Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = timber-reinforced concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7677 KB  
Article
Seismic Assessment and Strengthening of a Load-Bearing Masonry Structure Considering SSI Effects
by Kyriaki G. Amarantidou, Panagiota S. Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2025, 15(15), 8135; https://doi.org/10.3390/app15158135 - 22 Jul 2025
Viewed by 523
Abstract
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a [...] Read more.
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a composite load-bearing system of timber-framed stone masonry. Over time, the structure has undergone irreversible modifications, primarily involving reinforced concrete (RC) interventions. The building’s seismic performance was evaluated using two finite element models developed in the SAP2000 software (v. 25.3.00). The first model simulates the original structure, strengthened by grout injections, while the second represents the current condition of the structural system following RC additions. Soil–structure interaction was also investigated, given that the local soil is classified as Category D according to Eurocode 8 (EC8). Each model was analyzed under two different support conditions: fixed-base and SSI-inclusive. A suite of appropriate accelerograms was applied to both models, in compliance with Eurocode 8 using the SeismoMatch software, and linear time-history analyses were conducted. The results underscore the significant impact of SSI on the increase of peak tensile stress and interstorey drift ratios (IDRs), and highlight the influence of different strengthening techniques on the seismic response of historic load-bearing masonry structures. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

21 pages, 3530 KB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 454
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 50408 KB  
Article
Timber-Reinforced Concrete and Its Application in Portugal
by Cristina Reis, Sandra Pereira, Naim Sedira, Anabela Paiva and Jorge Pinto
Buildings 2025, 15(9), 1532; https://doi.org/10.3390/buildings15091532 - 2 May 2025
Viewed by 796
Abstract
Traditional construction is an important skill. This paper intends to contribute to the literature on the topic of timber-reinforced concrete. First, some traditional Portuguese timber solutions are introduced. Second, some traditional Portuguese timber-reinforced concrete solutions are presented. Third, a sustainable concrete that uses [...] Read more.
Traditional construction is an important skill. This paper intends to contribute to the literature on the topic of timber-reinforced concrete. First, some traditional Portuguese timber solutions are introduced. Second, some traditional Portuguese timber-reinforced concrete solutions are presented. Third, a sustainable concrete that uses waste from industrial timber aggregate is proposed. Some experimental work is also presented, along with some material properties. Fourth, an expedited experimental study of slender timber-reinforced concrete columns is introduced. Subsequently, some traditional Portuguese solutions for increasing the connection between timber and concrete are presented. The benefits of combining traditional techniques with modern materials for achieving greener and more resilient building solutions are emphasized. Full article
Show Figures

Figure 1

18 pages, 2436 KB  
Article
Integrating Noise into Life Cycle Assessment for Sustainable High-Rise Construction: A Comparative Study of Concrete, Timber, and Steel Frames in Australia
by Rabaka Sultana, Taslima Khanam, Ahmad Rashedi and Ali Rajabipour
Sustainability 2025, 17(9), 4040; https://doi.org/10.3390/su17094040 - 30 Apr 2025
Cited by 3 | Viewed by 769
Abstract
The Life Cycle Assessment (LCA) evaluates the environmental impacts of a product or service throughout its life cycle, from material extraction to end-of-life, considering factors such as global warming, acidification, and toxicity. However, despite its significant health effects, noise has not yet been [...] Read more.
The Life Cycle Assessment (LCA) evaluates the environmental impacts of a product or service throughout its life cycle, from material extraction to end-of-life, considering factors such as global warming, acidification, and toxicity. However, despite its significant health effects, noise has not yet been incorporated into the LCA. This study integrates noise impact into the LCA to assess and compare alternative structural designs for Australian high-rise residential and commercial buildings. Three scenarios were analysed: (1) reinforced concrete frames, (2) hybrid timber designs using engineered wood (e.g., cross-laminated timber and Glulam), and (3) steel-frame structures. The system boundary spans cradle to grave, with a 100-year lifespan. Material quantities were extracted from BIM software 2024 (Revit Architecture) for accuracy. The ReCiPe 2016 method converted inventory data into impact indicators, while noise impact was assessed using Highly Annoyed People (HAP) and Highly Sleep-Deprived People (HSDP). The results show that commercial buildings have more significant environmental impacts than residential structures due to their higher material usage. Steel frames generally exhibit the highest environmental impact, while concrete structures contribute most to noise effects. The total noise-integrated impact ranks as steel > concrete > timber. Additionally, noise accounts for up to 33% of the total impact on densely populated areas but remains negligible in low-population regions. These findings highlight the importance of incorporating noise into the LCA for a more holistic assessment of sustainable building designs. Full article
Show Figures

Figure 1

18 pages, 5896 KB  
Article
Efficiency of Alternative Reinforcement Methods for Wooden Ceilings and Their Ecological Aspects
by Karl Deix, Christian Huber and Josip Gogic
Materials 2025, 18(9), 2032; https://doi.org/10.3390/ma18092032 - 29 Apr 2025
Viewed by 436
Abstract
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the [...] Read more.
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the beams with structural steel or fiber composites (aramid or carbon-fiber-reinforced polymer). This work investigates how significant effects on the load-bearing and deformation behavior can be achieved with these materials in terms of construction practice. The article is intended to show structural engineers which reinforcement measures lead to which forces, deformations, etc., and how these are utilized. This should form the basis for the planning of reinforcement measures, as it is not clear from the beginning whether AFRP, CFRP, or steel is the most suitable material. For this purpose, a comparative parameter study was carried out under practical conditions and with a variable degree of reinforcement using the corresponding formulas. The internal forces in the timber and reinforcement cross-sections, the deflection behavior, and the failure loads at the strength and design levels were calculated. It was demonstrated that, particularly for steel and carbon-fiber-reinforced polymer (CFRP) reinforcements, significant increases in the ultimate load can be achieved and the often-important deformation behavior can be significantly improved. Especially the steel variant leads to high improvements in deflection and breaking load behavior, with the base material (wood) also being utilized more economically as a result. A comparative ecological study in the form of the global warming potential showed that reinforcement methods are also advantageous from the point of view of sustainability compared to renovations with timber concrete composite slabs or new concrete slabs. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

29 pages, 10636 KB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 2 | Viewed by 1182
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

23 pages, 3542 KB  
Article
Numerical Study on In-Plane Behaviour of Light Timber-Framed Wall Elements Under a Horizontal Load Impact
by Miroslav Premrov and Erika Kozem Šilih
Buildings 2025, 15(5), 778; https://doi.org/10.3390/buildings15050778 - 27 Feb 2025
Viewed by 753
Abstract
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame [...] Read more.
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame elements (internal or external wall elements). The analysis simultaneously considers bending, shear, and timber-to-framing connection flexibility, while assuming stiff-supported wall elements as prescribed by Eurocode 5. Particular emphasis is placed on the sliding deformation between sheathing boards and the timber frame, which can significantly reduce the overall stiffness of LTF wall elements. The influence of fastener spacing (s) on sliding deformation and overall stiffness is comprehensively analysed, as well as the different bending and shear behaviours of the various sheathing materials. The results show that reducing the fastener spacing can significantly improve the stiffness of OSB wall elements, while it is less critical for FPB elements used in mid-rise timber buildings. A comparison of external and internal wall elements revealed a minimal difference in racking stiffness (3.3%) for OSB and FPB specimens, highlighting their comparable performance. The inclusion of RC sheathing on one side of the LTF elements showed significant potential to improve torsional behaviour and in-plane racking stiffness, making it a viable solution for strengthening prefabricated multi-storey timber buildings. These findings provide valuable guidance for optimizing the design of LTF walls, ensuring improved structural performance and extended application possibilities in modern timber construction. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

17 pages, 4928 KB  
Article
A Hysteresis Model Incorporating Varying Pinching Stiffness and Spread for Enhanced Structural Damage Simulation
by Mohammad Rabiepour, Cong Zhou and James Geoffrey Chase
Appl. Sci. 2025, 15(2), 724; https://doi.org/10.3390/app15020724 - 13 Jan 2025
Cited by 1 | Viewed by 1242
Abstract
The widely used Bouc–Wen–Baber–Noori (BWBN) hysteresis model, although effective in simulating hysteresis behaviors, does not account for variations in the pinching region of hysteretic behaviors. This can negatively impact the accuracy of the BWBN model in simulating structural responses and damage mechanisms in [...] Read more.
The widely used Bouc–Wen–Baber–Noori (BWBN) hysteresis model, although effective in simulating hysteresis behaviors, does not account for variations in the pinching region of hysteretic behaviors. This can negatively impact the accuracy of the BWBN model in simulating structural responses and damage mechanisms in structures such as reinforced concrete (RC) and timber, which exhibit highly pinched hysteresis behavior when damaged by earthquakes. This paper introduces a BWBN model with varying pinching region characteristics (BWBN-VP model) which can degrade pinching stiffness and increase pinching effects under seismic loads. Unlike the original BWBN model using constant pinching stiffness (kp), this modified new model, inspired by real-world structural damage, improves structural damage detection, identifiability, and analysis in real-world scenarios. Model validation uses experimental data from three RC column tests with different failure modes and hysteresis loop shapes, resulting in an ~0.98 correlation coefficient between the experimental and simulated responses. Further validation uses real-world seismic data from a six-story RC building and achieves an average correlation of ~0.97 with a minor 2.5% difference in the peak restoring forces compared to direct measurements. The proposed BWBN-VP model also accurately and realistically captures damage to both the elastic and pinching stiffness values of the building, with an average difference of ~4%. Results confirm that the BWBN-VP model, compared to the original, more accurately predicts hysteretic responses, especially in Shear Failure (SF) modes. Therefore, the BWBN-VP model, superior in simulating highly pinched behaviors in RC and timber structures, would be an advanced tool for resilient seismic design and Structural Health Monitoring (SHM). Full article
Show Figures

Figure 1

18 pages, 3484 KB  
Review
Performance of Timber-Concrete Composite (TCC) Systems Connected with Inclined Screws: A Literature Review
by Shadi Esmaeildoust, Douglas Tomlinson and Ying Hei Chui
J. Compos. Sci. 2025, 9(1), 13; https://doi.org/10.3390/jcs9010013 - 2 Jan 2025
Cited by 1 | Viewed by 1597
Abstract
Timber–concrete composite (TCC) systems present a viable alternative to conventional timber or reinforced concrete systems. TCC leverages the advantages of both materials, resulting in an enhanced composite structure. Historically, traditional mechanical connectors such as nails, bolts, and dowels have been used in TCC [...] Read more.
Timber–concrete composite (TCC) systems present a viable alternative to conventional timber or reinforced concrete systems. TCC leverages the advantages of both materials, resulting in an enhanced composite structure. Historically, traditional mechanical connectors such as nails, bolts, and dowels have been used in TCC systems to join timber and concrete components. However, these connectors often fall short in providing sufficient load transfer efficiency. Therefore, the use of screws and, more recently, inclined screws in TCC systems has increased due to their enhanced load transfer efficiency and greater stiffness compared to traditional connections. This review paper consolidates findings from contemporary experimental studies and analytical models, examining the influence of factors such as screw type and inclination angle on the performance of TCC systems for both connection and beam specimens in ultimate and serviceability limit states. Key issues addressed include the shear strength, stiffness, and long-term behaviour of the connection type. By offering a comprehensive synthesis of existing knowledge, this paper aims to inform design practices and contribute to the development of more resilient and efficient TCC systems, supporting their increased adoption in sustainable construction. Full article
(This article belongs to the Special Issue Research on Sustainable Cement-Based Composites)
Show Figures

Figure 1

25 pages, 8621 KB  
Article
Assessment of In-Plane Timber Floor Stiffness as Structural Diaphragms: A Numerical Approach to Lateral Load Response
by Jelena Vilotijević and Miroslav Premrov
Forests 2025, 16(1), 56; https://doi.org/10.3390/f16010056 - 31 Dec 2024
Viewed by 1144
Abstract
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient [...] Read more.
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient stiffness, differences in the redistribution of forces on wall elements arise, increasing the risk of significant deformations and even local damage, which is commonly observed in earthquake-affected areas. Additionally, flexible diaphragms heighten the risk of torsional effects. Due to these factors, more attention should be given to the response of buildings with flexible diaphragms. Eurocode standard specifies general requirements under which diaphragms should be considered rigid within their plane, depending on the maximum diaphragm moment. However, specific guidelines regarding the geometric and material properties of elements that significantly impact seismic behaviour are not included in the existing European standards. This served as a basis for conducting a numerical study analysing the in-plane behaviour of floor elements made from different materials. This study, limited to a simple box-shaped structure with masonry walls, symmetrical in both orthogonal directions, evaluated and thoroughly analysed the deformations for different types of diaphragms, including prefabricated wooden frame-panel floors, CLT panels, and reinforced concrete slabs. Special emphasis was placed on wooden structural elements due to the increased demand for timber construction, as the behaviour of these elements needs to be properly studied, especially in seismic regions. The study results were obtained through FEM analysis using the SCIA Engineer software, version 22. The modelling of elements was carried out considering the orthotropy of brick wall and wooden ceiling elements, as well as simulating the appropriate shear stiffness of the connecting means. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

25 pages, 4289 KB  
Article
Extending a Macro-Element Approach for the Modeling of 3D Masonry Structures Under Transient Dynamic Loading
by Damien Decret, Yann Malecot, Yannick Sieffert, Florent Vieux-Champagne and Laurent Daudeville
Appl. Sci. 2024, 14(23), 11080; https://doi.org/10.3390/app142311080 - 28 Nov 2024
Cited by 1 | Viewed by 821
Abstract
Masonry structures, particularly those used in developing countries and in historic buildings, typically consist of unreinforced masonry (URM) walls connected by timber or reinforced concrete elements. This study proposes enhancements to the existing two-dimensional (2D) deformable frame model (DFM) to enhance its ability [...] Read more.
Masonry structures, particularly those used in developing countries and in historic buildings, typically consist of unreinforced masonry (URM) walls connected by timber or reinforced concrete elements. This study proposes enhancements to the existing two-dimensional (2D) deformable frame model (DFM) to enhance its ability in simulating masonry walls with a specific focus on accurately predicting the transient dynamic response of three-dimensional (3D) masonry structures while maintaining a minimal number of degrees of freedom (DOF). For the modeling of URM walls, the DFM framework employs elastic beams and diagonal struts with nonlinear constitutive behavior. Structural elements, such as reinforced concrete or timber reinforcements, are represented using conventional beam finite elements. This paper first reviewed the current DFM configuration, which primarily addresses the in-plane (IP) behavior of URM structures. It then introduced modifications tailored for 3D structural analysis. The reliability of the enhanced model was validated through two approaches. First, a modal analysis compared the results from the updated DFM with those from a reference 3D model based on cubic finite elements. Second, a shaking table experiment conducted on a half-scale masonry house was simulated. The findings demonstrate that, despite its limited number of DOF, the updated DFM effectively captures the main natural vibration modes. Furthermore, it shows the model’s ability to predict the nonlinear transient dynamic response of 3D masonry structures with accuracy and limited computational time. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 7140 KB  
Article
Experimental Evaluation of an Innovative Connection for the Reinforcement of Existing Infilled RC Buildings
by Zabih Mehdipour, Elisa Poletti, André C. Fontes and Jorge M. Branco
Infrastructures 2024, 9(11), 189; https://doi.org/10.3390/infrastructures9110189 - 23 Oct 2024
Viewed by 990
Abstract
The retrofitting of existing reinforced concrete (RC) buildings with cross-laminated timber (CLT) panels presents a promising approach for enhancing seismic performance and overall structural resilience. However, effective integration of CLT with existing RC structures poses significant challenges, particularly concerning the design of connections [...] Read more.
The retrofitting of existing reinforced concrete (RC) buildings with cross-laminated timber (CLT) panels presents a promising approach for enhancing seismic performance and overall structural resilience. However, effective integration of CLT with existing RC structures poses significant challenges, particularly concerning the design of connections between CLT panels and the RC structure. This paper introduces a novel connection that addresses these challenges by focusing on both structural and architectural considerations. Structurally, the connection is engineered to provide optimal stiffness, strength, and deformation capacity, ensuring robust performance under seismic and dynamic loads. Architecturally, the design incorporates a predefined weak component that facilitates easy access and rapid replacement of damaged parts, thereby reducing downtime and maintenance efforts. The proposed connection was evaluated through a series of monotonic and cyclic loading tests, demonstrating its structural efficiency and reliability. The results indicate that the new connection system not only meets the necessary structural requirements but also offers practical benefits for maintenance and repair, contributing to the overall sustainability and resilience of retrofitted RC buildings. This innovative approach represents a significant advancement in the field of structural retrofitting, providing a viable solution for integrating CLT panels into existing RC frameworks. Full article
Show Figures

Figure 1

29 pages, 14966 KB  
Article
Long-Term Comparative Life Cycle Assessment, Cost, and Comfort Analysis of Heavyweight vs. Lightweight Construction Systems in a Mediterranean Climate
by Carlo Costantino, Stefano Bigiotti, Alvaro Marucci and Riccardo Gulli
Sustainability 2024, 16(20), 8959; https://doi.org/10.3390/su16208959 - 16 Oct 2024
Cited by 5 | Viewed by 2500
Abstract
Massive construction systems have always characterized traditional architecture and are currently the most prevalent, straightforward, and cost-effective in many Mediterranean countries. However, in recent years, the construction industry has gradually shifted towards using lightweight, dry construction techniques. This study aims to assess the [...] Read more.
Massive construction systems have always characterized traditional architecture and are currently the most prevalent, straightforward, and cost-effective in many Mediterranean countries. However, in recent years, the construction industry has gradually shifted towards using lightweight, dry construction techniques. This study aims to assess the effects on energy consumption, comfort levels, and environmental sustainability resulting from the adoption of five high-performance construction systems in a multi-family residential building: (i) reinforced concrete structure with low-transmittance thermal block infill; (ii) reinforced concrete structure with light-clay bricks and outer thermal insulation; (iii) steel frame; (iv) cross-laminated timber (CLT); (v) timber-steel hybrid structure. To achieve this goal, a multidisciplinary approach was employed, including the analysis of thermal parameters, the evaluation of indoor comfort through the adaptive model and Fanger’s PMV, and the quantification of environmental and economic impacts through life cycle assessment and life cycle cost applied in a long-term analysis (ranging from 30 to 100 years). The results highlight that heavyweight construction systems are the most effective in terms of comfort, cost, and long-term environmental impact (100 years), while lightweight construction systems generally have higher construction costs, provide lower short-term environmental impacts (30 years), and offer intermediate comfort depending on the thermal mass. Full article
Show Figures

Figure 1

16 pages, 6578 KB  
Article
Behaviour Analysis of Beam-Type Timber and Timber-Concrete Composite Panels
by Elza Briuka, Dmitrijs Serdjuks, Pavel Akishin, Genadijs Sahmenko, Andrejs Podkoritovs and Raimonds Ozolins
Appl. Sci. 2024, 14(16), 7403; https://doi.org/10.3390/app14167403 - 22 Aug 2024
Cited by 1 | Viewed by 1123
Abstract
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of [...] Read more.
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of flexure-tested specimens were analysed as follows: (1) timber panels (1400 mm × 400 mm) with two 100 mm thick CLT panels and two 60 mm thick CLT panels reinforced with 150 × 80 mm timber ribs; (2) eight specimens (600 mm × 100 mm × 150 mm) with CLT members (600 mm × 100 mm × 100 mm) connected to a 50 mm concrete layer using granite chips and Sikadur-31 (AB) epoxy adhesive; (3) six CLT panels (1400 mm × 400 mm × 50 mm) bonded to a 50 mm concrete layer, with two panels containing polypropylene microfibres and two panels incorporating polyethene dowels for mechanical connection. Specimens were subjected to three-point bending tests and analysed using the transformed section method, γ-method, and finite element method with ANSYS 2023R2 software. Results indicated a 53% increase in load-carrying capacity for ribbed CLT panels with no additional material consumption, a 24.8–41.1% increase for CLT panels strengthened with a concrete layer, and improved ductility and prevention of disintegration in timber-concrete composites with polypropylene microfibres. Full article
(This article belongs to the Special Issue Latest Advances in Cement and Concrete Composites: 2nd Edition)
Show Figures

Figure 1

24 pages, 2375 KB  
Article
Numerical Evaluation of the Influence of Using Carbon-Fiber-Reinforced Polymer Rebars as Shear Connectors for Cross-Laminated Timber–Concrete Panels
by Larissa Fé Alves, Poliana de Melo Pessôa, Pedro Ignácio Lima Gadêlha Jardim, Emerson Faustino, Herisson Ferreira dos Santos, Francisco Antonio Rocco Lahr, Diego Henrique de Almeida and André Luis Christoforo
Buildings 2024, 14(7), 2178; https://doi.org/10.3390/buildings14072178 - 15 Jul 2024
Cited by 1 | Viewed by 1077
Abstract
Carbon fiber-reinforced polymer (CFRP) sheets have been used to reinforce cross-laminated timber (CLT)–concrete systems in recent years. The existing studies have indicated that the use of CFRP rebars as shear connectors in CLT–concrete panels can improve the structural performance of these elements. However, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) sheets have been used to reinforce cross-laminated timber (CLT)–concrete systems in recent years. The existing studies have indicated that the use of CFRP rebars as shear connectors in CLT–concrete panels can improve the structural performance of these elements. However, the application and understanding of CFRP rebars as shear connectors still need to be improved, since comprehensive studies on the subject are not available. Therefore, this research aimed to evaluate the structural performance of CLT–concrete panels with CFRP rebars as shear connectors through finite element (FE) numerical simulation. A parametric study was conducted, varying the connector material, the number of CLT layers, the connector insertion angle, and the connector embedment length. According to the results, panels with CFRP connectors showed a higher maximum load, bending strength, and maximum bending moment than panels with steel connectors. The regression models revealed that the parameters analyzed explained between 80.2% and 99.9% of the variability in the mechanical properties under investigation. The high explanatory power (R2) of some regression models in this study underscores the robustness of the models. The number of CLT layers and the connector material were the most significant parameters for the panels’ maximum load, displacement at the maximum load, ductility, bending strength, and maximum bending moment. The number of CLT layers and the connector insertion angle were the most significant parameters for the panels’ effective bending stiffness. This research highlights the importance of studies on CLT–concrete composites and the need to develop equations to estimate their behavior accurately. Moreover, numerical simulations have proven very valuable, providing results comparable to laboratory results. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop