Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,677)

Search Parameters:
Keywords = thermo-mechanical processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2334 KB  
Article
Effect of Imposed Shear During Oval-Caliber Rolling on the Properties of Mn–Si Low-Alloy Steel
by Kairosh Nogayev, Maxat Abishkenov, Zhassulan Ashkeyev, Gulzhainat Akhmetova, Saltanat Kydyrbayeva and Ilgar Tavshanov
Eng 2025, 6(10), 265; https://doi.org/10.3390/eng6100265 (registering DOI) - 4 Oct 2025
Abstract
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and [...] Read more.
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and kinematic conditions. Tensile testing demonstrated that, relative to the unrolled condition (σ0.2 ≈ 269 MPa; σᵤ ≈ 494 MPa), the classical route increased yield and ultimate strengths to ~444 MPa and ~584 MPa, respectively, whereas the modified scheme yielded comparable values (~433 MPa and ~572 MPa) while providing superior ductility (δ ≈ 26.8%, ψ ≈ 68.6%). Vickers microhardness decreased systematically from 244 HV (unrolled) to 213 HV (classical) and 184 HV (modified), with the modified scheme exhibiting the lowest scatter (±4.8 HV), confirming enhanced structural uniformity. Scanning electron microscopy revealed ferrite–pearlite refinement under both rolling sequences, with the modified scheme producing finer equiaxed ferrite grains (~3–5 µm) and attenuated longitudinal banding. These features are indicative of shear-assisted dynamic recrystallization, activated by the inclined oval calibers. The findings highlight that the modified rolling strategy achieves a favorable strength–ductility balance and improved homogeneity, suggesting its applicability for advanced thermomechanical processing of low-alloy steels. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

17 pages, 5074 KB  
Article
Dynamic Recrystallization and Microstructural Evolution During Hot Deformation of Al-Cu-Mg Alloy
by Fangyan He, Xiaolan Wu, Zhizheng Rong, Xueqin Zhang, Xiangyuan Xiong, Shengping Wen, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(10), 1100; https://doi.org/10.3390/met15101100 - 1 Oct 2025
Abstract
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing [...] Read more.
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing maps were established to predict the flow behavior of the alloy. The hot deformation mechanisms were investigated through microstructural characterization using inverse pole figure (IPF), grain boundary (GB), and grain orientation spread (GOS) analysis. The results demonstrate that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur during hot deformation. At high lnZ values (high strain rates and low deformation temperatures), discontinuous dynamic recrystallization (DDRX) dominates. Under middle lnZ conditions (low strain rate or high deformation temperature), both continuous dynamic recrystallization (CDRX) and DDRX are the primary mechanisms. Conversely, at low lnZ values (low strain rates and high temperatures), CDRX and geometric dynamic recrystallization (GDRX) become predominant. The DRX process in the Al-Cu-Mg alloy is controlled by the deformation temperature and strain rate. Full article
Show Figures

Figure 1

20 pages, 14676 KB  
Article
Optimal and Model Predictive Control of Single Phase Natural Circulation in a Rectangular Closed Loop
by Aitazaz Hassan, Guilherme Ozorio Cassol, Syed Abuzar Bacha and Stevan Dubljevic
Sustainability 2025, 17(19), 8807; https://doi.org/10.3390/su17198807 - 1 Oct 2025
Abstract
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors [...] Read more.
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors such as process engineering, oil and gas, geothermal energy, solar water heaters, fertilizers, etc. Natural Circulation Loops eliminate the need for mechanical pumps. While this passive mechanism reduces energy consumption and maintenance costs, maintaining stability and efficiency under varying operating conditions remains a challenge. This study investigates thermo-syphoning in a rectangular closed-loop system and develops optimal control strategies like using a Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) to ensure stable and efficient heat removal while explicitly addressing physical constraints. The results demonstrate that MPC improves system stability and reduces energy usage through optimized control actions by nearly one-third in the initial energy requirement. Compared to the LQR and unconstrained MPC, MPC with active constraints effectively manages input limitations, ensuring safer and more practical operation. With its predictive capability and adaptability, the proposed MPC framework offers a robust, scalable solution for real-time industrial applications, supporting the development of sustainable and adaptive natural circulation pipeline systems. Full article
Show Figures

Figure 1

18 pages, 2673 KB  
Article
Thermo-Mechanical Approach to Material Extrusion Process During Fused Filament Fabrication of Polymeric Samples
by Mahmoud M. Farh and Viktor Gribniak
Materials 2025, 18(19), 4537; https://doi.org/10.3390/ma18194537 - 29 Sep 2025
Abstract
While material extrusion via fused filament fabrication (FFF) offers design flexibility and rapid prototyping, its practical use in engineering is limited by mechanical challenges, including residual stresses, geometric distortions, and potential interlayer debonding. These issues arise from the dynamic thermal profiles during FFF, [...] Read more.
While material extrusion via fused filament fabrication (FFF) offers design flexibility and rapid prototyping, its practical use in engineering is limited by mechanical challenges, including residual stresses, geometric distortions, and potential interlayer debonding. These issues arise from the dynamic thermal profiles during FFF, including temperature gradients, non-uniform hardening, and rapid thermal cycling, which lead to uneven internal stress development depending on fabrication parameters and object topology. These problems can compromise the structural integrity and mechanical properties of FFF parts, especially when the load-bearing capacity and geometric accuracy are critical. This study focuses on polylactic acid (PLA) due to its widespread application in engineering. It introduces a computational framework for coupled thermo-mechanical simulations of the FFF process using ABAQUS (Version 2020) finite element software. A key innovation is an automated subroutine that converts G-code into a time-resolved event series for finite element activation. The simulation framework explicitly models the sequential stages of printing, cooling, and detachment, enabling prediction of adhesive loss and post-process warpage. A transient thermal model evaluates the temperature distribution during FFF, providing boundary conditions for a mechanical simulation that predicts residual stresses and warping. Uniquely, the proposed model incorporates the detachment stage, enabling a more realistic and experimentally validated prediction of warpage and residual stress release in FFF-fabricated components. Although the average deviation between predicted and measured displacements is about 10.6%, the simulation adequately reflects the spatial distribution and magnitude of warpage, confirming its practical usefulness for process optimization and design validation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

22 pages, 9045 KB  
Article
Weld Power, Heat Generation and Microstructure in FSW and SFSW of 11Cr-1.6W-1.6Ni Martensitic Stainless Steel: The Impact of Tool Rotation Rate
by Mohamed Ragab, Naser Alsaleh, Mohamed M. El-Sayed Seleman, Mohamed M. Z. Ahmed, Sabbah Ataya and Yousef G. Y. Elshaghoul
Crystals 2025, 15(10), 845; https://doi.org/10.3390/cryst15100845 - 28 Sep 2025
Abstract
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless [...] Read more.
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless Steel. Weld power and HG were determined by measuring plunge force and tool torque at various tool rotation rates (350–550 rpm). Additionally, the PAG size and microstructural phases in the base metal (BM), thermo-mechanically affected zone (TMAZ), and stir zone (SZ) were examined using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). The results indicated that the SFSW of martensitic steel required a plunge force twice that of the FSW process, along with greater weld power. The heat generated during SFSW was 130% higher than in FSW at 550 rpm. Despite this, the peak temperatures in the SZ were lower in SFSW as a result of the surrounding water’s high heat absorption. This difference in thermal behavior significantly affected the microstructure. While FSW resulted in a complete phase transformation to fine PAG, SFSW showed only minimal or partial transformation and a higher strain rate. Consequently, the SZ and TMAZ in SFSW exhibited a higher hardness than in FSW. Full article
Show Figures

Figure 1

16 pages, 20370 KB  
Article
High Resolution Synthetic Aperture Radar Based on Multiple Reflectarray Apertures
by Min Zhou, Pasquale G. Nicolaci, David Marote, Javier Herreros, Niels Vesterdal, Michael F. Palvig, Stig B. Sørensen and Giovanni Toso
Electronics 2025, 14(19), 3832; https://doi.org/10.3390/electronics14193832 - 27 Sep 2025
Abstract
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration [...] Read more.
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration intended for a high-resolution, wide-swath SAR instrument. At the core of the system is a 1.5 m × 0.55 m reflectarray operating between 35.5–36.0 GHz in the Ka-band. To our knowledge, this is the first demonstration of a reflectarray antenna designed to support two distinct modes of operation, exploiting the inherent advantages of reflectarrays—such as reduced cost and compact stowage—over traditional solutions. The antenna provides a high-resolution mode requiring a higher-gain beam in one polarization and a low-resolution mode covering a larger swath with broader beam coverage in the orthogonal polarization. The design process follows a holistic, multidisciplinary approach, integrating RF and thermomechanical considerations through iterative and concurrent design reviews. The BBM has been successfully manufactured and experimentally tested, and the measurement results show good agreement with simulations, confirming the validity of the proposed concept and demonstrating its potential for future high-performance SAR missions. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

20 pages, 5035 KB  
Article
Effect of Small Deformations on Optimisation of Final Crystallographic Texture and Microstructure in Non-Oriented FeSi Steels
by Ivan Petrišinec, Marcela Motýľová, František Kováč, Ladislav Falat, Viktor Puchý, Mária Podobová and František Kromka
Crystals 2025, 15(10), 839; https://doi.org/10.3390/cryst15100839 - 26 Sep 2025
Abstract
Improving the isotropic magnetic properties of FeSi electrical steels has traditionally focused on enhancing their crystallographic texture and microstructural morphology. Strengthening the cube texture within a ferritic matrix of optimal grain size is known to reduce core losses and increase magnetic induction. However, [...] Read more.
Improving the isotropic magnetic properties of FeSi electrical steels has traditionally focused on enhancing their crystallographic texture and microstructural morphology. Strengthening the cube texture within a ferritic matrix of optimal grain size is known to reduce core losses and increase magnetic induction. However, conventional cold rolling followed by annealing remains insufficient to optimise the magnetic performance of thin FeSi strips fully. This study explores an alternative approach based on grain boundary migration driven by temperature gradients combined with deformation gradients, either across the sheet thickness or between neighbouring grains, in thin, weakly deformed non-oriented (NO) electrical steel sheets. The concept relies on deformation-induced grain growth supported by rapid heat transport to promote the preferential formation of coarse grains with favourable orientations. Experimental material consisted of vacuum-degassed FeSi steel with low silicon content. Controlled deformation was introduced by temper rolling at room temperature with 2–40% thickness reductions, followed by rapid recrystallisation annealing at 950 °C. Microstructure, texture, and residual strain distributions were analysed using inverse pole figure (IPF) maps, kernel average misorientation (KAM) maps, and orientation distribution function (ODF) sections derived from electron backscattered diffraction (EBSD) data. This combined thermomechanical treatment produced coarse-grained microstructures with an enhanced cube texture component, reducing coercivity from 162 A/m to 65 A/m. These results demonstrate that temper rolling combined with dynamic annealing can surpass the limitations of conventional processing routes for NO FeSi steels. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys (2nd Edition))
Show Figures

Figure 1

27 pages, 2979 KB  
Review
Review of EDM-Based Machining of Nickel–Titanium Shape Memory Alloys
by Sujeet Kumar Chaubey and Kapil Gupta
Quantum Beam Sci. 2025, 9(4), 28; https://doi.org/10.3390/qubs9040028 - 26 Sep 2025
Abstract
Shape memory alloy (SMA) materials are valued for their shape memory effect, superelasticity, and biocompatibility, making them an ideal choice for applications in biomedical, aerospace, and actuator fields. Nickel–titanium (NiTi) SMA is a promising biomedical material. It is widely used in the manufacture [...] Read more.
Shape memory alloy (SMA) materials are valued for their shape memory effect, superelasticity, and biocompatibility, making them an ideal choice for applications in biomedical, aerospace, and actuator fields. Nickel–titanium (NiTi) SMA is a promising biomedical material. It is widely used in the manufacture of biomedical instruments, devices, implants, and surgical tools. However, its complex thermo-mechanical behavior and poor machinability pose challenges for conventional machining. To manufacture high-quality nitinol parts, traditional machining processes are being replaced by advanced machining technologies. Electric discharge machining (EDM) is an advanced machining technique whose mechanism of material removal involves erosion caused by plasma formation and spark generation. It has proven effective for processing difficult-to-machine materials. This review summarizes EDM and its variants, including hybrid EDM, with a focus on machining NiTi-SMA materials for biomedical, aerospace, microelectromechanical systems, and automotive applications, and systematically explores key factors such as process parameters, material removal mechanisms, surface integrity, tool wear, and optimization strategies. This review begins with an introduction to nitinol (i.e., NiTi-SMA) and its variants, followed by an in-depth discussion of plasma formation, spark generation mechanisms, and other key aspects of EDM. It then provides a detailed analysis of notable past research on the machining of NiTi SMA materials using EDM and its variants. This paper concludes with insights into future research directions, aiming to advance EDM-based machining of SMA materials and serve as a valuable resource for researchers and engineers in the field. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

16 pages, 6331 KB  
Article
Microstructural Analysis of Hot-Compressed Mg-Nd-Zr-Ca Alloy with Low Rare-Earth Content
by Yiquan Li, Bingchun Jiang, Rui Yang, Lei Jing and Liwei Lu
Materials 2025, 18(19), 4490; https://doi.org/10.3390/ma18194490 - 26 Sep 2025
Abstract
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze [...] Read more.
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze slip systems, twinning mechanisms, dynamic recrystallization (DRX), and precipitate phases in the hot-compressed alloy. The results demonstrated that the equivalent strain distribution within compressed specimens exhibits heterogeneity, with a larger equivalent strain in the core. After thermal compression, the original microscopic structure formed a necklace-like structure. The primary DRX mechanisms comprise continuous dynamic recrystallization (CDRX), twin-induced dynamic recrystallization (TDRX), and particle-stimulated nucleation (PSN). Pyramidal slip and recrystallization constitute primary contributors to peak texture weakening and tilting. Mg41Nd5 and α-Zr phases enhanced dislocation density by impeding dislocation motion and promoting cross-slip activation. Hot compression provided the necessary thermal activation energy and stress conditions for solute atom diffusion and clustering, triggering dynamic precipitation of Mg41Nd5 phases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 4987 KB  
Article
Development and Characterization of Sustainable Biocomposites from Wood Fibers, Spent Coffee Grounds, and Ammonium Lignosulfonate
by Viktor Savov, Petar Antov, Alexsandrina Kostadinova-Slaveva, Jansu Yusein, Viktoria Dudeva, Ekaterina Todorova and Stoyko Petrin
Polymers 2025, 17(19), 2589; https://doi.org/10.3390/polym17192589 - 24 Sep 2025
Viewed by 23
Abstract
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% [...] Read more.
Coffee processing generates large volumes of spent coffee grounds (SCGs), which contain 30–40% hemicellulose, 8.6–13.3% cellulose, and 25–33% lignin, making them a promising lignin-rich filler for biocomposites. Conventional wood composites rely on urea-formaldehyde (UF), melamine–urea–formaldehyde (MUF), and phenol–formaldehyde resins (PF), which dominate 95% of the market. Although formaldehyde emissions from these resins can be mitigated through strict hygiene standards and technological measures, concerns remain due to their classification as category 1B carcinogens under EU regulations. In this study, fiber-based biocomposites were fabricated from thermomechanical wood fibers, SCGs, and ammonium lignosulfonate (ALS). SCGs and ALS were mixed in a 1:1 ratio and incorporated at 40–75% of the oven-dry fiber mass. Hot pressing was performed at 150 °C under 1.1–1.8 MPa to produce panels with a nominal density of 750 kg m−3, and we subsequently tested them for their physical properties (density, water absorption (WA), and thickness swelling (TS)), mechanical properties (modulus of elasticity (MOE), modulus of rupture (MOR), and internal bond (IB) strength), and thermal behavior and biodegradation performance. A binder content of 50% yielded MOE ≈ 2707 N mm−2 and MOR ≈ 22.6 N mm−2, comparable to UF-bonded medium-density fiberboards (MDFs) for dry-use applications. Higher binder contents resulted in reduced strength and increased WA values. Thermogravimetric analysis (TGA/DTG) revealed an inorganic residue of 2.9–8.5% and slower burning compared to the UF-bonded panels. These results demonstrate that SCGs and ALS can be co-utilized as a renewable, formaldehyde-free adhesive system for manufacturing wood fiber composites, achieving adequate performance for value-added practical applications while advancing sustainable material development. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 6933 KB  
Article
Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste
by Nadka Tz. Dintcheva, Giulia Infurna, Cristina Scolaro, Erika Alessia Di Liberto, Mariem Ltayef and Annamaria Visco
Polymers 2025, 17(19), 2577; https://doi.org/10.3390/polym17192577 - 24 Sep 2025
Viewed by 126
Abstract
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF [...] Read more.
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF composite during processing cycles. Typically, thermomechanical degradation induces radical formation and branching of the macromolecular chain in PBS. Furthermore, PBS becomes less hydrophilic (by 53%, reaching 84°, approaching the 90° threshold), and its surface roughness increases by about 38% after five processing cycles. BSGF increases the viscosity of the melt, especially at low frequencies, and stabilizes the melt in the PBS/BSGF, which has lower torque variations during processing compared to pure PBS. Furthermore, BSGF in r-PBS/BSGF increases both hydrophilicity (by about 15%, from 75° to 64°) and surface roughness (by about 17%) after five processing cycles of the solid bio-composite and limits the formation of carboxylic groups during thermomechanical degradation. PBS is recyclable five times because it maintains its properties unchanged during extrusion cycles. At least two reprocessing steps are required for PBS/BSGF to obtain an optimal dispersion of BSGF, which can be re-extruded approximately three times. PBS/BSGF after four and five extrusion steps shows increased rigidity (Et PBS/BSGF > Et PBS) and reduced ductility (εb PBS/BSGF < εbt PBS), which could limit the recyclability of the PBS-based composite. Full article
Show Figures

Graphical abstract

16 pages, 3998 KB  
Article
In-Process Recycling of 35% Glass Fiber-Reinforced Polyamide 6,6 Runners: Effects on Thermomechanical Properties and Viability for Diesel Injector Socket Production
by Elif Sahiner and Yasin Altin
Polymers 2025, 17(19), 2569; https://doi.org/10.3390/polym17192569 - 23 Sep 2025
Viewed by 94
Abstract
Significant pre-consumer waste in the form of runners is generated during the injection molding of high-performance automotive components, representing both a substantial economic loss and an environmental burden. This study therefore comprehensively evaluated the mechanical recycling of pre-consumer 35% glass fiber-reinforced Polyamide 6,6 [...] Read more.
Significant pre-consumer waste in the form of runners is generated during the injection molding of high-performance automotive components, representing both a substantial economic loss and an environmental burden. This study therefore comprehensively evaluated the mechanical recycling of pre-consumer 35% glass fiber-reinforced Polyamide 6,6 (%35GF-PA66) runners for in-process reuse in diesel injector socket production. The effects of blending recycled polymer (RP) at 2.5%, 5%, 10%, and 15% by weight and up to 10 recycling cycles with 15 wt.% RP on the thermal, mechanical, and morphological properties were investigated. Tensile strength slightly decreased (~3% at 10% RP) compared to virgin material, while elongation at break increased with higher RP content. Multiple recycling cycles had minimal impact on tensile strength, and the heat deflection temperature (HDT) remained nearly constant (~0.7 °C variation after 10 cycles, within experimental uncertainty). The melt flow index (MFI) increased significantly with successive recycling cycles, indicating molecular weight reduction due to thermomechanical degradation. DSC analysis confirmed stable melting and crystallization temperatures (variation < 1 °C), suggesting preserved crystalline structure. SEM analysis revealed increased void formation at the fiber–matrix interface and fiber attrition with successive recycling, correlating with reduced flexural properties. In-process recycling of %35GF-PA66 runners is viable, particularly at ≤15% RP and fewer cycles, offering significant cost savings (e.g., ~EUR 344,000 annually for a large producer) and environmental benefits. Full article
Show Figures

Figure 1

16 pages, 1918 KB  
Article
Repeated Thermomechanical Recycling of Polypropylene-Organosheets to Injection-Moulded Glass-Fibre-Reinforced Composites
by Barbara Liedl, Thomas Höftberger, Gernot Zitzenbacher and Christoph Burgstaller
Polymers 2025, 17(18), 2528; https://doi.org/10.3390/polym17182528 - 18 Sep 2025
Viewed by 240
Abstract
Continuous-fibre-reinforced thermoplastics are attractive materials for industries to cut down on weight in structural components. Recycling these parts or trims generated during production is difficult due to the reduced properties in materials intended for high-performance applications. Our study investigates the recyclability of short-fibre-reinforced [...] Read more.
Continuous-fibre-reinforced thermoplastics are attractive materials for industries to cut down on weight in structural components. Recycling these parts or trims generated during production is difficult due to the reduced properties in materials intended for high-performance applications. Our study investigates the recyclability of short-fibre-reinforced compounds made from shredded organosheets. The fibre share was varied by the addition of virgin polypropylene, and three recycling rounds via a reduced injection-moulding process and a full thermomechanical recycling process including a compounding step were compared. Organosheet cuttings were found to be able to be applied as a short-glass-fibre source for the production of composites with varying fibre shares. Up to 14,000 MPa of elastic modulus and 80 MPa of tensile strength could be achieved at a fibre content of 45 vol%. Fibre length was reduced with progressive processing, less so for lower fibre shares, and in the reduced process without the shear and stress of the compounding step. Fibres from organosheets might be present in bundles and disperse in the matrix with progressive processing, which is particularly the case without compounding processes and can also influence the mechanical properties. Full article
Show Figures

Graphical abstract

16 pages, 11041 KB  
Article
Comparative Study of Cement Composites Reinforced with Cellulose and Lignocellulose Fibers
by Piotr Turoboś and Piotr Przybysz
Fibers 2025, 13(9), 128; https://doi.org/10.3390/fib13090128 - 17 Sep 2025
Viewed by 344
Abstract
The urgent need to decarbonize the construction sector has prompted research into sustainable alternatives to conventional concrete. This study compares two industrially produced pulps with contrasting lignin contents: a bleached kraft cellulose pulp with near-zero lignin used in paper production and a thermo-mechanical [...] Read more.
The urgent need to decarbonize the construction sector has prompted research into sustainable alternatives to conventional concrete. This study compares two industrially produced pulps with contrasting lignin contents: a bleached kraft cellulose pulp with near-zero lignin used in paper production and a thermo-mechanical lignocellulose pulp with high lignin content used in MDF production. Fiber-reinforced composites were produced by partially replacing mineral aggregates with fibers at dosages from 0.1% to 3% by mass and air-curing to simulate practical curing conditions. The specimens were evaluated for density, water absorption, and compressive strength, with compressive strength measured at 7, 28, and 60 days. Results showed a reduction in density for both fiber types, along with increased water absorption and decreased compressive strength at higher fiber contents. Cellulose composites achieved a more favorable mechanical performance than lignocellulose composites but showed markedly higher water absorption, raising concerns about long-term durability. By testing two pulps that differ primarily in lignin content across multiple replacement ratios, the study provides a systematic comparison of their effects on composite properties. The comparison explicitly contrasts the lignin contents of the two industrial pulps—bleached kraft (~0.1%) versus thermo-mechanical (27.4%)—to isolate lignin-driven effects on hydration and property development. A practical air-curing protocol was adopted, leveraging fiber-bound/process water, thereby reflecting use cases where external water curing is constrained. Full article
Show Figures

Figure 1

21 pages, 9815 KB  
Article
Influence of Previous Turning on the Surface Integrity Stability of Diamond-Burnished Medium-Carbon Steel
by Jordan Maximov, Galya Duncheva, Kalin Anastasov, Mariana Ichkova and Petya Daskalova
Machines 2025, 13(9), 864; https://doi.org/10.3390/machines13090864 - 17 Sep 2025
Viewed by 230
Abstract
There is a lack of information in the literature on the influence of technological heredity on surface integrity characteristics after diamond burnishing (DB). The present study fills this gap. Here, we present the effects of DB on the roughness parameters and surface microhardness [...] Read more.
There is a lack of information in the literature on the influence of technological heredity on surface integrity characteristics after diamond burnishing (DB). The present study fills this gap. Here, we present the effects of DB on the roughness parameters and surface microhardness of heat-treated C45 steel under conditions of changing initial roughness (Rainit) due to wear on the cutting insert in the previous turning. The aim was to quantitatively assess the ability of DB to maintain sustainable surface integrity characteristics. We found that the service life of the cutting insert up to complete wear or fracture when operating at an optimal feed rate and cutting velocity was 163 min, at which point the roughness changed unevenly from an average roughness (Ra) value of 0.38 to 1.31 μm and an average height of the profile microroughness (Rz) value of 2.21 to 6.13 μm. Under conditions of an artificially created Rainit (through different combinations of feed rate and cutting velocity) of 0.308 to 10.688 μm, DB provided Ra values in the range of 0.042 to 0.316 μm, with the surface microhardness varying from 461 to 568 HV. Stable Ra values were maintained from 0.042 μm to 0.089 μm, after which the Rainit increased to 3.379 μm. Under production conditions, where the previous turning was performed at an optimal feed rate of 0.05 mm/rev and a cutting velocity of 180 m/min, DB provided a stable Ra of ≤0.059 μm of a resulting mirror-like surface during the first 90 min of operation of a new (unused) cutting insert, after which the Ra values increased linearly from 0.059 to 0.133 μm in the 150th minute. After 30 min of operation, until the cutting insert was completely worn, the microhardness after DB varied from 676 to 795 HV, the high surface microhardness resulting from a complex process of surface thermo-mechanical strengthening (including strain and transformation hardening) in the previous turning due to wear on the cutting insert. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

Back to TopTop