Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = thermo-anemometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1181 KB  
Article
Modeling of the Mutual Placement of Thermoanemometer Sensors on a Flat Surface of an Air Flow
by Taras Dmytriv, Vasyl Dmytriv and Michał Bembenek
Processes 2025, 13(9), 2906; https://doi.org/10.3390/pr13092906 - 11 Sep 2025
Viewed by 339
Abstract
A functional model of a thermoanemometer measuring the air flow velocity on a flat wall surface of the flow has been developed. From the heat balance equation of the sensing elements in the thermoanemometer, a dependence has been derived for determining the heating [...] Read more.
A functional model of a thermoanemometer measuring the air flow velocity on a flat wall surface of the flow has been developed. From the heat balance equation of the sensing elements in the thermoanemometer, a dependence has been derived for determining the heating temperature of the sensing elements. The distribution of the temperature field in the boundary layer was modeled by analogy with the velocity distribution, following a cubic dependence. The distribution of the temperature field on a flat wall surface of the flow from the heating of the sensing elements was obtained analytically by solving the heat conduction equation in the direction of the coordinate of the air flow velocity vector for the boundary conditions of the II as well as II and III kinds. The developed mathematical dependencies enable both the modeling of the distribution of temperature fields in the sensing elements and justifying the distance between them. The reliability of measurements of the air flow velocity on the wall surface of the flow depends on the impossibility of influencing the temperature of one sensing element of the sensor on the temperature of the other. The task of justifying the distance between the sensing elements of the sensor, which are located in the direction of the air flow velocity vector, aims to prevent the interaction of the temperature fields of the elements with each other. The boundary condition is that at the boundary of separation between the temperature fields of the sensing elements, there is a temperature that is 5 to 10% lower than the temperature of the colder sensing element. The ratio of the resistances of the sensing elements is 4/1. The power released by the first sensing element of the sensor, aligned along the air flow velocity vector, is 4 times lower than the heating power of the second sensing element of the sensor. The modeling was carried out at an air flow velocity within 30 and 330 m·s−1. The values of the distances between the sensing elements of the thermal anemometer vary with the supply voltage. The material of the sensing elements is nickel. The contact area of the surface of the sensing elements was 214.337 mm2. Full article
(This article belongs to the Special Issue Fluid Dynamics and Thermodynamic Studies in Gas Turbine)
Show Figures

Figure 1

20 pages, 19291 KB  
Article
New Model for Weather Stations Integrated to Intelligent Meteorological Forecasts in Brasilia
by Thomas Alexandre da Silva, Andre L. M. Serrano, Erick R. C. Figueiredo, Geraldo P. Rocha Filho, Fábio L. L. de Mendonça, Rodolfo I. Meneguette and Vinícius P. Gonçalves
Sensors 2025, 25(11), 3432; https://doi.org/10.3390/s25113432 - 29 May 2025
Viewed by 1702
Abstract
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It [...] Read more.
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It includes a BME688, AS7331, VEML7700, AS3935 for thermo-hygro-barometry (plus air quality), ultraviolet irradiance, luximetry, and fulminology, besides having a rainfall gauge and an anemometer. Powered by photovoltaic panels and batteries, it operates uninterruptedly under variable weather conditions, with data collected being sent via WiFi to a Web API that adapts the MZDN-HF (Meteorological Zone Delimited Neural Network–Hourly Forecaster) model compilation for Brasilia to produce accurate 24 h multivariate forecasts, which were evaluated through MAE, RMSE, and R2 metrics. Installed at the University of Brasilia, it demonstrates robust hardware performance and strong correlation with INMET’s A001 data, suitable for climate monitoring, precision agriculture, and environmental research. Full article
Show Figures

Figure 1

22 pages, 6345 KB  
Article
The Efficacy of Protective Nets Against Drosophila suzukii: The Effect of Temperature, Airflow, and Pest Morphology
by Antonio J. Álvarez, Rocío M. Oliva and Jaime Martínez-Valderrama
Insects 2025, 16(3), 253; https://doi.org/10.3390/insects16030253 - 1 Mar 2025
Cited by 1 | Viewed by 1576
Abstract
Drosophila suzukii is an invasive pest that poses a significant threat to fruit crops worldwide, leading to considerable agricultural losses and economic damage. Unlike chemical control measures against D. suzukii, integrating insect-proof nets within an IPM framework offers a more sustainable solution. [...] Read more.
Drosophila suzukii is an invasive pest that poses a significant threat to fruit crops worldwide, leading to considerable agricultural losses and economic damage. Unlike chemical control measures against D. suzukii, integrating insect-proof nets within an IPM framework offers a more sustainable solution. This study evaluates the efficacy of nine commercial protective nets against this pest, focusing on determining optimal hole dimensions based on the effects of airflow velocity, temperature, and pest morphometry on net performance. To simulate field conditions in the laboratory, we developed a tubular device divided into three chambers with the tested net placed between the two, incorporating a fan to generate airflow and a thermo-anemometer. Our results confirm that higher air velocities and elevated temperatures reduce net efficacy. Additionally, morphometric analyses of lab-reared flies revealed significant sexual dimorphism and a strong temperature–size relationship, with flies reared at lower temperatures being consistently larger, an aspect that also affects net effectiveness. These findings highlight the importance of considering both abiotic factors and pest morphology when evaluating protective screens, challenging the assumption that exclusion net efficacy remains constant. Some tested nets proved completely effective against SWD, supporting their use as a preventive measure in IPM programs. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

19 pages, 3804 KB  
Article
Assessment of Wind Energy Potential Generated by Vehicles: A Case Study in Mexico
by Luis Alfonso Moreno-Pacheco, Leopoldo José Luis Sánchez-Hueto, Juan Gabriel Barbosa-Saldaña, José Martínez-Trinidad, Miguel Toledo-Velázquez and Ricardo Andrés García-León
Designs 2024, 8(6), 126; https://doi.org/10.3390/designs8060126 - 26 Nov 2024
Cited by 2 | Viewed by 2851
Abstract
This research focuses on analyzing the aerodynamic characteristics of residual air currents generated by vehicle movement and evaluating their feasibility for energy generation, then designing a vertical axis wind turbine. The parameters assessed include the characteristic velocity profile, the average and maximum velocities, [...] Read more.
This research focuses on analyzing the aerodynamic characteristics of residual air currents generated by vehicle movement and evaluating their feasibility for energy generation, then designing a vertical axis wind turbine. The parameters assessed include the characteristic velocity profile, the average and maximum velocities, disturbance lifetimes, as well as the frequency and probability of recurrence of these disturbances. Using the data, projections are made on the electrical energy amount that can be produced by a wind turbine operating under such wind conditions. Measurements were taken at four locations: three within Mexico City (CDMX) and one on the outskirts. The measurement station, consisting of a 2.35 m vertical tower equipped with eight vertically aligned thermos-resistive anemometers, is installed on medians less than 0.50 m from moving vehicles. The data from within CDMX show maximum wind velocities ranging from 6 to 8 m/s at ground level, while measurements on the outskirts record velocities of up to 19.5 m/s. A probabilistic analysis reveals that usable air currents could be present 58% of the time. Based on electrical production calculations, it is estimated that harnessing this residual energy could power approximately 4500 homes, considering the national cost per kWh and the average electricity consumption of a four-person household. Full article
(This article belongs to the Topic Building Energy and Environment, 2nd Edition)
Show Figures

Figure 1

20 pages, 8318 KB  
Article
Analysis of Anthropogenic Waste Heat Emission from an Academic Data Center
by Weijian Ding, Behzad Ebrahimi, Byoung-Do Kim, Connie L. Devenport and Amy E. Childress
Energies 2024, 17(8), 1835; https://doi.org/10.3390/en17081835 - 11 Apr 2024
Cited by 1 | Viewed by 3023
Abstract
The rapid growth in computing and data transmission has significant energy and environmental implications. While there is considerable interest in waste heat emission and reuse in commercial data centers, opportunities in academic data centers remain largely unexplored. In this study, real-time onsite waste [...] Read more.
The rapid growth in computing and data transmission has significant energy and environmental implications. While there is considerable interest in waste heat emission and reuse in commercial data centers, opportunities in academic data centers remain largely unexplored. In this study, real-time onsite waste heat data were collected from a typical academic data center and an analysis framework was developed to determine the quality and quantity of waste heat that can be contained for reuse. In the absence of a comprehensive computer room monitoring system, real-time thermal data were collected from the data center using two arrays of thermometers and thermo-anemometers in the server room. Additionally, a computational fluid dynamics model was used to simulate temperature distribution and identify “hot spots” in the server room. By simulating modification of the server room with a hot air containment system, the return air temperature increased from 23 to 46 °C and the annual waste heat energy increased from 377 to 2004 MWh. Our study emphasizes the importance of containing waste heat so that it can be available for reuse, and also, that reusing the waste heat has value in not releasing it to the environment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 4650 KB  
Article
Airflow Fluctuation from Linear Diffusers in an Office Building: The Thermal Comfort Analysis
by Marek Borowski, Rafał Łuczak, Joanna Halibart, Klaudia Zwolińska and Michał Karch
Energies 2021, 14(16), 4808; https://doi.org/10.3390/en14164808 - 6 Aug 2021
Cited by 7 | Viewed by 3304
Abstract
In buildings, the HVAC systems are responsible for a major part of the energy consumption. Incorrect design or selection of the system and improper installation, operation, and maintenance of the systems’ elements may result in increased energy consumption. It is worth remembering that [...] Read more.
In buildings, the HVAC systems are responsible for a major part of the energy consumption. Incorrect design or selection of the system and improper installation, operation, and maintenance of the systems’ elements may result in increased energy consumption. It is worth remembering that the main aim of the appropriate system is to maintain the high quality of the indoor environment. Appropriate selection of the HVAC solution ensures both thermal and quality parameters of the air, independently of the internal and external heat loads. The microclimate of a room is affected not only by air temperature, humidity, and purity, but also by air velocity in the occupied zone. The proper air velocity distribution prevents discomfort, particularly at workstations. Based on the measurements in the office building, an analysis of velocity profiles of air supplying two different types of linear diffusers was carried out. The analysis was made based on the results of measurements performed with thermoanemometers in the actual facility. During the study, temperature of the supply air was lower that the air in the room. Analysis was focused on the airflow fluctuation and its impact on the users’ comfort. This is an obvious topic but extremely rarely mentioned in publications related to air diffusers. The results show the importance of air fluctuation and its influence on the users’ comfort. During the measurements, the instantaneous air velocity for one of the analyzed types of the diffuser was up to 0.34 m/s, while the average value from the period of 240 s for the same measuring point was relatively low: it was 0.19 m/s. Only including the airflow variability over time allowed for choosing the type of diffuser, which ensures the comfort of users. The measurements carried out for two linear diffusers showed differences in the operation of these diffusers. The velocity in the occupied zone was much higher for one type (0.36 m/s, 3.00 m from diffusers) than for another one (0.22 m/s, 5.00 m from diffusers). The improper selection of the diffuser’s type and its location may increase the risk of the draft in the occupied zone. Full article
Show Figures

Figure 1

20 pages, 7062 KB  
Article
On the Procedure of Draught Rate Assessment in Indoor Spaces
by Detelin Markov, Nikolay Ivanov, George Pichurov, Marina Zasimova, Peter Stankov, Evgueni Smirnov, Iskra Simova, Vladimir Ris, Radostina A. Angelova and Rositsa Velichkova
Appl. Sci. 2020, 10(15), 5036; https://doi.org/10.3390/app10155036 - 22 Jul 2020
Cited by 11 | Viewed by 3822
Abstract
The objective of the paper is to demonstrate the importance of the unsteady Computational Fluid Dynamics (CFD) simulations and long-term measurements for the reliable assessment of thermal comfort indoors, for proper categorization of the indoor thermal environment and for identifying the reasons for [...] Read more.
The objective of the paper is to demonstrate the importance of the unsteady Computational Fluid Dynamics (CFD) simulations and long-term measurements for the reliable assessment of thermal comfort indoors, for proper categorization of the indoor thermal environment and for identifying the reasons for complaints due to draught discomfort. Numerical simulations and experimental measurements were applied in combination to study ventilation in a field laboratory, a university classroom with a controlled indoor environment. Strong unsteadiness of the airflow was registered both in the unsteady RANS results and the real-scale long-term velocity data measured with thermo anemometer. Low-frequency high-amplitude velocity fluctuations observed lead to substantial time variation of the draught rate. In case of categorization of a thermal environment, the point measurements or steady-state RANS computations would lead to wrong conclusions as well as they cannot be used for identification of the reasons for people’s complaints due to draught discomfort if strong unsteadiness of the airflow exists. It is demonstrated that the length of the time interval for draught rate (DR) assessment may not be universal if low-frequency high-amplitude pulsations are present in the room airflow. Full article
Show Figures

Figure 1

14 pages, 2711 KB  
Article
VOC Removal Performance of a Joint Process Coupling Biofiltration and Membrane-Filtration Treating Food Industry Waste Gas
by Krystyna Lelicińska-Serafin, Anna Rolewicz-Kalińska and Piotr Manczarski
Int. J. Environ. Res. Public Health 2019, 16(17), 3009; https://doi.org/10.3390/ijerph16173009 - 21 Aug 2019
Cited by 18 | Viewed by 4520
Abstract
This study aimed to assess the efficiency of removal of volatile organic compounds (VOCs) from process gases from a food industry plant in East Poland, producing high-quality animal (goose, duck, and pig) and vegetable fats, using a two-stage method which is a combination [...] Read more.
This study aimed to assess the efficiency of removal of volatile organic compounds (VOCs) from process gases from a food industry plant in East Poland, producing high-quality animal (goose, duck, and pig) and vegetable fats, using a two-stage method which is a combination of biological purification and membrane-separation. The research, conducted on the semi-technical scale, compared the effects of traditional and two-stage biofiltration carried out under the same process conditions. The concentrations of VOCs in process gases were measured by means of a multi-gas detector. Additionally the temperature and humidity of gases were determined by a thermoanemometer under filter bed, following the EU and Polish National Standard Methods Two different types of filling materials (the mix of stumpwood chips and bark, and the mix of stumpwood chips, bark, and compost) and two types of membranes (three-layer semi-permeable membrane fabrics were used, with differences in air permeability and water tightness) were analyzed. During all processes basic operational parameters, the biofilters were controlled, including surface load, volumetric load, duration of gas contact with the filling layer, flow rate, and pressure drops (in the biofilter and on the membrane). The analyzed gases were characterized by very high variability of VOC concentrations (ranging from 350 ppb to 11,170 ppb). The effectiveness of VOC removal (REvoc) was calculated by comparing the analytical results of raw and purified gases. The effectiveness of VOC removal with the application of traditional biofiltration during the experiment varied between 82% to 97% and was related to different parameters of the filling materials (mainly specific surface and moisture), reaching lower value for the mix of stumpwood chips and bark filling. The obtained results showed that the application of membrane improved the efficiency of biofiltration in all the analysed cases from 7% to 9%. The highest effectiveness was obtained using the filter bed in the form of stumpwood chips, bark, and compost in connection with the more permeable membrane. It was maintained between 96% to 99%, reaching an average value of 98%. The selection of the membrane should be determined by its permeability and the values of flow resistance. Full article
(This article belongs to the Special Issue Fundamentals and Techniques for VOCs and Odor Control)
Show Figures

Graphical abstract

18 pages, 5636 KB  
Article
Surface Air Movement: An Important Contributor to Ventilation of Isolated Subsurface Structures?
by Thomas Neil McManus and Assed Haddad
Infrastructures 2019, 4(2), 23; https://doi.org/10.3390/infrastructures4020023 - 9 May 2019
Cited by 6 | Viewed by 5165
Abstract
This study reports on near-surface airspeed measured using a fast-responding thermoanemometer during an investigation of ventilation of an isolated subsurface structure induced by natural forces. Air speed changes continuously, rapidly, and unpredictably when assessed on the time base of one or two seconds. [...] Read more.
This study reports on near-surface airspeed measured using a fast-responding thermoanemometer during an investigation of ventilation of an isolated subsurface structure induced by natural forces. Air speed changes continuously, rapidly, and unpredictably when assessed on the time base of one or two seconds. Zero, the most common air speed, occurred in almost all tests throughout the year but especially during cool and cold months. The most probable non-zero air speed, 10.7 m/min (35 ft/min), occurred in all tests. This air speed is below the level of detection by the senses. The number of zero values and the height of the peak at 10.7 m/min follow a repetitive annual cycle. Isolated subsurface structures containing manhole covers share the characteristics of Helmholtz resonators. Grazing air flow across the opening to the exterior induces rotational air flow in the airspace of a Helmholtz resonator. Rotational flow in the airspace potentially influences the exchange of the confined atmosphere with the external one. Ventilation of the airspace occurs continuously and without cost and is potentially enhanced by the unique characteristics of the Helmholtz resonator excited by surface air movement. These results have immense importance and immediate applicability to worker safety. Full article
Show Figures

Graphical abstract

24 pages, 1541 KB  
Review
Enabling Smart Air Conditioning by Sensor Development: A Review
by Chin-Chi Cheng and Dasheng Lee
Sensors 2016, 16(12), 2028; https://doi.org/10.3390/s16122028 - 30 Nov 2016
Cited by 36 | Viewed by 12205
Abstract
The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal [...] Read more.
The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 1400 KB  
Article
A Mathematical Model of the Thermo-Anemometric Flowmeter
by Igor Korobiichuk, Olena Bezvesilna, Andriі Ilchenko, Valentina Shadura, Michał Nowicki and Roman Szewczyk
Sensors 2015, 15(9), 22899-22913; https://doi.org/10.3390/s150922899 - 11 Sep 2015
Cited by 36 | Viewed by 8628
Abstract
A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling [...] Read more.
A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop