Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = thermomagnetic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3362 KB  
Review
Resonant Convergence: An Integrative Model for Electromagnetic Interactions in Biological Systems
by Alessandro Greco
Int. J. Mol. Sci. 2026, 27(1), 423; https://doi.org/10.3390/ijms27010423 - 31 Dec 2025
Viewed by 412
Abstract
Over the past 50 years, scientific interest in electromagnetic field-biology interactions has flourished. Important experimental observations and mathematical hypotheses remain central to academic debate. Adey and Blackman found that specific electromagnetic frequencies affect calcium transport in cells. To explain this phenomenon, Liboff introduced [...] Read more.
Over the past 50 years, scientific interest in electromagnetic field-biology interactions has flourished. Important experimental observations and mathematical hypotheses remain central to academic debate. Adey and Blackman found that specific electromagnetic frequencies affect calcium transport in cells. To explain this phenomenon, Liboff introduced ion cyclotron resonance-like (ICR-like) theory, proposing a specific mechanism for ion modulation. Preparata and Del Giudice introduced quantum electrodynamics (QED), offering controversial quantum-level explanations that complement classical models. Lucia and NASA contributed further with thermomagnetic resonance and experimental observations. Together, these hypotheses have partially clarified how weak electromagnetic fields interact with cells and suggest possible parallel endogenous mechanisms. The aim of this narrative review is to provide a clear and logical framework for understanding biological events, both those that arise naturally within biology and those that can be initiated externally through the application of electromagnetic fields. As electromagnetism constitutes one of the four fundamental forces, this interaction warrants rigorous scientific scrutiny. Full article
(This article belongs to the Special Issue Electromagnetic Field Interactions with Biomolecules)
Show Figures

Figure 1

14 pages, 2595 KB  
Article
New Electromagnetic Shielding Materials Based on Viscose/Maghemite/Goethite/Polysiloxane
by Razvan Rotaru, Elena Ungureanu, Bogdan M. Tofănică, Ovidiu C. Ungureanu and Maria E. Fortună
Inorganics 2025, 13(12), 388; https://doi.org/10.3390/inorganics13120388 - 26 Nov 2025
Viewed by 606
Abstract
In this study, we present a convenient approach for the preparation of viscose, maghemite, goethite, and poly(methylhydro-dimethyl)siloxane hybrid materials possessing electromagnetic shielding properties, thermal stability, strong magnetization, and very good hydrophobicity. The chemical compositions, morphologies, thermal properties, magnetic measurements, wettability, and dielectric properties [...] Read more.
In this study, we present a convenient approach for the preparation of viscose, maghemite, goethite, and poly(methylhydro-dimethyl)siloxane hybrid materials possessing electromagnetic shielding properties, thermal stability, strong magnetization, and very good hydrophobicity. The chemical compositions, morphologies, thermal properties, magnetic measurements, wettability, and dielectric properties of the prepared composites and pristine precursors were thoroughly investigated by Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), thermal degradation (TG, DTG, and DTA), magnetic measurements (magnetization, thermomagnetic curves, relative magnetic permeability), and dielectric spectrometry. Moreover, the electromagnetic shielding properties of pristine viscose and the final composite were assessed. Full article
Show Figures

Figure 1

14 pages, 7010 KB  
Article
Magnetic Properties of Fe-Nb-B-RE (RE = Tb, Tb/Y, Tb/Nd) Amorphous and Annealed Melt-Spun Ribbons
by Artur Chrobak, Grzegorz Ziółkowski, Ondrej Zivotsky, Piotr Pawlik and Joanna Klimontko
Crystals 2025, 15(11), 933; https://doi.org/10.3390/cryst15110933 - 30 Oct 2025
Viewed by 398
Abstract
This paper discusses the magnetic properties of Fe-Nb-B-RE (RE = Tb, Tb/Y, Tb/Nd) melt-spun ribbons. Samples were obtained using a typical melt-spinning technique. The dominant amorphous state was confirmed by XRD and thermomagnetic measurements. It was shown that the alloying additions of the [...] Read more.
This paper discusses the magnetic properties of Fe-Nb-B-RE (RE = Tb, Tb/Y, Tb/Nd) melt-spun ribbons. Samples were obtained using a typical melt-spinning technique. The dominant amorphous state was confirmed by XRD and thermomagnetic measurements. It was shown that the alloying additions of the RE elements used introduce magnetic anisotropy into amorphous Fe-based structures. This fact was confirmed by magnetic hysteresis loops as well as Kerr microscopy observations. Moreover, increasing Tb content leads to the appearance of a “two-step” reverse magnetization curve. The mean field theory analysis revealed that Tb addition reduces the exchange interaction between the Fe-Fe magnetic moments. The applied thermal treatment caused partial crystallization and the formation of hard magnetic phases with ultra-high coercivity. Full article
(This article belongs to the Special Issue New Trends in Materials for Permanent Magnets)
Show Figures

Figure 1

21 pages, 5366 KB  
Article
Multifaceted Analysis of Pr2Fe16.75Ni0.25 Intermetallic Compound: Crystallographic Insights, Critical Phenomena, and Thermomagnetic Behavior near Room Temperature
by Jihed Horcheni, Hamdi Jaballah, Sirine Gharbi, Essebti Dhahri and Lotfi Bessais
Magnetochemistry 2025, 11(8), 65; https://doi.org/10.3390/magnetochemistry11080065 - 31 Jul 2025
Viewed by 667
Abstract
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe [...] Read more.
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe16.9Ni0.25 also demonstrates a direct magnetocaloric effect near room temperature, accompanied by a moderate magnetic entropy change (ΔSMmax = 5.5 J kg−1 K−1 at μ0ΔH=5 T) and a broad working temperature range. Furthermore, the Relative Cooling Power (RCP) is approximately 89% of the widely recognized gadolinium (Gd) for μ0ΔH=2 T. This compound exhibits a commendable magnetocaloric response, on par with or even surpassing that of numerous other intermetallic alloys. Critical behavior was analyzed using thermo-magnetic measurements, employing methods such as the modified Arrott plot, critical isotherm analysis, and Kouvel-Fisher techniques. The obtained critical exponents (β, γ, and δ) exhibit similarities to those of the 3D-Ising model, characterized explicitly by intermediate range interactions. Full article
Show Figures

Figure 1

21 pages, 9209 KB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 632
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

49 pages, 9659 KB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 1096
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

16 pages, 5770 KB  
Article
Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
by Li-Wei Tseng and Wei-Cheng Chen
Materials 2025, 18(12), 2842; https://doi.org/10.3390/ma18122842 - 16 Jun 2025
Viewed by 760
Abstract
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission [...] Read more.
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission electron microscope (TEM). The TEM results reveal that the average precipitate size is around 3–5 nm in the 600 °C/24 h samples, 6–8 nm in the 600 °C/48 h samples, and 10–12 nm in the 600 °C/72 h samples. The results indicate that precipitate size increases as aging time increases from 24 to 72 h. EDS analysis results show decreased Fe and increased Ni when the analyzed line crosses the precipitate region. The diffraction pattern results show that the precipitate has an L12 crystal structure. The thermo-magnetization curves of single crystals under the three aging conditions (600 °C/24 h, 600 °C/48 h, and 600 °C/72 h) show that the values of the transformation temperatures increased from 24 to 72 h. Magnetization was saturated at 140 emu/g under the magnetic field of 7 Tesla. When increasing the magnetic field from 0.05 to 7 Tesla, the transformation temperatures rose. The results indicate that magnetic fields can activate martensitic transformation. From the results of the superelasticity test at room temperature, [001]-oriented FeNiCoAlTiNb single crystals aged at 600 °C for 24, 48, and 72 h presented recoverable strains of 3%, 5.1%, and 2.6%, respectively. Digital image correlation (DIC) results of the aged samples show that two martensite variants were activated during the superelasticity test. The two variants form corresponding variant pairs (CVPs) and improve the recoverable strain of superelasticity. Although maximum recoverable strain was obtained for the 600 °C/48 h samples, the samples show poor cyclic stability at room temperature after applying the 6% strain. According to the DIC results, the retained martensite, which is pinned by dislocations, was observed after the test. The irrecoverable strain was attributed to the residual martensite. For the 600 °C/72 h samples, the large size of the precipitates poses an obstacle to dislocation transformation and formation. The dislocations increase the stress hysteresis width and stabilize the martensite, causing poor recoverability. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

16 pages, 3514 KB  
Article
The Role of Convection and Size Effects in Microhotplate Heat Exchange: Semiconductor and Thermomagnetic Gas Sensors
by Alexey Vasiliev, Alexey Shaposhnik, Oleg Kul and Artem Mokrushin
Sensors 2025, 25(9), 2830; https://doi.org/10.3390/s25092830 - 30 Apr 2025
Cited by 1 | Viewed by 976
Abstract
The analysis of the influence of microhotplate size on the convective heat exchange of gas sensors is presented. Usually, the role of convection in the heat exchange of gas sensors is not considered in thermal simulation models because of the complexity of the [...] Read more.
The analysis of the influence of microhotplate size on the convective heat exchange of gas sensors is presented. Usually, the role of convection in the heat exchange of gas sensors is not considered in thermal simulation models because of the complexity of the convection process. As a result, the contribution of this process to the overall heat loss of sensors remains without detailed analysis. We analyzed convection issues in two groups of gas sensors: semiconductor and thermocatalytic (calorimetric) sensors and, on the other hand, in the oxygen sensors of the thermomagnetic type. It is demonstrated that there is a critical size leading to the formation of convective heat exchange flow. Below this critical value, only thermal conductivity of ambient air, IR (infrared) radiation from the heated microhotplate surface, and thermal conductivity of the microhotplate-supporting elements should be considered as channels for heat dissipation by the microhotplate, and the contribution of free convection can be neglected. The expression for the critical size contains only fundamental constants of air, dcr~4·ν·Dg3, where ν is the kinematic viscosity of air, D is the diffusion coefficient, and g is the acceleration of free fall, dcr~0.5 cm. Therefore, if the size of the microhotplate d <<dcr, the influence of convection heat exchange can be neglected. Similar results were obtained in the analysis of the behavior of thermal magnetic sensors of oxygen, which use paramagnetic properties of molecular oxygen for the determination of O2 concentration. In this case, the critical size of the sensor is also of significance; if the size of the magnetic sensor is much below this value, the oxygen concentration value measured with such a device is independent of the orientation of the sensor element. The results of the simulation were compared with the measurement of heat loss in micromachined gas sensors. The optimal dimensions of the sensor microhotplate are given as a result of these simulations and measurements. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

17 pages, 9341 KB  
Article
Simulation of the Diffusion Characteristics of Multifunctional Nanocarriers in Tumor Tissues Using Lattice Gas Automata and the Lattice Boltzmann Method
by Yuming Qin, Kai Yue, Xiaoling Yu, Yu You, Chao Yang and Xinxin Zhang
Bioengineering 2025, 12(4), 429; https://doi.org/10.3390/bioengineering12040429 - 18 Apr 2025
Cited by 3 | Viewed by 1148
Abstract
Understanding the diffusion mechanisms of nanocarriers in tumor tissues is crucial for enhancing drug delivery to target areas. This study developed a simulation method combining lattice gas automata and the lattice Boltzmann method to explore the diffusion behaviors of ligand-coated nanoparticles (NPs) in [...] Read more.
Understanding the diffusion mechanisms of nanocarriers in tumor tissues is crucial for enhancing drug delivery to target areas. This study developed a simulation method combining lattice gas automata and the lattice Boltzmann method to explore the diffusion behaviors of ligand-coated nanoparticles (NPs) in the extracellular matrix (ECM) and tumor tissues under the influence of external fields. We propose mathematical models to describe how the movement of NPs is affected by thermomagnetic effects and by their interactions with ECM fiber walls and cells, and to calculate the flow field and temperature distribution in tumor tissues containing interstitial fluids. The results show that reduced tissue porosity and increased ECM fiber and cell densities hinder NP transport. Conversely, degrading ECM collagen fibers with thermal or other energy forms significantly improved NP diffusion in treated tissues. Modifying the surface zeta potential of NPs allowed for the regulation of NP adhesion to ECM fibers and cell membranes based on their charged components. However, altering the charge on the NP surface did not further enhance diffusion once a certain charge level was reached. Increased temperatures from NP heat generation under external fields improved interstitial fluid flow, thereby enhancing NP diffusion. Additionally, a static magnetic field gradient considerably increased the penetration depth of magnetic NPs in the direction of the field, with minimal effects on diffusion in other directions and, in some cases, reducing diffusion. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

16 pages, 14456 KB  
Article
Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy
by Li-Wei Tseng, Wei-Cheng Chen, Yi-Ting Hsu and Chih-Hsuan Chen
Materials 2025, 18(2), 387; https://doi.org/10.3390/ma18020387 - 16 Jan 2025
Cited by 2 | Viewed by 1061
Abstract
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an Fe41.265Ni28.2Co17Al11Ta2.5B0.04 (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of [...] Read more.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an Fe41.265Ni28.2Co17Al11Ta2.5B0.04 (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.45 and 2.82, respectively. This indicates that both samples were formed without any strong texture. The grain morphology results show that the grain size increased from 356.8 to 504.6 μm when the annealing time was increased from 0.5 to 1 h. The large grain size improved the recoverable strain due to a reduction in the grain constraint. As a result, annealing was carried out at 1300 °C/1 h for the remainder of the study. The hardness decreased at 24 h, then increased again at 48 h; this phenomenon was related to the austenite finish temperature. Thermo-magnetic analysis revealed that the austenite finish temperature increased when the samples were aged at 600 °C for between 12 and 24 h. When the aging time was prolonged to 48 h, the austenite finish temperature value decreased. X-ray diffraction (XRD) demonstrated that the peak of the precipitates emerged and intensified when the aging time was increased from 12 to 24 h at 600 °C. From the three-point bending shape memory test, the samples aged at 600 °C for 12 and 24 h had maximum recoverable strains of 2% and 3.6%, respectively. The stress–temperature slopes of the austenite finish temperature were 10.3 MPa/°C for 12 h and 6 MPa/°C for 24 h, respectively. Higher slope values correspond to lower recoverable strains. Full article
(This article belongs to the Special Issue Future Trends in High-Entropy Alloys (2nd Edition))
Show Figures

Figure 1

20 pages, 8068 KB  
Article
Preparation and Performance Study of Composite Aramid Paper for High-Frequency Working Conditions
by Xiaonan Li, Tong Qin, Wenxu Zhang, Hong Wang, Yanhong Chen, Kangle Li, Qing Wang and Yibo Wang
Nanomaterials 2024, 14(23), 1880; https://doi.org/10.3390/nano14231880 - 22 Nov 2024
Cited by 4 | Viewed by 1710
Abstract
When the power converter connects to the high-frequency transformer breaks through the bottleneck and reaches a frequency of 100 kHz or even higher, the high-frequency transformer’s inter-turn insulation faces more serious high-frequency discharge and high-temperature problems. In order to improve the service performance [...] Read more.
When the power converter connects to the high-frequency transformer breaks through the bottleneck and reaches a frequency of 100 kHz or even higher, the high-frequency transformer’s inter-turn insulation faces more serious high-frequency discharge and high-temperature problems. In order to improve the service performance of oil-immersed high-frequency transformer insulation paper, composite K-BNNS particles are prepared by ultrasonic stripping, heat treatment, and thermomagnetic stirring. Then, K-BNNS particles are mixed with PMIA (polymeric m-phenylenediamine solution) slurry to produce composite aramid paper. And the effects of K-BNNS particles with different contents on the thermal conductivity, dielectric properties, partial discharge properties, and mechanical properties of aramid paper are explored. It can be found that, when the addition of composite particles (K-BNNS) is 10%, the comprehensive performance of composite aramid paper is the best. Compared with Nomex paper, the in-plane and through-plane thermal conductivity of composite insulating paper F-10 increased by 668.33% and 760.66%, respectively. Moreover, the high-frequency breakdown voltage increased by 48.73% and the tensile strength increased by 2.49%. The main reason is that the composite particles form a complete thermal conductive network in the aramid paper matrix and a large number of hydrogen bonds with the matrix, which enhances the internal interface bonding force of the material and changes the charge transport mechanism. Full article
(This article belongs to the Special Issue Functional Polymer and Ceramic Nanocomposites)
Show Figures

Figure 1

21 pages, 5255 KB  
Article
Influence of Hydration and Temperature on the NaxCO2 Based Transducer Voltage
by George-Claudiu Zărnescu, Esmaeil Jalali Lavasani, Lucian Pîslaru-Dănescu and Ioan Stamatin
Micromachines 2024, 15(11), 1334; https://doi.org/10.3390/mi15111334 - 31 Oct 2024
Viewed by 1368
Abstract
This paper presents an experimental approach to maximizing the voltage generated by NaxCoO2 and improving the overall efficiency of the p-type thermoelectric leg by doping with Na up to x = 0.88. Two samples with different geometries were tested, each [...] Read more.
This paper presents an experimental approach to maximizing the voltage generated by NaxCoO2 and improving the overall efficiency of the p-type thermoelectric leg by doping with Na up to x = 0.88. Two samples with different geometries were tested, each measured with and without an additional magnetic field applied in the direction of the temperature gradient. The properties of sodium cobaltite in response to hydration were explored, at temperatures between 300 and 380 K. Water injection boosted the current and power up to 75–100 µW at a temperature of 350–360 K. This power boost can be attributed to an electron-ion fluid flow pattern maintained by the longitudinal thermomagnetic effect and by water molecules forming hydrogen bonds with oxygen atoms in the CoO2 layers, inside the material. An electronic circuit was designed to boost the voltage to the desired level, for three or more sodium cobaltite samples mounted in parallel, and to store the energy in a supercapacitor. The output voltage and resistivity change of sodium cobaltite samples can be readily used as a humidity and temperature-sensing element in a transducer when paired with an appropriate electronic conditioning scheme. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

17 pages, 2885 KB  
Article
A Non-Relativistic 2D Quantum System and Its Thermo-Magnetic Properties with a Generalized Pseudo-Harmonic Oscillator
by Haifa I. Alrebdi, Akpan N. Ikot, Ridha Horchani and Uduakobong S. Okorie
Mathematics 2024, 12(17), 2623; https://doi.org/10.3390/math12172623 - 24 Aug 2024
Cited by 2 | Viewed by 1580
Abstract
In this work, we examine the thermo-magnetic characteristics and energy spectra of a system exposed to both magnetic and Aharonov–Bohm (AB) fields with the existence of an interaction potential that is pseudo-harmonic. Explicit calculations of the eigen-solutions are performed with the expanded Nikiforov–Uvarov [...] Read more.
In this work, we examine the thermo-magnetic characteristics and energy spectra of a system exposed to both magnetic and Aharonov–Bohm (AB) fields with the existence of an interaction potential that is pseudo-harmonic. Explicit calculations of the eigen-solutions are performed with the expanded Nikiforov–Uvarov formalism. The confluent Heun function is used to represent the equivalent wave functions. If the AB and magnetic fields are gone, quasi-degeneracy in the system’s energy levels is shown by a numerical analysis of the energy spectrum. Additionally, we provided a visual representation of how the AB and magnetic fields affected the system’s thermo-magnetic characteristics. Our results show a strong dependence of thermo-magnetic properties on temperature, screening parameters, external magnetic fields, and AB fields. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

15 pages, 5612 KB  
Article
Microstructure and Unusual Ferromagnetism of Epitaxial SnO2 Films Heavily Implanted with Co Ions
by Rustam I. Khaibullin, Amir I. Gumarov, Iskander R. Vakhitov, Andrey A. Sukhanov, Nikolay M. Lyadov, Airat G. Kiiamov, Dilyara M. Kuzina, Valery V. Bazarov and Almaz L. Zinnatullin
Condens. Matter 2024, 9(2), 27; https://doi.org/10.3390/condmat9020027 - 11 Jun 2024
Viewed by 2068
Abstract
In this work, we have studied the microstructure and unusual ferromagnetic behavior in epitaxial tin dioxide (SnO2) films implanted with 40 keV Co+ ions to a high fluence of 1.0 × 1017 ions/cm2 at room or elevated substrate [...] Read more.
In this work, we have studied the microstructure and unusual ferromagnetic behavior in epitaxial tin dioxide (SnO2) films implanted with 40 keV Co+ ions to a high fluence of 1.0 × 1017 ions/cm2 at room or elevated substrate temperatures. The aim was to comprehensively understand the interplay between cobalt implant distribution, crystal defects (such as oxygen vacancies), and magnetic properties of Co-implanted SnO2 films, which have potential applications in spintronics. We have utilized scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), differential thermomagnetic analysis (DTMA), and ferromagnetic resonance (FMR) to investigate Co-implanted epitaxial SnO2 films. The comprehensive experimental investigation shows that the Co ion implantation with high cobalt concentration induces significant changes in the microstructure of SnO2 films, leading to the appearance of ferromagnetism with the Curie temperature significantly above the room temperature. We also established a strong influence of implantation temperature and subsequent high-temperature annealing in air or under vacuum on the magnetic properties of Co-implanted SnO2 films. In addition, we report a strong chemical effect of ethanol on the FMR spectra. The obtained results are discussed within the model of two magnetic layers, with different concentrations and valence states of the implanted cobalt, and with a high content of oxygen vacancies. Full article
Show Figures

Figure 1

13 pages, 3206 KB  
Article
Dependence of Magnetic Properties of As-Prepared Nanocrystalline Ni2MnGa Glass-Coated Microwires on the Geometrical Aspect Ratio
by Mohamed Salaheldeen, Valentina Zhukova, Ricardo Lopez Anton and Arcady Zhukov
Sensors 2024, 24(11), 3692; https://doi.org/10.3390/s24113692 - 6 Jun 2024
Cited by 7 | Viewed by 1640
Abstract
We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, ρ = dmetal/Dtotal (dmetal—diameter of metallic nucleus, and Dtotal—total diameter). The structure and magnetic properties are investigated in a wide range of temperatures [...] Read more.
We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, ρ = dmetal/Dtotal (dmetal—diameter of metallic nucleus, and Dtotal—total diameter). The structure and magnetic properties are investigated in a wide range of temperatures and magnetic fields. The XRD analysis illustrates stable microstructure in the range of ρ from 0.25 to 0.60. The estimations of average grain size and crystalline phase content evidence a remarkable variation as the ρ-ratio sweeps from 0.25 to 0.60. Thus, the microwires with the lowest aspect ratio, i.e., ρ = 0.25, show the smallest average grain size and the highest crystalline phase content. This change in the microstructural properties correlates with dramatic changes in the magnetic properties. Hence, the sample with the lowest ρ-ratio exhibits an extremely high value of the coercivity, Hc, compared to the value for the sample with the largest ρ-ratio (2989 Oe and 10 Oe, respectively, i.e., almost 300 times higher). In addition, a similar trend is observed for the spontaneous exchange bias phenomena, with an exchange bias field, Hex, of 120 Oe for the sample with ρ = 0.25 compared to a Hex = 12.5 Oe for the sample with ρ = 0.60. However, the thermomagnetic curves (field-cooled—FC and field-heating—FH) show similar magnetic behavior for all the samples. Meanwhile, FC and FH curves measured at low magnetic fields show negative values for ρ = 0.25, whereas positive values are found for the other samples. The obtained results illustrate the substantial effect of the internal stresses on microstructure and magnetic properties, which leads to magnetic hardening of samples with low aspect ratio. Full article
Show Figures

Figure 1

Back to TopTop