org/10.3390/ijms23105637 - 18 May 2022
Cited by 40 | Viewed by 4903
Abstract
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 [...] Read more.
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers. Full article
(This article belongs to the Special Issue Uncoupling Proteins)
Show Figures

Figure 1

25 pages, 1632 KiB  
Review
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding
by Donatella Pia Spanò and Simone Dario Scilabra
Membranes 2022, 12(2), 211; https://doi.org/10.3390/membranes12020211 - 11 Feb 2022
Cited by 7 | Viewed by 4370
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, [...] Read more.
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor. Full article
(This article belongs to the Section Biological Membrane Functions)
Show Figures

Figure 1

Back to TopTop