Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,010)

Search Parameters:
Keywords = thickness of shell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2134 KB  
Article
Impact of Eggshell Color Diversity on Hatchability, Translucency, and Quality Traits in Beijing-You Chicken Eggs
by Hongchang Gu, Zhixun Yan, Bing Zhang, Xia Chen, Ailian Geng, Yao Zhang, Jing Cao, Jian Zhang, Lingchao Zeng, Zhipeng Wang, Huagui Liu and Qin Chu
Animals 2025, 15(17), 2595; https://doi.org/10.3390/ani15172595 - 4 Sep 2025
Abstract
Due to the effects of pigment deposition and microstructure, the color of eggshells may influence the quality traits and hatchability of eggs. These traits are critical for breeding efficiency and economic outcomes in poultry production. Herein, Beijing-You chicken eggs were used as a [...] Read more.
Due to the effects of pigment deposition and microstructure, the color of eggshells may influence the quality traits and hatchability of eggs. These traits are critical for breeding efficiency and economic outcomes in poultry production. Herein, Beijing-You chicken eggs were used as a model to investigate the effects of eggshell color due to their color-related polymorphism. A total of 4422 eggs were analyzed for their hatchability, categorized by storage duration and eggshell color. Results revealed that white-shelled eggs exhibit significantly lower hatchability and higher early embryo mortality compared to other colors, particularly after long-term storage. Purple-shelled eggs demonstrated superior eggshell quality, including higher strength, thickness, and weight, as well as better internal egg quality indicators such as thick albumen height, Haugh units, and yolk color. Eggshell translucency showed a positive correlation with storage time and egg weight loss at all shell color types, with higher translucency levels associated with greater weight loss over time. This study examines associations between eggshell color, hatchability, translucency, and quality traits. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

28 pages, 5175 KB  
Article
Buckling Characteristics of Bio-Inspired Helicoidal Laminated Composite Spherical Shells Under External Normal and Torsional Loads Subjected to Elastic Support
by Mohammad Javad Bayat, Amin Kalhori, Masoud Babaei and Kamran Asemi
Buildings 2025, 15(17), 3165; https://doi.org/10.3390/buildings15173165 - 3 Sep 2025
Abstract
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is [...] Read more.
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is essential. The present paper investigates the buckling responses of bio-inspired helicoidal laminated composite spherical shells under normal and torsional loading, including the effects of a Winkler elastic medium. The pre-buckling equilibrium equations are derived using linear three-dimensional (3D) elasticity theory and the principle of virtual work, solved via the classical finite element method (FEM). The buckling load is computed using a nonlinear Green strain formulation and a generalized geometric stiffness approach. The shell material employed in this study is a T300/5208 graphite/epoxy carbon fiber-reinforced polymer (CFRP) composite. Multiple helicoidal stacking sequences—linear, Fibonacci, recursive, exponential, and semicircular—are analyzed and benchmarked against traditional unidirectional, cross-ply, and quasi-isotropic layups. Parametric studies assess the effects of the normal/torsional loads, lamination schemes, ply counts, polar angles, shell thickness, elastic support, and boundary constraints on the buckling performance. The results indicate that quasi-isotropic (QI) laminate configurations exhibit superior buckling resistance compared to all the other layup arrangements, whereas unidirectional (UD) and cross-ply (CP) laminates show the least structural efficiency under normal- and torsional-loading conditions, respectively. Furthermore, this study underscores the efficacy of bio-inspired helicoidal stacking sequences in improving the mechanical performance of thin-walled composite spherical shells, exhibiting significant advantages over conventional laminate configurations. These benefits make helicoidal architectures particularly well-suited for weight-critical, high-performance applications in aerospace, marine, and biomedical engineering, where structural efficiency, damage tolerance, and reliability are paramount. Full article
(This article belongs to the Special Issue Computational Mechanics Analysis of Composite Structures)
Show Figures

Figure 1

13 pages, 3191 KB  
Article
Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT
by Chih-Chiang Hong
J. Compos. Sci. 2025, 9(9), 465; https://doi.org/10.3390/jcs9090465 - 1 Sep 2025
Viewed by 74
Abstract
The technical study of the presented manuscript is to investigate the thermal vibration of thick functionally graded material (FGM) conical shells with fully-homogeneous equations coupled in third-order shear-deformation theory (TSDT). The method in the generalized-differential quadrature (GDQ) approach is used to calculate the [...] Read more.
The technical study of the presented manuscript is to investigate the thermal vibration of thick functionally graded material (FGM) conical shells with fully-homogeneous equations coupled in third-order shear-deformation theory (TSDT). The method in the generalized-differential quadrature (GDQ) approach is used to calculate the dynamic numerical data of FGM conical shells subjected to thermal-vibration only. Some parametric effects of minor middle-surface radius, environment temperature, and FGM power-law index on thermal stress and displacement of thick FGM conical shells are investigated with the frequency approach of the fully homogeneous equation. The novelties and main contributions of the present paper are that the thermal vibration GDQ study is original in thick FGM conical shells and contains some contributions to science and physics, by using the higher-order analysis of the TSDT displacement model and GDQ numerical results to obtain more accurate data in the thermal analyses of displacements and stresses for the thick FGM conical shells. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

25 pages, 8084 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Viewed by 277
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2293 KB  
Article
Contrast-Enhanced OCT for Damage Detection in Polymeric Resins Embedded with Metallic Nanoparticles via Surface Plasmon Resonance
by Maha Hadded, Thiago Luiz Lara Oliveira, Olivier Debono, Emilien Bourdon and Alan Jean-Marie
NDT 2025, 3(3), 20; https://doi.org/10.3390/ndt3030020 - 25 Aug 2025
Viewed by 244
Abstract
Nanoparticle-embedded polymeric materials are an important subject in advanced structural applications due to their advantageous combination of low weight and high mechanical performance. Optical coherence tomography (OCT) is a high-resolution imaging technique that enables subsurface defect visualization, which can be used as one [...] Read more.
Nanoparticle-embedded polymeric materials are an important subject in advanced structural applications due to their advantageous combination of low weight and high mechanical performance. Optical coherence tomography (OCT) is a high-resolution imaging technique that enables subsurface defect visualization, which can be used as one of the methods to reveal defects resulting from decomposition pathways or mechanisms of polymers. Nevertheless, the low contrast of polymeric materials, particularly PEEK-based polymers, does not allow for automatic geometry extraction for analytical input. To address the constraint of weak contrast, localized surface plasmon resonance (LSPR) of plasmonic nanoparticle-reinforced polymer materials has been used as an OCT contrast agent to provide the necessary contrast. The backscattering efficiency of light was also theoretically investigated, based on the Lorenz–Mie theory, with a single spherical nanoparticle embedded in a PEEK matrix as a non-absorptive, isotropic and homogeneous medium. In this study, the cases of a single homogeneous TiO2  nanoparticle and a hybrid TiO2/Au  core/shell nanoparticle configuration were considered separately. An examination of the influence of nanoparticle diameter and gold shell thickness on backscattering efficiencies of these nanostructures was performed. The results indicate that TiO2/Au nanoshells demonstrate superior near-infrared (NIR) light backscattering capabilities at typical OCT operating wavelengths (830–1310 nm). Additionally, the potential of these nanoparticles for application in non-destructive testing-based light backscattering methods was investigated. The findings suggest that TiO2/Au nanoshells have the ability to effectively backscatter near-infrared light in OCT operating central wavelengths, making them suitable to serve as effective NIR contrast-enhancing agents for OCT within the domain of NDT. Full article
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 245
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

14 pages, 2036 KB  
Article
pH-Responsive Hollow Mesoporous Silica Nanoparticles with Fludarabine for Cancer Therapy
by Sung Soo Park and Chang-Sik Ha
Nanomaterials 2025, 15(17), 1308; https://doi.org/10.3390/nano15171308 - 25 Aug 2025
Viewed by 515
Abstract
In this work, alkylammonium-functionalized hollow mesoporous silica as a nonocarrier of drugs was synthesized to realize enhanced cancer therapy by pH stimuli for sustained drug release. First, functionalized hollow mesoporous silica nanoparticles (Hollow MSNs) were synthesized using dodecyl dimethyl(3-sulfopropyl)ammonium hydroxide (DDAPS), sodium dodecyl [...] Read more.
In this work, alkylammonium-functionalized hollow mesoporous silica as a nonocarrier of drugs was synthesized to realize enhanced cancer therapy by pH stimuli for sustained drug release. First, functionalized hollow mesoporous silica nanoparticles (Hollow MSNs) were synthesized using dodecyl dimethyl(3-sulfopropyl)ammonium hydroxide (DDAPS), sodium dodecyl sulfate (SDS), and triethanolamine as structure-directing agents, while tetraethyl orthosilicate (TEOS) and N-trimethoxysilypropyl-N,N,N-trimethylammonium chloride (TMAPS) were used as silica sources under basic condition via the sol–gel process. The structure and morphology of the alkylammonium-functionalized hollow mesoporous silica nanoparticles (Hollow MSN-N+CH3) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption analysis, and Fourier transform infrared (FT-IR) spectroscopy. The functionalized hollow MSNs had a particle size of about 450 nm and a shell thickness of about 60 nm with uniform size. The nanoparticle had a surface area of 408 m2g−1, pore volume of 0.8 cm3g−1, and a uniform pore diameter of 45.9 Å. In the cancer cell viability test with a MCF-7 cell, fludarabine-incorporated and alkylammonium-functionalized hollow mesoporous silica nanoparticles (Flu/Hollow MSN-N+CH3) showed excellent cancer cell death comparable with pure fludarabine drug with the controlled drug release by pH stimuli. It is suggested that our current materials have potential applicability as pH-responsive nanocarriers in the field of cancer therapy. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 2085 KB  
Article
Geographical Origin Affects the Nut Traits, Bioactive Compounds, and Fatty Acid Composition of Turkish Hazelnut Cultivars (Corylus avellana L. cvs. Çakıldak, Palaz, and Tombul)
by Haydar Kurt and Orhan Karakaya
Horticulturae 2025, 11(8), 987; https://doi.org/10.3390/horticulturae11080987 - 20 Aug 2025
Viewed by 316
Abstract
Hazelnuts are valuable for human health and nutrition. They are also an economically important type of nut. This study was conducted to determine the effect of different geographical origins (Giresun, Ordu, and Samsun/Türkiye) on the nut characteristics, bioactive compounds, and fatty acid composition [...] Read more.
Hazelnuts are valuable for human health and nutrition. They are also an economically important type of nut. This study was conducted to determine the effect of different geographical origins (Giresun, Ordu, and Samsun/Türkiye) on the nut characteristics, bioactive compounds, and fatty acid composition of three hazelnut cultivars (cvs. Çakıldak, Palaz, and Tombul). The highest nut and kernel weights and sizes were determined to be in all cultivars in Samsun. The highest kernel ratio was recorded in the Çakıldak and Palaz cultivars grown in Giresun. However, shell thickness was not affected by geographical origin. The highest levels of total phenolics and total flavonoids were recorded in all cultivars in Samsun. The antioxidant activity of the cultivars differed according to geographical origin. The highest oleic acid was found in all cultivars in Giresun, while the highest linoleic acid was observed in those grown in Ordu. Generally, the highest results in terms of other fatty acids were recorded in all cultivars in Samsun. According to the results of the principal component analysis (PCA), the cultivars grown in the Samsun region were generally related to better nut traits and phenolics, while the cultivars grown in the Giresun and Ordu regions were associated with better antioxidant activity and fatty acid composition. This study shows that the nut traits, bioactive compounds, and fatty acid composition of hazelnuts are affected by geographical differences. These results provide valuable insights for hazelnut growers and the food industry. Full article
Show Figures

Figure 1

33 pages, 1826 KB  
Article
Comprehensive Evaluation of Probiotic Effects on Laying Hen Physiology: From Performance to Bone and Gut Morphology
by E. Ebru Onbaşılar, Sakine Yalçın, Caner Bakıcı, Barış Batur, Yeliz Kaya Kartal, Ozan Ahlat, İhsan Berat Kılıçlı and Suzan Yalçın
Animals 2025, 15(16), 2408; https://doi.org/10.3390/ani15162408 - 16 Aug 2025
Viewed by 491
Abstract
This study investigated the effects of probiotic supplementation on performance, egg quality, antioxidant capacity, gut morphology, fecal microbiota, and bone morphology in Lohmann Brown laying hens aged 44 weeks over a 16-week period. Ninety-six hens were randomly divided into control and probiotic groups [...] Read more.
This study investigated the effects of probiotic supplementation on performance, egg quality, antioxidant capacity, gut morphology, fecal microbiota, and bone morphology in Lohmann Brown laying hens aged 44 weeks over a 16-week period. Ninety-six hens were randomly divided into control and probiotic groups (n = 48 each). The probiotic group received probiotic supplement containing Lactobacillus acidophilus KUEN 1607 and Pediococcus acidilactici KUEN 1608 via drinking water at 0.5%. Probiotic supplementation significantly improved feed conversion ratio (FCR), eggshell strength and thickness, and albumen quality (p < 0.001) and reduced the incidence of cracked and shell-less eggs (p < 0.05). Yolk and serum cholesterol levels decreased (p < 0.001), and antioxidant parameters improved, along with elevated serum IgG (p < 0.001). Histological analysis showed an increased ratio of villus height to crypt depth (p < 0.001) in the jejunum, indicating enhanced intestinal health. Fecal samples revealed increased Lactobacillus spp. and reduced coliform counts (p < 0.001), suggesting improved gut microbiota balance. While bone volume and surface area showed no significant difference, 3D geometric morphometric analysis identified subtle shape changes in long bones, especially the femur and tibiotarsus. These findings demonstrate that the selected probiotic combination supports nutrient utilization, egg quality, gut integrity, immune status, and skeletal health, offering a sustainable strategy to enhance productivity and welfare in laying hens. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 6481 KB  
Article
Integrating Carbon-Coated Cu/Cu2O Nanoparticles with Biochars Enabled Efficient Capture and Electrocatalytic Reduction of CO2
by Yutong Hong, Xiaokai Zhou and Fangang Zeng
Catalysts 2025, 15(8), 767; https://doi.org/10.3390/catal15080767 - 11 Aug 2025
Viewed by 574
Abstract
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core [...] Read more.
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core diameters (28.2–24.2 nm) and shell thicknesses (7.8–3.0 layers) were fabricated via lased ablation in liquid. A thin Cu2O layer was confirmed between the interface of the Cu core and the graphene shell, providing an interfacial Cu0/Cu+. Cu@G cross-linked biochars (Cu@G/Bs) with developed porosity (31.8–155.9 m2/g) were synthesized. Morphology, crystalline structure, porosity, and elemental chemical states of Cu@G and Cu@G/Bs were characterized. Cu@G/Bs captured CO2 with a maximum sorption capacity of 107.03 mg/g at 0 °C. Furthermore, 95.3–97.1% capture capacity remained after 10 cycles. Cu@G/Bs exhibited the most superior performance with 40.7% of FEC2H4 and 21.7 mA/cm2 of current density at −1.08 V vs. RHE, which was 1.7 and 2.7 times higher than Cu@G. Synergistic integration of developed porosity for efficient CO2 capture and the fast charge transfer rate of interfacial Cu2O/Cu enabled this improvement. Favorable long-term stability of the phase/structure and CO2 electroreduction activity were present. This work provides new insight for integrating Cu@G and a biochar platform to efficiently capture and electro-reduce CO2. Full article
Show Figures

Graphical abstract

27 pages, 5036 KB  
Article
Synthesis and Characterization of Magnetic Molecularly Imprinted Polymer Sorbents (Fe3O4@MIPs) for Removal of Tetrabromobisphenol A
by Clarissa Ciarlantini, Susanna Romano, Gian Marco Amici, Elisabetta Lacolla, Iolanda Francolini, Anna Maria Girelli, Andrea Martinelli and Antonella Piozzi
Int. J. Mol. Sci. 2025, 26(16), 7686; https://doi.org/10.3390/ijms26167686 - 8 Aug 2025
Viewed by 351
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant widely added to polymer products. Successful isolation of target analytes from complex natural matrices relies on extraction materials that can selectively interact with the analytes. In this context, the use of magnetic nanostructured adsorbents, such as [...] Read more.
Tetrabromobisphenol A (TBBPA) is a flame retardant widely added to polymer products. Successful isolation of target analytes from complex natural matrices relies on extraction materials that can selectively interact with the analytes. In this context, the use of magnetic nanostructured adsorbents, such as magnetic molecularly imprinted polymer systems (MMIPs), can play a key role in both selective matrix–analyte interactions and separation processes. Here, to achieve different TBBPA loadings, Fe3O4 nanoparticles (NPs) were coated with chitosan (CS) or (3-aminopropyl) triethoxysilane (APTES). Moreover, to further promote template–NP interactions and modulate the polymeric shell thickness of MMIPs, 3,4-dihydroxyhydrocinnamic acid (HC) was covalently bonded in different amounts to APTES-functionalized MNPs. Thermal, SEM, and elemental analyses showed a different coating degree of the nanocomposites (Fe3O4@CS-MIP size d = 77 nm and Fe3O4@APTES-MIP d = 20 nm). In addition, it was confirmed that the adsorption mechanism of TBBPA on Fe3O4@APTES-HCX-MIPs was due to specific interactions between the systems and the analyte, unlike non-imprinted analogs (MNIPs). Among the developed systems, the Fe3O4@APTES-HC0.7-MIP sample showed the best extraction efficiency (85%) associated with good discharge efficiency (70%). Furthermore, this nanocomposite displayed high selectivity towards TBBPA (ε > 1) and good extraction efficiency in three consecutive cycles (67%), demonstrating great potential in the environmental field. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials, 3rd Edition)
Show Figures

Graphical abstract

25 pages, 7708 KB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 - 1 Aug 2025
Viewed by 506
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

18 pages, 2312 KB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 679
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

28 pages, 3834 KB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 - 1 Aug 2025
Viewed by 329
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

12 pages, 6639 KB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 300
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

Back to TopTop