Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = thioglycerol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4546 KiB  
Article
Efficient and Green Flotation Separation of Molybdenite from Chalcopyrite Using 1-Thioglycerol as Depressant
by Feng Jiang, Shuai He, Wei Sun, Yuanjia Luo and Honghu Tang
Metals 2025, 15(3), 299; https://doi.org/10.3390/met15030299 - 9 Mar 2025
Viewed by 969
Abstract
The effective and environmental separation of chalcopyrite and molybdenite has long presented a challenge in mineral processing due to their similar floatability and close association at room temperature. This study explores the non-toxic 1-thioglycerol (1-TG) as a selective depressant for chalcopyrite–molybdenite flotation separation. [...] Read more.
The effective and environmental separation of chalcopyrite and molybdenite has long presented a challenge in mineral processing due to their similar floatability and close association at room temperature. This study explores the non-toxic 1-thioglycerol (1-TG) as a selective depressant for chalcopyrite–molybdenite flotation separation. An impressive separation effect was realized through single-mineral and mixed-mineral flotation experiments when using 1-TG as a depressant and kerosene as a collector. Contact angle measurements, zeta potential tests, and Fourier transform infrared spectroscopy (FT-IR) confirm the selective adsorption of 1-TG on the chalcopyrite surface, leading to enhanced surface hydrophilicity and the inhibition of collector adsorption. The depression mechanism is further elucidated through X-ray photoelectron spectroscopy (XPS), which demonstrates that it occurs via chemosorption between the thiol group in 1-TG and active iron sites on the chalcopyrite surface. These findings provide a potential efficient depressant for chalcopyrite–molybdenite flotation separation with low dosage, environmental friendliness, and human harmlessness. Full article
(This article belongs to the Special Issue Advances in Flotation Separation and Mineral Processing)
Show Figures

Graphical abstract

21 pages, 15600 KiB  
Article
Simultaneous Formation of Polyhydroxyurethanes and Multicomponent Semi-IPN Hydrogels
by Ana I. Carbajo-Gordillo, Elena Benito, Elsa Galbis, Roberto Grosso, Nieves Iglesias, Concepción Valencia, Ricardo Lucas, M.-Gracia García-Martín and M.-Violante de-Paz
Polymers 2024, 16(7), 880; https://doi.org/10.3390/polym16070880 - 22 Mar 2024
Cited by 2 | Viewed by 1777
Abstract
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a [...] Read more.
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst–solvent combinations. Monomer E-based PHU exhibited higher Mw¯ than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

7 pages, 756 KiB  
Short Note
[μ-1,2-Bis(dipheylphosphino)ethane-κ2P,P’]bis(3-mercapto-1,2-propanediolato-κS-gold(I))
by Taichi Baba and Nobuto Yoshinari
Molbank 2023, 2023(3), M1698; https://doi.org/10.3390/M1698 - 19 Jul 2023
Viewed by 1507
Abstract
A new dinuclear gold(I) complex, possessing a bridging diphosphine ligand (1,2-bis(diphenylphosphino)ethane) and two terminal thiol ligands (1-thioglycerol), was synthesized and fully characterized by IR, 1H and 31P NMR, fluorescence, ESI-mass, and diffuse reflection spectroscopy, together with X-ray diffraction and elemental analyses. [...] Read more.
A new dinuclear gold(I) complex, possessing a bridging diphosphine ligand (1,2-bis(diphenylphosphino)ethane) and two terminal thiol ligands (1-thioglycerol), was synthesized and fully characterized by IR, 1H and 31P NMR, fluorescence, ESI-mass, and diffuse reflection spectroscopy, together with X-ray diffraction and elemental analyses. The compound formed a 1D chain supramolecular structure through intermolecular aurophilic interactions in the crystal structure, leading to photoluminescence in the solid state. Full article
Show Figures

Figure 1

10 pages, 3047 KiB  
Article
Integrating Boronic Esters and Anthracene into Covalent Adaptable Networks toward Stimuli-Responsive Elastomers
by Zhiyong Liu, Youwei Ma, Yixin Xiang, Xianrong Shen, Zixing Shi and Jiangang Gao
Polymers 2022, 14(6), 1104; https://doi.org/10.3390/polym14061104 - 10 Mar 2022
Cited by 12 | Viewed by 3404
Abstract
Stimuli-responsive polymer materials have a promising potential application in many areas. However, integrating multi-stimuli into one elastomer is still a challenge. Here, we utilized boronic esters and anthracene to prepare a cross-linked poly(styrene-butadiene-styrene) (SBS) which was endowed with responsiveness to three stimuli (light, [...] Read more.
Stimuli-responsive polymer materials have a promising potential application in many areas. However, integrating multi-stimuli into one elastomer is still a challenge. Here, we utilized boronic esters and anthracene to prepare a cross-linked poly(styrene-butadiene-styrene) (SBS) which was endowed with responsiveness to three stimuli (light, heat, and alcohols). SBS was first functionalized with a certain amount of dihydroxyl groups via a thiol-ene “click” reaction between unsaturated double bonds in PB block and thioglycerol. Then, 9-anthraceneboronic acid was applied to form a cross-linked SBS network upon heat and ultraviolet radiation (λ = 365 nm). The prepared elastomer was demonstrated to be stimuli-responsive based on the dynamic nature of boronic esters and the reversible dimerization of anthracene. In addition, the mechanical properties of the elastomer could be regulated continuously owing to the stimulus responsiveness to ultraviolet or heat. Full article
(This article belongs to the Special Issue Carbon-Based Functional Polymers: Design, Properties and Applications)
Show Figures

Graphical abstract

23 pages, 9829 KiB  
Article
Multimodal Contrast Agent Enabling pH Sensing Based on Organically Functionalized Gold Nanoshells with Mn-Zn Ferrite Cores
by Duong Thuy Bui, Radim Havelek, Karel Královec, Lenka Kubíčková, Jarmila Kuličková, Petr Matouš, Vít Herynek, Jaroslav Kupčík, Darina Muthná, Pavel Řezanka and Ondřej Kaman
Nanomaterials 2022, 12(3), 428; https://doi.org/10.3390/nano12030428 - 27 Jan 2022
Cited by 7 | Viewed by 3833
Abstract
Highly complex nanoparticles combining multimodal imaging with the sensing of physical properties in biological systems can considerably enhance biomedical research, but reports demonstrating the performance of a single nanosized probe in several imaging modalities and its sensing potential at the same time are [...] Read more.
Highly complex nanoparticles combining multimodal imaging with the sensing of physical properties in biological systems can considerably enhance biomedical research, but reports demonstrating the performance of a single nanosized probe in several imaging modalities and its sensing potential at the same time are rather scarce. Gold nanoshells with magnetic cores and complex organic functionalization may offer an efficient multimodal platform for magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and fluorescence techniques combined with pH sensing by means of surface-enhanced Raman spectroscopy (SERS). In the present study, the synthesis of gold nanoshells with Mn-Zn ferrite cores is described, and their structure, composition, and fundamental properties are analyzed by powder X-ray diffraction, X-ray fluorescence spectroscopy, transmission electron microscopy, magnetic measurements, and UV-Vis spectroscopy. The gold surface is functionalized with four different model molecules, namely thioglycerol, meso-2,3-dimercaptosuccinate, 11-mercaptoundecanoate, and (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide, to analyze the effect of varying charge and surface chemistry on cells in vitro. After characterization by dynamic and electrophoretic light scattering measurements, it is found that the particles do not exhibit significant cytotoxic effects, irrespective of the surface functionalization. Finally, the gold nanoshells are functionalized with a combination of 4-mercaptobenzoic acid and 7-mercapto-4-methylcoumarin, which introduces a SERS active pH sensor and a covalently attached fluorescent tag at the same time. 1H NMR relaxometry, fluorescence spectroscopy, and PAI demonstrate the multimodal potential of the suggested probe, including extraordinarily high transverse relaxivity, while the SERS study evidences a pH-dependent spectral response. Full article
Show Figures

Figure 1

8 pages, 3175 KiB  
Article
Comparative Study of Bulk and Nanoengineered Doped ZnSe
by Brett Setera, Ching-Hua Su, Bradley Arnold, Fow-Sen Choa, Lisa Kelly, Rachit Sood and N. B. Singh
Crystals 2022, 12(1), 71; https://doi.org/10.3390/cryst12010071 - 5 Jan 2022
Cited by 8 | Viewed by 2940
Abstract
Chromium- and cobalt-doped zinc selenide nanoparticles were synthesized using a low-temperature reactive solution growth method. The morphological and optical characteristics were compared to those of doped zinc selenide (ZnSe) bulk crystals grown by the physical vapor transport (PVT) method. We observed agglomeration of [...] Read more.
Chromium- and cobalt-doped zinc selenide nanoparticles were synthesized using a low-temperature reactive solution growth method. The morphological and optical characteristics were compared to those of doped zinc selenide (ZnSe) bulk crystals grown by the physical vapor transport (PVT) method. We observed agglomeration of particles; however, the thioglycerol capping agent has been shown to limit particle grain growth and agglomeration. This process enables doping by addition of chromium and cobalt salts in the solution. A slightly longer refluxing time was required to achieve cobalt doping as compared with chromium doping due to lower refluxing temperature. The nanoparticle growth process showed an average particle size of approximately 300 nm for both Cr- and Co-doped zinc selenide. The optical characterization of Co:ZnSe is ongoing; however, preliminary results showed a very high bandgap compared to that of pure ZnSe bulk crystal. Additionally, Co:ZnSe has an order of magnitude higher fluorescence intensity compared to bulk Cr:ZnSe samples. Full article
Show Figures

Figure 1

14 pages, 2940 KiB  
Article
Formation of Nanoclusters in Gold Nucleation
by Cornelia M. Schneider and Helmut Cölfen
Crystals 2020, 10(5), 382; https://doi.org/10.3390/cryst10050382 - 8 May 2020
Cited by 9 | Viewed by 4101
Abstract
Gold nanoclusters consisting of a specific atom number have gained popularity in research in recent years due to their outstanding properties. Due to their molecule-like behavior, their properties depend strongly on their size. Although they represent the link species between atoms and nanoparticles [...] Read more.
Gold nanoclusters consisting of a specific atom number have gained popularity in research in recent years due to their outstanding properties. Due to their molecule-like behavior, their properties depend strongly on their size. Although they represent the link species between atoms and nanoparticles and are the subject of current research, a high-resolution characterization is still missing. Here, we used the band forming experiment in analytical ultracentrifugation (AUC) to characterize the gold nanoclusters in the moment of their generation using thioglycerol as a stabilizer. The concentration variation of the gold precursor, reducing agent, and stabilizer was investigated. The formation of different cluster species from the smallest Au4 up to Au911 could be observed. Very stable clusters of Au55 appear in every experiment and other cluster sizes more rarely. The extracted UV/Vis spectra could additionally be correlated to every cluster. The variation in the concentration of sodium borohydride and the stabilizer did not lead to a clear trend, but the gold ion concentration directed the size of the formed clusters. A decrease seemed to promote the generation of a higher abundance of smaller clusters accompanied by less big clusters, and vice versa. These results present the characterization of the different nanocluster generations directly in the formation process of nanoparticles and therefore are a contribution to the understanding of their formation. Full article
Show Figures

Graphical abstract

16 pages, 2506 KiB  
Article
Rapid Diminution in the Level and Activity of DNA-Dependent Protein Kinase in Cancer Cells by a Reactive Nitro-Benzoxadiazole Compound
by Viviane A. O. Silva, Florian Lafont, Houda Benhelli-Mokrani, Magali Le Breton, Philippe Hulin, Thomas Chabot, François Paris, Vehary Sakanyan and Fabrice Fleury
Int. J. Mol. Sci. 2016, 17(5), 703; https://doi.org/10.3390/ijms17050703 - 11 May 2016
Cited by 13 | Viewed by 5914
Abstract
The expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown [...] Read more.
The expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways. Here, we studied the behavior of DNA-PK and other DNA repair proteins in prostate cancer cells exposed to compound NSC. We showed that both the expression and activity of DNA-PKcs (catalytic subunit of DNA-PK) rapidly decreased upon exposure of cells to the compound. The decline in DNA-PKcs was associated with enhanced protein ubiquitination, indicating the activation of cellular proteasome. However, pretreatment of cells with thioglycerol abolished the action of compound NSC and restored the level of DNA-PKcs. Moreover, the decreased level of DNA-PKcs was associated with the production of intracellular hydrogen peroxide by stable dimeric forms of Cu/Zn SOD1 induced by NSC. Our findings indicate that reactive oxygen species and electrophilic intermediates, generated and accumulated during the redox transformation of NBD compounds, are primarily responsible for the rapid modulation of DNA-PKcs functions in cancer cells. Full article
Show Figures

Graphical abstract

25 pages, 1566 KiB  
Review
Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology
by John I. Toohey and Arthur J. L. Cooper
Molecules 2014, 19(8), 12789-12813; https://doi.org/10.3390/molecules190812789 - 21 Aug 2014
Cited by 150 | Viewed by 14945
Abstract
The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. [...] Read more.
The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Show Figures

Graphical abstract

13 pages, 221 KiB  
Article
Green Approach—Multicomponent Production of Boron—Containing Hantzsch and Biginelli Esters
by Joel Martínez, Stephany Romero-Vega, Rita Abeja-Cruz, Cecilio Álvarez-Toledano and René Miranda
Int. J. Mol. Sci. 2013, 14(2), 2903-2915; https://doi.org/10.3390/ijms14022903 - 30 Jan 2013
Cited by 30 | Viewed by 6435
Abstract
Multicomponent reactions are excellent methods that meet the requirements of green chemistry, by reducing the number of steps, and consequently reducing purification requirements. Accordingly, in this work, 11 novel hybrid-boron-containing molecules, namely eight 1,4-dihydropyridines and three 3,4-dihydropyrimidinones, derived from formylphenylboronic acids (ortho [...] Read more.
Multicomponent reactions are excellent methods that meet the requirements of green chemistry, by reducing the number of steps, and consequently reducing purification requirements. Accordingly, in this work, 11 novel hybrid-boron-containing molecules, namely eight 1,4-dihydropyridines and three 3,4-dihydropyrimidinones, derived from formylphenylboronic acids (ortho, meta and para), were obtained using a green approach, involving H-4CR and B-3CR practices, in the presence of ethanol, which is a green solvent, and using three comparatively different modes of activation (mantle heating, yield 3%–7% in 24 h, Infrared Radiation (IR) irradiation, yield 12%–17% in 12 h, and microwave irradiation, yield 18%–80%, requiring very low reaction times of 0.25–0.33 h). In addition, as a green-approach is offered, a convenient analysis, of the 12 green chemistry principles for the overall procedure was performed. Finally, since all the products are new, characterizations were carried out using common analytic procedures (1H, 11B, and 13C NMR, FAB+MS, HRMS, and IR). The accurate mass data of unexpected ions related to interactions between thioglycerol and the expected products, in the FAB+-mode, enabled unequivocal characterization of the target molecules. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

Back to TopTop