Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (251)

Search Parameters:
Keywords = three-dimensional radar imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 19346 KiB  
Article
Three-Dimensional Intelligent Understanding and Preventive Conservation Prediction for Linear Cultural Heritage
by Ruoxin Wang, Ming Guo, Yaru Zhang, Jiangjihong Chen, Yaxuan Wei and Li Zhu
Buildings 2025, 15(16), 2827; https://doi.org/10.3390/buildings15162827 - 8 Aug 2025
Viewed by 351
Abstract
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, [...] Read more.
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, and the three-dimensional Gaussian splatting model, an integrated air–space–ground system for monitoring and understanding the Great Wall is constructed. Low-altitude tilt photogrammetry combined with the Gaussian splatting model, through drone images and intelligent generation algorithms (e.g., generative adversarial networks), quickly constructs high-precision 3D models, significantly improving texture details and reconstruction efficiency. Based on the 3D Gaussian splatting model of the AHLLM-3D network, the integration of point cloud data and the large language model achieves multimodal semantic understanding and spatial analysis of the Great Wall’s architectural structure. The results show that the multi-source data fusion method can effectively identify high-risk deformation zones (with annual subsidence reaching −25 mm) and optimize modeling accuracy through intelligent algorithms (reducing detail error by 30%), providing accurate deformation warnings and repair bases for Great Wall protection. Future studies will further combine the concept of ecological water wisdom to explore heritage protection strategies under multi-hazard coupling, promoting the digital transformation of cultural heritage preservation. Full article
Show Figures

Figure 1

24 pages, 29785 KiB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 - 1 Aug 2025
Viewed by 334
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Graphical abstract

25 pages, 6401 KiB  
Article
Efficient Sampling Schemes for 3D Imaging of Radar Target Scattering Based on Synchronized Linear Scanning and Rotational Motion
by Changyu Lou, Jingcheng Zhao, Xingli Wu, Yuchen Zhang, Zongkai Yang, Jiahui Li and Jungang Miao
Remote Sens. 2025, 17(15), 2636; https://doi.org/10.3390/rs17152636 - 29 Jul 2025
Viewed by 334
Abstract
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning [...] Read more.
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning generally utilizes highly sampled full-coverage techniques, leading to an excessive quantity of sampling points and diminished image efficiency, constraining its use for quick detection applications. This work presents an efficient 3D sampling strategy that integrates vertical linear scanning with horizontal rotating motion to overcome these restrictions. A joint angle–space sampling model is developed, and geometric constraints are implemented to enhance the scanning trajectory. The experimental results demonstrate that, compared to conventional techniques, the proposed method achieves a 94% reduction in the scanning duration while maintaining a peak sidelobe level ratio (PSLR) of 12 dB. Furthermore, this study demonstrates that 3D imaging may be accomplished solely by a “V”-shaped trajectory, efficiently determining the minimal possible sampling aperture. This approach offers novel insights and theoretical backing for the advancement of high-efficiency, low-redundancy 3D radar imaging systems. Full article
(This article belongs to the Special Issue Recent Advances in SAR: Signal Processing and Target Recognition)
Show Figures

Figure 1

27 pages, 7457 KiB  
Article
Three-Dimensional Imaging of High-Contrast Subsurface Anomalies: Composite Model-Constrained Dual-Parameter Full-Waveform Inversion for GPR
by Siyuan Ding, Deshan Feng, Xun Wang, Tianxiao Yu, Shuo Liu and Mengchen Yang
Appl. Sci. 2025, 15(15), 8401; https://doi.org/10.3390/app15158401 - 29 Jul 2025
Viewed by 243
Abstract
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, [...] Read more.
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, full-waveform inversion (FWI) for GPR data struggles to simultaneously reconstruct high-resolution 3D images of both permittivity and conductivity models. Considering the magnitude and sensitivity disparities of the model parameters in the inversion of GPR data, this study proposes a 3D dual-parameter FWI algorithm for GPR with a composite model constraint strategy. It balances the gradient updates of permittivity and conductivity models through performing total variation (TV) regularization and minimum support gradient (MSG) regularization on different parameters in the inversion process. Numerical experiments show that TV regularization can optimize permittivity reconstruction, while MSG regularization is more suitable for conductivity inversion. The TV+MSG composite model constraint strategy improves the accuracy and stability of dual-parameter inversion, providing a robust solution for the 3D imaging of subsurface anomalies with high-contrast features. These outcomes offer researchers theoretical insights and a valuable reference when investigating scenarios with high-contrast environments. Full article
Show Figures

Figure 1

24 pages, 3798 KiB  
Article
A Robust Tracking Method for Aerial Extended Targets with Space-Based Wideband Radar
by Linlin Fang, Yuxin Hu, Lihua Zhong and Lijia Huang
Remote Sens. 2025, 17(14), 2360; https://doi.org/10.3390/rs17142360 - 9 Jul 2025
Viewed by 237
Abstract
Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large aircraft targets exhibit extended characteristics. [...] Read more.
Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large aircraft targets exhibit extended characteristics. Measurements from the same target cross multiple range resolution cells. Additionally, the nonlinear observation model and uncertain measurement noise characteristics under space-based long-distance observation substantially increase the tracking complexity. To address these challenges, we propose a robust aerial target tracking method for space-based wideband radar applications. First, we extend the observation model of the gamma Gaussian inverse Wishart probability hypothesis density filter to three-dimensional space by incorporating a spherical–radial cubature rule for improved nonlinear filtering. Second, variational Bayesian processing is integrated to enable the joint estimation of the target state and measurement noise parameters, and a recursive process is derived for both Gaussian and Student’s t-distributed measurement noise, enhancing the method’s robustness against noise uncertainty. Comprehensive simulations evaluating varying target extension parameters and noise conditions demonstrate that the proposed method achieves superior tracking accuracy and robustness. Full article
Show Figures

Graphical abstract

37 pages, 8636 KiB  
Article
Attitude Estimation of Spinning Space Targets Utilizing Multistatic ISAR Joint Observation
by Jishun Li, Canbin Yin, Can Xu, Jun He, Pengju Li and Yasheng Zhang
Remote Sens. 2025, 17(13), 2263; https://doi.org/10.3390/rs17132263 - 1 Jul 2025
Viewed by 317
Abstract
When a space target malfunctions and is no longer controlled by its attitude control system, it usually tumbles in orbit and exhibits a slow spinning state. Accurately estimating the on-orbit attitude of spinning space targets is of vital importance for ensuring the operation [...] Read more.
When a space target malfunctions and is no longer controlled by its attitude control system, it usually tumbles in orbit and exhibits a slow spinning state. Accurately estimating the on-orbit attitude of spinning space targets is of vital importance for ensuring the operation of space assets. Moreover, it plays a significant role in tasks such as reentry observation and collision avoidance. Currently, most existing methods estimate the attitude of space targets by using a single inverse synthetic aperture radar (ISAR) for long-term observation. However, this approach not only requires a long observation time but also fails to estimate the attitude of spinning targets. To address these limitations, this paper proposes a novel approach for estimating the attitude of spinning space targets, which utilizes the joint observations of a multiple-station ISAR. Specifically, the proposed method fully exploits the projection principle of ISAR imaging and uses an ISAR high-resolution network (ISAR-HRNet) to automatically extract the projection features of typical components of the target. Then, the analytical expressions for the target’s instantaneous attitude and spin vector under the multi-station observation imaging projection model are derived. Based on the extracted features of the typical components, the lengths, orientations, and spin vectors of the space target are determined. Importantly, the proposed method can achieve the attitude estimation of the spinning space targets within a single observation period, without the need for manual intervention or prior information about the target’s three-dimensional (3D) model. Additionally, the analytical method for solving the spin vector offers high efficiency and accuracy. Finally, the effectiveness of the proposed attitude estimation algorithm is verified by experiments on simulated data, and the performance of the ISAR-HRNet is also tested in the key point extraction experiments using measured data. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

24 pages, 29179 KiB  
Article
SAR 3D Reconstruction Based on Multi-Prior Collaboration
by Yangyang Wang, Zhenxiao Zhou, Zhiming He, Xu Zhan, Jiapan Yu, Xingcheng Han, Xiaoling Zhang, Zhiliang Yang and Jianping An
Remote Sens. 2025, 17(12), 2105; https://doi.org/10.3390/rs17122105 - 19 Jun 2025
Viewed by 527
Abstract
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By [...] Read more.
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By introducing sparse priors such as L1 regularization functions, image quality can be improved to a certain extent and the impact of noise can be reduced. However, in scenarios involving distributed targets, the aforementioned methods often fail to maintain continuous structural features such as edges and contours, thereby limiting their reconstruction performance and adaptability. Recent studies have introduced geometric regularization functions to preserve the structural continuity of targets, yet these lack multi-prior consensus, resulting in limited reconstruction quality and robustness in complex scenarios. To address the above issues, a novel array SAR 3D reconstruction method based on multi-prior collaboration (ASAR-MPC) is proposed in this article. In this method, firstly, each optimization module in 3D reconstruction based on multi-prior is treated as an independent function module, and these modules are reformulated as parallel operations rather than sequential utilization. During the reconstruction process, the solution is constrained within the solution space of the module, ensuring that the SAR image simultaneously satisfies multiple prior conditions and achieves a coordinated balance among different priors. Then, a collaborative equilibrium framework based on Mann iteration is presented to solve the optimization problem of 3D reconstruction, which can ensure convergence to an equilibrium point and achieve the joint optimization of all modules. Finally, a series of simulation and experimental tests are described to validate the proposed method. The experimental results show that under limited echo and noise conditions, the proposed method outperforms existing methods in reconstructing complex target structures. Full article
Show Figures

Figure 1

21 pages, 14054 KiB  
Article
A Novel Approach to Generate Large-Scale InSAR-Derived Velocity Fields: Enhanced Mosaicking of Overlapping InSAR Data
by Xupeng Liu, Guangyu Xu, Yaning Yi, Tengxu Zhang and Yuanping Xia
Remote Sens. 2025, 17(11), 1804; https://doi.org/10.3390/rs17111804 - 22 May 2025
Viewed by 579
Abstract
Large-scale deformation fields are crucial for monitoring seismic activity, landslides, and other geological hazards. Traditionally, the acquisition of large-area, three-dimensional deformation fields has relied on GNSS data; however, the inherent sparsity of these data poses significant limitations. The emergence of Interferometric Synthetic Aperture [...] Read more.
Large-scale deformation fields are crucial for monitoring seismic activity, landslides, and other geological hazards. Traditionally, the acquisition of large-area, three-dimensional deformation fields has relied on GNSS data; however, the inherent sparsity of these data poses significant limitations. The emergence of Interferometric Synthetic Aperture Radar (InSAR) data offers an alternative, enabling the retrieval of large-area, high-resolution deformation velocity fields. Nonetheless, the processing of InSAR data is often complex, time-consuming, and requires substantial storage capacity. To address these challenges, various research institutions have developed online InSAR processing platforms. For instance, the LiCSAR processing platform provides interferometric images covering approximately 250 km × 250 km, facilitating scientific applications of InSAR data. However, the transition from individual interferograms to large-scale, three-dimensional deformation fields often requires additional processing steps, including ramp correction within the images, mosaicking between adjacent images, and the joint inversion of InSAR observations from different viewing angles. In this paper, we propose a novel method for splicing several individual InSAR velocity fields into continent-scale InSAR velocity maps, which takes along-track and cross-track mosaicking into consideration. This method integrates GNSS data with InSAR data and also considers the additional constraint of data overlap region. The efficacy of this methodology is substantiated through its implementation in InSAR observations of the eastern Tibetan Plateau. In some tracks, there are overlapping areas on the east and west sides, and the line-of-sight (LOS) value can be effectively corrected by using these overlapping areas with similar size for two cross-track mosaics. The root mean square error (RMSE) of these tracks was reduced by about 4% to 8% on average when verified using true values of GNSS data compared to no cross-track mosaic. In addition, a significant improvement of 30% in RMSE reduction was achieved for some tracks. Full article
Show Figures

Figure 1

25 pages, 6337 KiB  
Article
Improved YOLOv8 Network of Aircraft Target Recognition Based on Synthetic Aperture Radar Imaging Feature
by Xing Wang, Wen Hong, Yunqing Liu, Guanyu Yan, Dongmei Hu and Qi Jing
Sensors 2025, 25(10), 3231; https://doi.org/10.3390/s25103231 - 21 May 2025
Cited by 1 | Viewed by 657
Abstract
The grayscale images of passenger aircraft targets obtained via Synthetic Aperture Radar (SAR) have problems such as complex airport backgrounds, significant speckle noise, and variable scales of targets. Most of the existing deep learning-based target recognition algorithms for SAR images are transferred from [...] Read more.
The grayscale images of passenger aircraft targets obtained via Synthetic Aperture Radar (SAR) have problems such as complex airport backgrounds, significant speckle noise, and variable scales of targets. Most of the existing deep learning-based target recognition algorithms for SAR images are transferred from optical images, and it is difficult for them to extract the multi-dimensional features of targets comprehensively. To overcome these challenges, we proposed three enhanced methods for interpreting aircraft targets based on YOLOv8. First, we employed the Shi–Tomasi corner detection algorithm and the Enhanced Lee filtering algorithm to convert grayscale images into RGB images, thereby improving detection accuracy and efficiency. Second, we augmented the YOLOv8 model with an additional detection branch, which includes a detection head featuring the Coordinate Attention (CA) mechanism. This enhancement boosts the model’s capability to detect small and multi-scale aircraft targets. Third, we integrated the Swin Transformer mechanism into the YOLOv8 backbone, forming the C2f-SWTran module that better captures long-range dependencies in the feature map. We applied these improvements to two datasets: the ISPRS-SAR-aircraft dataset and the SAR-Aircraft-1.0 dataset. The experimental results demonstrated that our methods increased the mean Average Precision (mAP50~95) by 2.4% and 3.4% over the YOLOv8 baseline, showing competitive advantages over other deep learning-based object detection algorithms. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 2611 KiB  
Article
GPU-Optimized Implementation for Accelerating CSAR Imaging
by Mengting Cui, Ping Li, Zhaohui Bu, Meng Xun and Li Ding
Electronics 2025, 14(10), 2073; https://doi.org/10.3390/electronics14102073 - 20 May 2025
Viewed by 353
Abstract
The direct porting of the Range Migration Algorithm to GPUs for three-dimensional (3D) cylindrical synthetic aperture radar (CSAR) imaging faces difficulties in achieving real-time performance while the architecture and programming models of GPUs significantly differ from CPUs. This paper proposes a GPU-optimized implementation [...] Read more.
The direct porting of the Range Migration Algorithm to GPUs for three-dimensional (3D) cylindrical synthetic aperture radar (CSAR) imaging faces difficulties in achieving real-time performance while the architecture and programming models of GPUs significantly differ from CPUs. This paper proposes a GPU-optimized implementation for accelerating CSAR imaging. The proposed method first exploits the concentric-square-grid (CSG) interpolation to reduce the computational complexity for reconstructing a uniform 2D wave-number domain. Although the CSG method transforms the 2D traversal interpolation into two independent 1D interpolations, the interval search to determine the position intervals for interpolation results in a substantial computational burden. Therefore, binary search is applied to avoid traditional point-to-point matching for efficiency improvement. Additionally, leveraging the partition independence of the grid distribution of CSG, the 360° data are divided into four streams along the diagonal for parallel processing. Furthermore, high-speed shared memory is utilized instead of high-latency global memory in the Hadamard product for the phase compensation stage. The experimental results demonstrate that the proposed method achieves CSAR imaging on a 1440×100×128 dataset in 0.794 s, with an acceleration ratio of 35.09 compared to the CPU implementation and 5.97 compared to the conventional GPU implementation. Full article
Show Figures

Figure 1

16 pages, 3601 KiB  
Technical Note
Active and Passive Integrated Lightning Localization and Imaging Technology Based on Very-High-Frequency Radar
by Yide Tan, Chen Zhou, Xinmiao Zhang and Moran Liu
Remote Sens. 2025, 17(10), 1729; https://doi.org/10.3390/rs17101729 - 15 May 2025
Viewed by 421
Abstract
This paper aims to enhance lightning positioning technology and data processing algorithms using very-high-frequency (VHF) lightning radar. It focuses on achieving three-dimensional imaging of plasma channels formed during lightning. By extracting key features from lightning echo signals received by VHF radar, we utilize [...] Read more.
This paper aims to enhance lightning positioning technology and data processing algorithms using very-high-frequency (VHF) lightning radar. It focuses on achieving three-dimensional imaging of plasma channels formed during lightning. By extracting key features from lightning echo signals received by VHF radar, we utilize a unique active and passive integrated positioning technology to locate the lightning radiation source. This algorithm effectively overcomes the limitations of traditional positioning methods. Experimental results show that the integrated positioning algorithm maintains accuracy while significantly increasing the number of positioning points, which supports subsequent imaging of lightning plasma channels. To illustrate the dendritic structure of the lightning channel, we employed a density-based clustering algorithm to eliminate noise points unrelated to the lightning source, enhancing imaging clarity. The methods presented in this study successfully meet the experiment’s goals and are significant for locating lightning radiation sources and understanding the dendritic structure changes in plasma channels during lightning propagation. Full article
Show Figures

Graphical abstract

24 pages, 6561 KiB  
Article
Simultaneous Vibration and Nonlinearity Compensation for One-Period Triangular FMCW Ladar Signal Based on MSST
by Wei Li, Ruihua Shi, Qinghai Dong, Juanying Zhao, Bingnan Wang and Maosheng Xiang
Remote Sens. 2025, 17(10), 1689; https://doi.org/10.3390/rs17101689 - 11 May 2025
Viewed by 457
Abstract
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance [...] Read more.
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance detection accuracy. To solve these problems, this paper proposes a compensation method combining multiple synchrosqueezing transform (MSST), equal-phase interval resampling, and high-order ambiguity function (HAF). Firstly, variational mode decomposition (VMD) is applied to the optical prism signal to eliminate low-frequency noise and harmonic peaks. MSST is used to extract the time–frequency curve of the optical prism. The nonlinearity in the transmitted signal is estimated by two-step integration. An internal calibration signal containing nonlinearity is constructed at a higher sampling rate to resample the actual signal at an equal-phase interval. Then, HAF compensates for high-order vibration and residual phase error after resampling. Finally, symmetrical triangle wave modulation is used to remove constant-speed vibration. Verifying by actual data, the proposed method can enhance the main lobe and suppress the side lobe about 1.5 dB for a strong reflection target signal. Natural-target peaks can also be enhanced and the remaining peaks are suppressed, which is helpful to extract an accurate target distance. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

22 pages, 10584 KiB  
Article
Assimilation of Moderate-Resolution Imaging Spectroradiometer Level Two Cloud Products for Typhoon Analysis and Prediction
by Haomeng Zhang, Yubao Liu, Yu Qin, Zheng Xiang, Yueqin Shi and Zhaoyang Huo
Remote Sens. 2025, 17(9), 1635; https://doi.org/10.3390/rs17091635 - 5 May 2025
Viewed by 509
Abstract
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and [...] Read more.
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and Forecast (WRF) model. Its impact on the analysis and forecast of Typhoon Talim in 2023 at its initial developing stage is demonstrated. First, the conditional generative adversarial networks–bidirectional ensemble binned probability fusion (CGAN-BEBPF) model ) is applied to retrieve three-dimensional (3D) CloudSat CPR (cloud profiling radar) equivalent W-band (94 Ghz) radar reflectivity factor for the typhoons Talim and Chaba using the MODIS L2 data. Next, a W-band to S-band radar reflectivity factor mapping algorithm (W2S) is developed based on the collocated measurements of the retrieved W-band radar and ground-based S-band (4 Ghz) radar data for Typhoon Chaba at its landfall time. Then, W2S is utilized to project the MODIS-retrieved 3D W-band radar reflectivity factor of Typhoon Talim to equivalent ground-based S-band reflectivity factors. Finally, data assimilation and forecast experiments are conducted by using the WRF Hydrometeor and Latent Heat Nudging (HLHN) radar data assimilation technique. Verification of the simulation results shows that assimilating the MODIS L2 cloud products dramatically improves the initialization and forecast of the cloud and precipitation fields of Typhoon Talim. In comparison to the experiment without assimilation of the MODIS data, the Threat Score (TS) for general cloud areas and major precipitation areas is increased by 0.17 (from 0.46 to 0.63) and 0.28 (from 0.14 to 0.42), respectively. The fraction skill score (FSS) for the 5 mm precipitation threshold is increased by 0.43. This study provides an unprecedented data assimilation method to initialize 3D cloud and precipitation hydrometeor fields with the MODIS imagery payloads for numerical weather prediction models. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 2613 KiB  
Review
Research Advances in Underground Bamboo Shoot Detection Methods
by Wen Li, Qiong Shao, Fan Guo, Fangyuan Bian and Huimin Yang
Agronomy 2025, 15(5), 1116; https://doi.org/10.3390/agronomy15051116 - 30 Apr 2025
Viewed by 1334
Abstract
Underground winter bamboo shoots, prized for their high nutritional value and economic significance, face harvesting challenges owing to inefficient manual methods and the lack of specialized detection technologies. This review systematically evaluates current detection approaches, including manual harvesting, microwave detection, resistivity methods, and [...] Read more.
Underground winter bamboo shoots, prized for their high nutritional value and economic significance, face harvesting challenges owing to inefficient manual methods and the lack of specialized detection technologies. This review systematically evaluates current detection approaches, including manual harvesting, microwave detection, resistivity methods, and biomimetic techniques. While manual methods remain dominant, they suffer from labor shortages, low efficiency, and high damage rates. Microwave-based technologies demonstrate high accuracy and good depths but are hindered by high costs and soil moisture interference. Resistivity methods show feasibility in controlled environments but struggle with field complexity and low resolution. Biomimetic approaches, though innovative, face limitations in odor sensitivity and real-time data processing. Key challenges include heterogeneous soil conditions, performance loss, and a lack of standardized protocols. To address these, an integrated intelligent framework is proposed: (1) three-dimensional modeling via multi-sensor fusion for subsurface mapping; (2) artificial intelligence (AI)-driven harvesting robots with adaptive excavation arms and obstacle avoidance; (3) standardized cultivation systems to optimize soil conditions; (4) convolution neural network–transformer hybrid models for visual-aided radar image analysis; and (5) aeroponic AI systems for controlled growth monitoring. These advancements aim to enhance detection accuracy, reduce labor dependency, and increase yields. Future research should prioritize edge-computing solutions, cost-effective sensor networks, and cross-disciplinary collaborations to bridge technical and practical gaps. The integration of intelligent technologies is poised to transform traditional bamboo forestry into automated, sustainable “smart forest farms”, addressing global supply demands while preserving ecological integrity. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

22 pages, 9005 KiB  
Article
A Target Near-Field Scattering Measurement Technique Utilizing 3D Near-Field Imaging via Cylindrical Scanning
by Zongkai Yang, Jingcheng Zhao, Weikang Si, Changyu Lou, Xin Zhao and Jungang Miao
Remote Sens. 2025, 17(9), 1575; https://doi.org/10.3390/rs17091575 - 29 Apr 2025
Cited by 1 | Viewed by 409
Abstract
Radar target near-field scattering characteristics are essential for the identification of target properties and the improvement of target recognition. Nevertheless, the efficiency of current precision three-dimensional (3D) imaging algorithms in near-field scattering measurements is restricted by their substantial computational complexity. To resolve this [...] Read more.
Radar target near-field scattering characteristics are essential for the identification of target properties and the improvement of target recognition. Nevertheless, the efficiency of current precision three-dimensional (3D) imaging algorithms in near-field scattering measurements is restricted by their substantial computational complexity. To resolve this matter, we propose a hybrid 3D imaging algorithm that is optimized for cylindrical sampling and operates in both the wavenumber domain and time domain (WDTD). Wavenumber domain algorithms are initially utilized for the rapid localization of strong scattering sources. Subsequently, morphological image analysis techniques are employed to delineate the regions containing strong scattering sources. Ultimately, accurate calculations are performed utilizing backpropagation (BP) in time domain algorithms. This method significantly reduces the computational burden while maintaining imaging accuracy by integrating rapid scattering source extraction with precise computation for critical regions. The proposed capacity to accomplish efficient and precise 3D imaging is effectively demonstrated by the experimental results, which effectively mitigate the computational challenges associated with traditional algorithms. Furthermore, the method effectively reconstructs near-field echoes of scattering sources, underscoring its potential for decoupling target–background interactions. The versatility of this method is further demonstrated by its ability to be applied to other 3D imaging configurations, which illustrates its potential to advance radar imaging technologies and near-field scattering research. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition (Second Edition))
Show Figures

Graphical abstract

Back to TopTop