Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = thermal dilatometric analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5814 KiB  
Article
Transformations in the Ti-6Al-4V Alloy Studied Using Dilatometry Supported by Acoustic Emission
by Małgorzata Łazarska, Janusz Musiał, Tomasz Tański and Zbigniew Ranachowski
Materials 2024, 17(24), 6260; https://doi.org/10.3390/ma17246260 - 21 Dec 2024
Cited by 1 | Viewed by 929
Abstract
This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with [...] Read more.
This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with an acoustic emission measurement apparatus and software enabling the assessment of sample dimensional changes during heating and cooling. The results were obtained in the form of dilatometric curves. Additionally, the occurrence of the transformation was confirmed by acoustic emission signals. In the study of the Ti-6Al-4V alloy, acoustic emission refers to the application of this non-destructive technique to monitor the alloy’s behavior during thermal processes. As the temperature increased, regardless of the heating rate, the α→β transformation was observed to occur after exceeding 900 °C. Within the transformation range, acoustic emission signals were recorded. Moreover, it was found that the applied research methods enabled the identification of signal components originating from the transformation. The application of acoustic methods in the analysis of phase transformations opens new possibilities for their use in industry. Full article
Show Figures

Figure 1

23 pages, 12047 KiB  
Article
Modeling of Yb:YAG Laser Beam Caustics and Thermal Phenomena in Laser–Arc Hybrid Welding Process with Phase Transformations in the Solid State
by Marcin Kubiak, Zbigniew Saternus, Tomasz Domański and Wiesława Piekarska
Materials 2024, 17(10), 2364; https://doi.org/10.3390/ma17102364 - 15 May 2024
Cited by 1 | Viewed by 1376
Abstract
This paper focuses on the mathematical and numerical modeling of the electric arc + laser beam welding (HLAW) process using an innovative model of the Yb:YAG laser heat source. Laser energy distribution is measured experimentally using a UFF100 analyzer. The results of experimental [...] Read more.
This paper focuses on the mathematical and numerical modeling of the electric arc + laser beam welding (HLAW) process using an innovative model of the Yb:YAG laser heat source. Laser energy distribution is measured experimentally using a UFF100 analyzer. The results of experimental research, including the beam profile and energetic characteristics of an electric arc, are used in the model. The laser beam description is based on geostatistical kriging interpolation, whereas the electric arc is modeled using Goldak’s distribution. Hybrid heat source models are used in numerical algorithms to analyze physical phenomena occurring in the laser–arc hybrid welding process. Thermal phenomena with fluid flow in the fusion zone (FZ) are described by continuum conservation equations. The kinetics of phase transformations in the solid state are determined using Johnson–Mehl–Avrami (JMA) and Koistinen–Marburger (KM) equations. A continuous cooling transformation (CCT) diagram is determined using interpolation functions and experimental research. An experimental dilatometric analysis for the chosen cooling rates is performed to define the start and final temperatures as well as the start and final times of phase transformations. Computer simulations of butt-welding of S355 steel are executed to describe temperature and melted material velocity profiles. The predicted FZ and heat-affected zone (HAZ) are compared to cross-sections of hybrid welded joints, performed using different laser beam focusing. The obtained results confirm the significant influence of the power distribution of the heat source and the laser beam focusing point on the temperature distribution and the characteristic zones of the joint. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

20 pages, 18132 KiB  
Article
Processing, Microstructure and Mechanical Properties of TiB2-MoSi2-C Ceramics
by Maria Sajdak, Kamil Kornaus, Dariusz Zientara, Norbert Moskała, Sebastian Komarek, Kinga Momot, Edmund Golis, Łukasz Zych and Agnieszka Gubernat
Crystals 2024, 14(3), 212; https://doi.org/10.3390/cryst14030212 - 23 Feb 2024
Cited by 6 | Viewed by 2373
Abstract
Titanium boride (TiB2) is a material classified as an ultra-high-temperature ceramic. The TiB2 structure is dominated by covalent bonds, which gives the materials based on TiB2 very good mechanical and thermal properties, making them difficult to sinter at the [...] Read more.
Titanium boride (TiB2) is a material classified as an ultra-high-temperature ceramic. The TiB2 structure is dominated by covalent bonds, which gives the materials based on TiB2 very good mechanical and thermal properties, making them difficult to sinter at the same time. Obtaining dense TiB2 polycrystals requires a chemical or physical sintering activation. Carbon and molybdenum disilicide (MoSi2) were chosen as sintering activation additives. Three series of samples were made, the first one with carbon additives: 0 to 4 wt.%; the second used 2.5, 5 and 10 wt.% MoSi2; and the third with both additions of 2 wt.% carbon and 2.5, 5 and 10 wt.% MoSi2. On the basis of the dilatometric sintering analysis, all additives were found to have a favourable effect on the sinterability of TiB2, and it was determined that sintering TiB2 with the addition of carbon can be carried at 2100 °C and with MoSi2 and both additives at 1800 °C. The polycrystals were sintered using the hot-pressing technique. On the basis of the studies conducted in this work, it was found that the addition of 1 wt.% of carbon allows single-phase TiB2 polycrystals of high density (>90%) to be obtained. The minimum MoSi2 addition, required to obtain dense sinters with a cermet-like microstructure, was 5 wt.%. High density was also achieved by the materials containing both additives. The samples with higher MoSi2 content, i.e., 5 and 10%, showed densities close to 100%. The mechanical properties, such as Young’s modulus, hardness and fracture toughness (KIc), of the polycrystals and composites were similar for samples with densities exceeding 95%. The Vickers hardness was 23 to 27 GPa, fracture toughness (KIC) was 4 to 6 MPa·m0.5 and the Young’s modulus was 480 to 540 GPa. The resulting TiB2-based materials showed potential in high-temperature applications. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

14 pages, 3337 KiB  
Article
Hybrid Sol–Gel and Spark Plasma Sintering to Produce Perovskite-like SrTiO3 Ceramics for Radioactive Waste Isolation
by Anton A. Belov, Oleg O. Shichalin, Evgeniy K. Papynov, Igor Yu. Buravlev, Erhan S. Kolodeznikov, Olesya V. Kapustina, Semen A. Azon, Nikolay B. Kondrikov, Alexander N. Fedorets and Ivan G. Tananaev
J. Compos. Sci. 2023, 7(10), 421; https://doi.org/10.3390/jcs7100421 - 9 Oct 2023
Cited by 5 | Viewed by 2440
Abstract
The paper presents a reliable technology combining sol–gel synthesis and spark plasma sintering (SPS) to obtain SrTiO3 perovskite-type ceramics with excellent physicomechanical properties and hydrolytic stability for the long-term retention of radioactive strontium radionuclides. The Pechini sol–gel method was used to synthesize [...] Read more.
The paper presents a reliable technology combining sol–gel synthesis and spark plasma sintering (SPS) to obtain SrTiO3 perovskite-type ceramics with excellent physicomechanical properties and hydrolytic stability for the long-term retention of radioactive strontium radionuclides. The Pechini sol–gel method was used to synthesize SrTiO3 powder from Sr(NO3)2 and TiCl3 (15%) precursors. Ceramic matrix samples were fabricated by SPS in the temperature range of 900–1200 °C. The perovskite structure of the synthesized initial SrTiO3 powder was confirmed by X-ray diffraction and thermal analysis results. Scanning electron microscopy revealed agglomeration of the nanoparticles and a pronounced tendency for densification in the sintered compact with increasing sintering temperature. Chemical homogeneity of ceramics was confirmed by energy dispersive X-ray analysis. Physicochemical characteristic studies included density measurement results (3.11–4.80 g·cm−3), dilatometric dependencies, Vickers microhardness (20–900 HV), and hydrolytic stability (10−6–10−7 g·cm−2·day−2), exceeding GOST R 50926-96 and ISO 6961:1982 requirements for solid-state matrices. Ceramic sintered at 1200 °C demonstrated the lowest strontium leaching rate of 10−7 g/cm2·day, optimal for radioactive waste (RAW) isolation. The proposed approach can be used to fabricate mineral-like forms suitable for RAW handling. Full article
Show Figures

Figure 1

11 pages, 2373 KiB  
Article
Porous 8YSZ Ceramics Prepared with Alkali Halide Sacrificial Additives
by Julio Cesar Camilo Albornoz Diaz, Eliana Navarro dos Santos Muccillo and Reginaldo Muccillo
Materials 2023, 16(9), 3509; https://doi.org/10.3390/ma16093509 - 3 May 2023
Cited by 6 | Viewed by 1934
Abstract
8 mol% Y2O3-stabilized ZrO2 (8YSZ) ceramics were prepared with KCl and LiF additions to obtain porous specimens with high skeletal density. Thermogravimetric and differential thermal analyses (TG/DTA) were carried out on 8YSZ and on 8YSZ mixed to 5 [...] Read more.
8 mol% Y2O3-stabilized ZrO2 (8YSZ) ceramics were prepared with KCl and LiF additions to obtain porous specimens with high skeletal density. Thermogravimetric and differential thermal analyses (TG/DTA) were carried out on 8YSZ and on 8YSZ mixed to 5 wt.% KCl or 5 wt.% LiF as sacrificial pore formers that were thermally removed during sintering. The melting and evaporation of the alkali halides were evaluated by differential thermal analysis. Dilatometric analysis was also carried out following the same TG/DTA temperature profile with results suggesting rearrangement of the 8YSZ particles during LiF and KCl melting. The dilatometric data of 8YSZ green pellets mixed to KCl or LiF exhibited an initial expansion up to the melting of the alkali halide, followed by shrinkage due to sintering evolution with grain growth and pore elimination. The time that the alkali halide molten phase was kept during sintering was found to be an important parameter for obtaining 8YSZ-sintered specimens with specific pore content; bulk density and open porosity could then be tuned by controlling the time the alkali halide remained liquid during sintering. Scanning electron microscopy images of the pellet fracture surfaces showed pores that contributed to increasing the electrical resistivity as evaluated by impedance spectroscopy analysis. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

21 pages, 12594 KiB  
Article
Study of Carbonated Clay-Based Phosphate Geopolymer: Effect of Calcite and Calcination Temperature
by Rania Derouiche, Marwa Zribi and Samir Baklouti
Minerals 2023, 13(2), 284; https://doi.org/10.3390/min13020284 - 17 Feb 2023
Cited by 13 | Viewed by 2644
Abstract
This study aims to use natural carbonated Tunisian clay as an aluminosilicate precursor for the elaboration of phosphate-based geopolymers, which yields to the valorization of this common material in Tunisia. In addition, the presence of calcium carbonate in this clay allows the investigation [...] Read more.
This study aims to use natural carbonated Tunisian clay as an aluminosilicate precursor for the elaboration of phosphate-based geopolymers, which yields to the valorization of this common material in Tunisia. In addition, the presence of calcium carbonate in this clay allows the investigation of this associated mineral’s effect on the properties of geopolymeric materials. To achieve these purposes, several experimental techniques were used, namely fluorescence (FX), particle size analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA), dilatometric analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The mechanical strength and the open porosity of the obtained geopolymeric samples were tested by the compression test and the standard test method for water absorption, respectively. The findings of this work show that the used Tunisian clay can present an attractive aluminosilicate precursor for the synthesis of phosphate-based geopolymers. It also shows that the chosen calcination temperature of the raw clay considerably modifies the reactivity of minerals during geopolymerization and, consequently, strongly affects the properties and structure of the geopolymeric samples. These effects were attributed essentially to the formation of new calcium crystalline phases in the obtained geopolymeric samples. In fact, the anorthite (CaAl2Si2O8) phase appears in all the samples but in greater abundance in those obtained from the clay calcined at 550 °C, and the brushite phase (CaHPO4·2H2O) appears only in the samples obtained from the clay calcined at 950 °C. All these new crystalline phases are strongly dependent on the state of the calcite present in the calcined clay. Full article
(This article belongs to the Special Issue Development in Geopolymer Materials and Applications)
Show Figures

Figure 1

19 pages, 8128 KiB  
Article
Manufacture and Characterization of Geopolymer Coatings Deposited from Suspensions on Aluminium Substrates
by Jan Novotný, Martin Jaskevič, Filip Mamoń, Jakub Mareš, Roman Horký and Pavel Houška
Coatings 2022, 12(11), 1695; https://doi.org/10.3390/coatings12111695 - 7 Nov 2022
Cited by 7 | Viewed by 2802
Abstract
Geopolymers compete with a number of conventional coatings and a few of them have already been replaced. The aim of this work was the analysis of alkali-activated metakaolin-based geopolymers and their use as brush-applied coatings, which were chosen due to their simplicity and [...] Read more.
Geopolymers compete with a number of conventional coatings and a few of them have already been replaced. The aim of this work was the analysis of alkali-activated metakaolin-based geopolymers and their use as brush-applied coatings, which were chosen due to their simplicity and cost-effectiveness. Eight coatings were prepared and the AlMgSi aluminum alloy underlying the substrate was also studied. The main characterizations of the prepared coatings were the microscopy analysis, which showed that manual painting with a brush on the coatings we prepared could achieve a high-quality geopolymer layer, and that if microscopic cracks are visible on the surface, they are uniform and do not affect the resulting cohesiveness of the coating. The thicknesses of these coatings are different, ranging from 1.5 to 11 μm, with no visible anomalies. For the evaluation of the properties of the coatings, we determined the analysis of adhesion to the adjacent substrate, microhardness and thermal expansion determined using the so-called dilatometric analysis as important criteria. For these analyses, the results vary by geopolymer type and are discussed in the following chapters. Full article
(This article belongs to the Topic Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

13 pages, 4325 KiB  
Article
CaO-SiO2-B2O3 Glass as a Sealant for Solid Oxide Fuel Cells
by Andrey O. Zhigachev, Ekaterina A. Agarkova, Danila V. Matveev and Sergey I. Bredikhin
Ceramics 2022, 5(4), 642-654; https://doi.org/10.3390/ceramics5040047 - 21 Sep 2022
Cited by 1 | Viewed by 3690
Abstract
Solid oxide fuel cells (SOFCs) are promising devices for electrical power generation from hydrogen or hydrocarbon fuels. The paper reports our study of CaO-SiO2-B2O3 material with composition 36 mol.% SiO2, 26 mol.% B2O3 [...] Read more.
Solid oxide fuel cells (SOFCs) are promising devices for electrical power generation from hydrogen or hydrocarbon fuels. The paper reports our study of CaO-SiO2-B2O3 material with composition 36 mol.% SiO2, 26 mol.% B2O3, and 38 mol.% CaO as a high-temperature sealant for SOFCs with an operating temperature of 850 °C. The material was studied as an alternative to presently existing commercial glass and glass-ceramics sealants for SOFCs with operating temperature of 850 °C. Many of these sealants have limited adhesion to the surface of Crofer 22APU steel, commonly used in these SOFCs. The present study included X-ray diffraction, dilatometric, thermal, and microstructural analysis The study has shown that the softening point of the CaO-SiO2-B2O3 glass is around 900 °C, allowing sealing of the SOFCs with this glass at convenient temperature of 925 °C. The CaO-SiO2-B2O3 glass sealant has shown excellent adhesion to the surface of Crofer 22APU steel; SEM images demonstrated evidences of chemical reaction and formation of strong interface on sealant–steel contact surface. Furthermore, the glass has shown a coefficient of thermal expansion about 8.4 × 10−6 1/K after sealing, making it thermomechanically compatible with the existing SOFC materials. Full article
(This article belongs to the Special Issue Ceramic Coatings for High-Temperature Applications)
Show Figures

Figure 1

14 pages, 2760 KiB  
Article
Thermal Properties of Illite-Zeolite Mixtures up to 1100 °C
by Štefan Csáki, Ivana Sunitrová, František Lukáč, Grzegorz Łagód and Anton Trník
Materials 2022, 15(9), 3029; https://doi.org/10.3390/ma15093029 - 21 Apr 2022
Cited by 4 | Viewed by 2009
Abstract
Illitic clays are the commonly used material in building ceramics. Zeolites are microporous, hydrated crystalline aluminosilicates, they are widely used due to their structure and absorption properties. In this study, illitic clay (Füzérradvány, Hungary) was mixed with natural zeolite (Nižný Hrabovec, Slovakia) with [...] Read more.
Illitic clays are the commonly used material in building ceramics. Zeolites are microporous, hydrated crystalline aluminosilicates, they are widely used due to their structure and absorption properties. In this study, illitic clay (Füzérradvány, Hungary) was mixed with natural zeolite (Nižný Hrabovec, Slovakia) with up to 50 wt.% of zeolite content. The samples were submitted to thermal analyses, such as differential thermal analysis, differential scanning calorimetry, thermogravimetry, and dilatometry. In addition, the evolution of thermal diffusivity, thermal conductivity, and specific heat capacity in the heating stage of firing were measured and discussed. The amount of the physically bound water in the samples increased along with the amount of zeolite. The temperature of the illite dehydroxylation (peak temperature) was slightly shifted to lower temperatures, from 609 °C to 575 °C (for sample IZ50). On the other hand, the mass loss and the shrinkage of the samples significantly increased with the zeolite content in the samples. Sample IZ50 reached 10.8% shrinkage, while the sample prepared only from the illitic clay contracted by 5.8%. Nevertheless, the temperature of the beginning of the sintering (taken from the dilatometric curves) decreased from 1021 °C (for illitic clay) to 1005 °C (for IZ50). The thermal diffusivity and thermal conductivity values decreased as the amount of zeolite increased in the samples, thus showing promising thermal insulating properties. Full article
Show Figures

Figure 1

21 pages, 7269 KiB  
Article
Thermal Behavior of Ceramic Bodies Based on Estonian Clay from the Arumetsa Deposit with Oil Shale Ash and Clinker Dust Additives
by Tiit Kaljuvee, Igor Štubňa, Tomáš Húlan, Mai Uibu, Marve Einard, Rainer Traksmaa, Mart Viljus, Jekaterina Jefimova and Andres Trikkel
Processes 2022, 10(1), 46; https://doi.org/10.3390/pr10010046 - 27 Dec 2021
Cited by 8 | Viewed by 3551
Abstract
The thermal behavior of green clay samples from the Arumetsa and Füzérradvány deposits (Hungary) and the influence of two new types of Estonian oil shale (OS) ashes and cement bypass dust (clinker dust) additives on it were the objectives of this study. Thermal [...] Read more.
The thermal behavior of green clay samples from the Arumetsa and Füzérradvány deposits (Hungary) and the influence of two new types of Estonian oil shale (OS) ashes and cement bypass dust (clinker dust) additives on it were the objectives of this study. Thermal and thermo-dilatometric analysis methods were applied using a Setaram Setsys 1750 thermoanalyzer coupled with a Pfeiffer Omnistar spectrometer and a Setaram Setsys 1750 CS Evolution dilatometer. The kinetic parameters were calculated based on the differential isoconversional method of Friedman. The results of the thermal analysis of clays and blends indicated the emission of physically bound water at 200–250 °C. At temperatures from 200–250 °C to 550–600 °C the release of water is caused by oxidation of organic matter and dehydroxylation of different clay minerals like illite, illite-smectite, mica and kaolin. From blends, in addition, also from the decomposition of portlandite. The emission of CO2 at these temperatures was a result of the oxidation of organic matter contained in the clays. In the temperature range from 550–600 °C to 800–900 °C, the mass loss was caused by ongoing dehydroxylation processes in clay minerals but was mainly due to the decomposition of the carbonates contained in the OS ashes and clinker dust. These processes were accompanied by contraction and expansion of the ceramic bodies with the corresponding changes in the SSA and porosity values of the samples. Therefore, the decomposition of the clays took place in one step which blends in two steps. At first, dehydroxylation of the clay minerals occurs, followed by decomposition of the carbonates. The value of the conversion-dependent activation energy E along the reaction progress α varied for the Arumetsa and illitic clay between 75–182 and 9–206 kJ mol−1, respectively. For the blends based on Arumetsa and illitic clay, the activation energy of the first step varied between 14–193 and 5–205 kJ mol−1, and for the second step, it was between 15–390 and 135–235 kJ mol−1, respectively, indicating the complex mechanism of the processes. Full article
Show Figures

Figure 1

10 pages, 2693 KiB  
Article
The Features of Martensitic Transformation in 12% Chromium Ferritic–Martensitic Steels
by Kseniya Bazaleeva, Alexander Golubnichiy, Anton Chernov, Andrey Ni and Ruslan Mendagaliyev
Materials 2021, 14(16), 4503; https://doi.org/10.3390/ma14164503 - 11 Aug 2021
Viewed by 2565
Abstract
An anomaly in martensitic transformation (the effect of martensitic two-peak splitting in the temperature-dependent thermal expansion coefficient) in complex alloyed 12% chromium steels Fe-12%Cr-Ni-Mo-W-Nb-V-B (ChS-139), Fe-12%Cr-Mo-W-Si-Nb-V (EP-823) and Fe-12%Cr-2%W-V-Ta-B (EK-181) was investigated in this study. This effect is manifested in steels with a [...] Read more.
An anomaly in martensitic transformation (the effect of martensitic two-peak splitting in the temperature-dependent thermal expansion coefficient) in complex alloyed 12% chromium steels Fe-12%Cr-Ni-Mo-W-Nb-V-B (ChS-139), Fe-12%Cr-Mo-W-Si-Nb-V (EP-823) and Fe-12%Cr-2%W-V-Ta-B (EK-181) was investigated in this study. This effect is manifested in steels with a higher degree of alloying (ChS-139). During varying temperature regimes in dilatometric analysis, it was found that the splitting of the martensitic peak was associated with the superposition of two martensitic transformations of austenite depleted and enriched with alloying elements. The anomaly was subsequently eliminated by homogenization of the steel composition due to high-temperature aging in the γ-region. It was shown that if steel is heated to 900 °C, which lies in the (α + γ) phase region or slightly higher during cooling, then the decomposition of austenite proceeds in two stages: during the first stage, austenite is diffused into ferrite with carbides; during the second stage, shear transformation of austenite to martensite occurs. Full article
Show Figures

Figure 1

14 pages, 15283 KiB  
Article
Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes
by Velaphi Jeffrey Matjeke, Josias Willem van der Merwe and Nontuthuzelo Lindokuhle Vithi
Metals 2021, 11(7), 1014; https://doi.org/10.3390/met11071014 - 24 Jun 2021
Cited by 5 | Viewed by 3732
Abstract
Bogie spring performance can be improved by using the exact heat treatment process parameters. The purpose of the study is to determine the critical transformation temperatures and investigate the effect of the cooling rates on microstructural and mechanical properties. The precise determination of [...] Read more.
Bogie spring performance can be improved by using the exact heat treatment process parameters. The purpose of the study is to determine the critical transformation temperatures and investigate the effect of the cooling rates on microstructural and mechanical properties. The precise determination of the required cooling rates for the particular grade of steel is important in order to optimise the heat treatment process of heavy-duty compression helical spring manufacturing. A traditional heat treatment system for the manufacture of hot coiled springs requires heating the steel to homogenize austenite; then, it is decomposed to martensite by rapid cooling. By analyzing the transition properties by heating and differing cooling rates, this analysis examines the thermal behaviour of high strength spring steel. Using the dilatometer and differential scanning calorimeter, scanning electron microscope, optical microscope, and hardness checking, critical transition temperatures and cooling rates of three springs steels were measured. Although the thermal transformation of materials has been researched for decades using dilatometers, not all materials have been characterized. The research offers insights into the critical transformation temperatures for the defined grades of spring steel and the role of cooling rates in the material’s properties. Mechanical properties are influenced by the transition data obtained from the dilatometric analysis. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels)
Show Figures

Figure 1

18 pages, 4270 KiB  
Article
Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Casting
by Justyna Zygmuntowicz, Magdalena Gizowska, Justyna Tomaszewska, Paulina Piotrkiewicz, Radosław Żurowski, Marcin Wachowski and Katarzyna Konopka
Materials 2021, 14(12), 3365; https://doi.org/10.3390/ma14123365 - 17 Jun 2021
Cited by 11 | Viewed by 2736
Abstract
This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The [...] Read more.
This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride. Full article
(This article belongs to the Special Issue Advances in Metal and Ceramic Matrix Composites)
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
Thermophysical Properties of Temperature-Sensitive Paint
by Andrzej J. Panas, Robert Szczepaniak, Wit Stryczniewicz and Łukasz Omen
Materials 2021, 14(8), 2035; https://doi.org/10.3390/ma14082035 - 18 Apr 2021
Cited by 7 | Viewed by 3244
Abstract
The complex thermophysical property of temperature-sensitive paint (TSP) research is discussed. TSP is used for visualization of the surface temperature distribution in wind tunnel aerodynamic tests. The purpose of this research was to provide reliable, experimental, thermophysical data of the paint applied as [...] Read more.
The complex thermophysical property of temperature-sensitive paint (TSP) research is discussed. TSP is used for visualization of the surface temperature distribution in wind tunnel aerodynamic tests. The purpose of this research was to provide reliable, experimental, thermophysical data of the paint applied as a coating. As TSP is applied as thin surface layers, investigation of its final properties is challenging and demands the application of non-standard procedures. At present, most measurements were performed on composite specimens of TSP deposed onto a thin metallic film substrate or on TSP combined with a cellulose sheet support. The studies involved gravimetric,, thermogravimetric, and microcalorimetric analyses, transversal thermal diffusivity estimation from laser flash data and in-plane effective thermal diffusivity measurements done by the temperature oscillation technique. These results were complemented with scanning electron microcopy analysis, surface characterization and the results of dilatometric measurements performed on the TSP bulk specimens obtained from liquid substrate by casting. Complex analysis of the obtained results indicated an isotropic characteristic of the thermal diffusivity of the TSP layer and provided reliable data on all measured thermophysical parameters—they were revealed to be typical for insulators. Further to presenting these data, the paper, in brief, presents the applied investigation procedures. Full article
Show Figures

Figure 1

14 pages, 3703 KiB  
Article
Microstructure, Thermal, and Corrosion Behavior of the AlAgCuNiSnTi Equiatomic Multicomponent Alloy
by Eva Fazakas, Bela Varga, Victor Geantă, Tibor Berecz, Péter Jenei, Ionelia Voiculescu, Mihaela Coșniță and Radu Ștefănoiu
Materials 2019, 12(6), 926; https://doi.org/10.3390/ma12060926 - 20 Mar 2019
Cited by 13 | Viewed by 3080
Abstract
The paper presents the microstructure and corrosion behavior of an AlTiNiCuAgSn new equiatomic multicomponent alloy. The alloy was obtained using the vacuum arc remelting (VAR) technique in MRF-ABJ900 equipment. The microstructural analysis was performed by optical and scanning electron microscopy (SEM microscope, SEM-EDS) [...] Read more.
The paper presents the microstructure and corrosion behavior of an AlTiNiCuAgSn new equiatomic multicomponent alloy. The alloy was obtained using the vacuum arc remelting (VAR) technique in MRF-ABJ900 equipment. The microstructural analysis was performed by optical and scanning electron microscopy (SEM microscope, SEM-EDS) and the phase transformations were highlighted by dilatometric analysis and differential thermal analysis (DTA). The results show that the as-cast alloy microstructure is three-phase, with an average microhardness of 487 HV0.1/15. The obtained alloy could be included in the group of compositionally complex alloys (CCA). The corrosion resistance was studied using the potentiodynamic method in saline solution with 3.5% NaCl. Considering the high corrosion resistance, the obtained alloy can be used for surface coating applications. Full article
(This article belongs to the Special Issue High Entropy Materials: From Fundamentals to Applications)
Show Figures

Figure 1

Back to TopTop