Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = thermal desorption analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 963 KB  
Article
The Role of Breath Analysis in the Non-Invasive Early Diagnosis of Malignant Pleural Mesothelioma (MPM) and the Management of At-Risk Individuals
by Marirosa Nisi, Alessia Di Gilio, Jolanda Palmisani, Niccolò Varesano, Domenico Galetta, Annamaria Catino and Gianluigi de Gennaro
Molecules 2025, 30(19), 3922; https://doi.org/10.3390/molecules30193922 - 29 Sep 2025
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy associated with occupational or environmental exposure to asbestos. Effective management of MPM remains challenging due to its prolonged latency period and the typically late onset of clinical symptoms. Accordingly, there is an increasing [...] Read more.
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy associated with occupational or environmental exposure to asbestos. Effective management of MPM remains challenging due to its prolonged latency period and the typically late onset of clinical symptoms. Accordingly, there is an increasing demand for the implementation of reliable, non-invasive, and data-driven diagnostic strategies within large-scale screening programs. In this context, the chemical profiling of volatile organic compounds (VOCs) in exhaled breath has recently gained recognition as a promising and non-invasive approach for the early detection of cancer, including MPM. Therefore, in this cross-sectional observational study, an overall number of 125 individuals, including 64 MPM patients and 61 healthy controls (HC), were enrolled. End-tidal breath fraction (EXP) was collected directly onto two-bed adsorbent cartridges by an automated sampling system and analyzed by thermal desorption–gas chromatography–mass spectrometry (TD-GC/MS). A machine learning approach based on a random forest (RF) algorithm and trained using a 10-fold cross-validation framework was applied to experimental data, yielding remarkable results (AUC = 86%). Fifteen VOCs reflecting key metabolic alterations characteristic of MPM pathophysiology were found to be able to discriminate between MPM and HC. Moreover, twenty breath samples from asymptomatic former asbestos-exposed (AEx) and eight MPM patients during follow-up (FUMPM) were exploratively analyzed, processed, and tested as blinded samples by the validated statistical method. Good agreement was found between model output and clinical information obtained by CT. These findings underscore the potential of breath VOC analysis as a non-invasive diagnostic approach for MPM and support its feasibility for longitudinal patient and at-risk subjects monitoring. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

21 pages, 3237 KB  
Article
Multi-Scale Modeling of Doped Magnesium Hydride Nanomaterials for Hydrogen Storage Applications
by Younes Chrafih, Rubayyi T. Alqahtani, Abdelhamid Ajbar and Bilal Lamrani
Nanomaterials 2025, 15(19), 1470; https://doi.org/10.3390/nano15191470 - 25 Sep 2025
Abstract
This work presents the development of a novel multi-scale modeling framework for investigating the beneficial impact of Ti-, Zr-, and V-doped magnesium hydride nanomaterials on hydrogen storage performance. The proposed model integrates atomistic-scale simulations based on density functional theory (DFT) with system-level dynamic [...] Read more.
This work presents the development of a novel multi-scale modeling framework for investigating the beneficial impact of Ti-, Zr-, and V-doped magnesium hydride nanomaterials on hydrogen storage performance. The proposed model integrates atomistic-scale simulations based on density functional theory (DFT) with system-level dynamic heat and mass transfer modeling. At the nanoscale, DFT analysis provides key thermodynamic and kinetic parameters, including reaction enthalpy, entropy, and activation energy, which are incorporated into the macroscopic model to predict the hydrogenation behavior of MgH2 nanostructures under realistic thermal boundary conditions. Model validation is performed through comparison with experimental data from the literature, showing excellent agreement. The DFT analysis reveals that doping MgH2 nanomaterials with Ti, V, and Zr modifies their thermodynamic properties, including enthalpy of formation and desorption temperature. At the reactor scale, these modifications lead to enhanced hydrogenation kinetics and improved thermal management. Compared to pristine MgH2, hydrogenation time is reduced by 21%, 40%, and 42% for Ti-, Zr-, and V-doped nanomaterials, respectively, while thermal energy consumption during hydrogenation decreases by ~17% for V doping. These results highlight the strong correlation between nanoscale modifications and macroscopic system performance. The proposed multi-scale model provides a powerful tool for guiding the design and optimization of advanced nanostructured hydrogen storage materials for sustainable energy applications. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

24 pages, 6644 KB  
Article
Organoclay Microparticle-Enhanced Microfiltration for the Removal of Acid Red 27 in Aqueous Systems
by Tulio A. Lerma, Andrés Felipe Chamorro, Manuel Palencia, Enrique Combatt and Hernán Valle
Water 2025, 17(19), 2817; https://doi.org/10.3390/w17192817 - 25 Sep 2025
Abstract
The microparticle-enhanced microfiltration is a technique that combines the use of microparticulate adsorbent material dispersed in aqueous solution and microfiltration membranes for the removal of ions and emerging contaminants with low energy consumption. Thus, the objective of this work was to synthesize an [...] Read more.
The microparticle-enhanced microfiltration is a technique that combines the use of microparticulate adsorbent material dispersed in aqueous solution and microfiltration membranes for the removal of ions and emerging contaminants with low energy consumption. Thus, the objective of this work was to synthesize an organoclay, BAPTES, based on bentonite and (3-aminopropyl)triethoxysilane for use as a semi-synthetic adsorbent material in the microparticle-enhanced microfiltration process for the removal of AR27 in aqueous systems. For this purpose, the obtained organoclay was structurally characterized by FTIR-ATR-FEDS, SEM-EDS, DLS, and thermal analysis. In addition, equilibrium adsorption and kinetic studies of AR27 were performed. The results showed a significant increase in the adsorption capacity of AR27 by organoclay (86.06%) compared to natural bentonite (2.10%), due to the presence of ionizable amino groups in the organoclay structure that promote electrostatic interactions with the dye. Furthermore, kinetic studies showed that the adsorption process follows a pseudo-first-order model and that the equilibrium data better fits the Temkin model, indicating a heterogeneous adsorption surface with different binding energies. The evaluation of enhanced microfiltration with BAPTES microparticles showed that the adsorption capacity obtained in continuous flow experiments (14.25–33.63 mg g−1) was lower than that determined experimentally under equilibrium conditions (~39.5 mg g−1), suggesting that the residence time of the analyte and the adsorbent in the filtration cell is a determining factor in the retention values obtained. In addition, desorption studies revealed that basic pH had a greater effect than the presence of salts and the use of ethanol, favoring the weakening of the AR27-BAPTES interaction. Finally, the results highlight the potential use of BAPTES microparticle-enhanced microfiltration in applications involving the treatment of contaminated industrial effluents. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

28 pages, 1509 KB  
Review
Life After Adsorption: Regeneration, Management, and Sustainability of PFAS Adsorbents in Water Treatment
by Magdalena Andrunik and Marzena Smol
Water 2025, 17(19), 2813; https://doi.org/10.3390/w17192813 - 25 Sep 2025
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents are regenerated, managed after exhaustion, and integrated into broader environmental and regulatory frameworks. This review synthesises recent advances in regeneration strategies for PFAS-saturated adsorbents, including thermal, solvent-based, chemical, hybrid, and emerging methods, and provides a targeted analysis of policy and regulatory frameworks governing PFAS management in water. Evidence from the literature is critically assessed with attention to regeneration efficiencies, adsorbent stability, secondary waste generation, and long-term reuse potential. Life cycle assessment (LCA) studies are also examined to evaluate the environmental and cost implications of different management options. The analysis highlights that while solvent and chemical regeneration achieve high short-term recovery, thermal processes offer partial destructive potential, and electrochemical methods are emerging as promising but unproven alternatives. Persistent challenges include incomplete PFAS desorption, performance decline over multiple cycles, energy intensity, and secondary waste burdens. Advancing sustainable PFAS treatment requires integrated evaluation frameworks linking technical performance with environmental impact and cost, supported by policy drivers that incentivize regeneration and safe end-of-life management. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1418 KB  
Article
Mesoporous Silica Xerogels Prepared by p-toluenesulfonic Acid-Assisted Synthesis: Piperazine-Modification and CO2 Adsorption
by Stela Grozdanova, Ivalina Trendafilova, Agnes Szegedi, Pavletta Shestakova, Yavor Mitrev, Ivailo Slavchev, Svilen Simeonov and Margarita Popova
Nanomaterials 2025, 15(19), 1459; https://doi.org/10.3390/nano15191459 - 23 Sep 2025
Viewed by 120
Abstract
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction [...] Read more.
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction (XRD), solid-state NMR and thermal analysis. The results demonstrated that both the drying temperature and quantity of the pTSA significantly influenced the pore structure of the xerogels. The utilization of such strong acids like pTSA yielded high surface area and pore volume, as well as narrow pore size distribution. Environmentally friendly template removal by solvent extraction produced materials with superior textural properties compared to traditional calcination, enabling the recovery and reuse of pTSA with over 95% efficiency. A selected mesoporous silica xerogel was modified by a simple two-step post-synthesis procedure with 1-(2-Hydroxyethyl) piperazine (HEP). High CO2 adsorption capacity was determined for the HEP-modified material in dynamic conditions. The isosteric heat of adsorption revealed the stronger interaction between functional groups and CO2 molecules. Total CO2 desorption could be achieved at 60 °C. Leaching of the silica functional groups could not be detected even after four consecutive adsorption cycles. These findings provide valuable insights into the sustainable synthesis of tunable piperazine-modified mesoporous silica xerogels with potential applications in CO2 capture. Full article
Show Figures

Figure 1

16 pages, 1557 KB  
Article
Analysis of Volatile Organic Compounds in Cinnamomum camphora Leaves by Direct Thermal Desorption–Gas Chromatography/Mass Spectrometry (DTD-GC/MS)
by Guangrong Li, Fang Cai, Jiayang Hu, Ying’ao Hu and Yixun Wang
Forests 2025, 16(9), 1433; https://doi.org/10.3390/f16091433 - 8 Sep 2025
Viewed by 481
Abstract
This study established a novel detection method for volatile organic compounds in forest therapy tree species based on direct thermal desorption technology. The optimized parameters included 20 mg sample loading, 110 °C desorption temperature, 30 min desorption time, and 1:30 split ratio. The [...] Read more.
This study established a novel detection method for volatile organic compounds in forest therapy tree species based on direct thermal desorption technology. The optimized parameters included 20 mg sample loading, 110 °C desorption temperature, 30 min desorption time, and 1:30 split ratio. The optimal loading was 5–65 mg to balance the separation resolution and detection sensitivity. Desorption temperature significantly affected component detection: terpenoids accounted for the highest proportion (82.0%) at 90 °C; alkanes surged to 53.3% at 150 °C; acids (19.0%) and esters (19.4%) became dominant; and ascorbyl dipalmitate (17.3%) exceeded linalool (14.6%) at 180 °C. Chemotype analysis revealed that camphor-type leaves were dominated by camphor (72.8%) while linalool-type leaves by linalool (54.3%). Compared with steam distillation, DTD increased the camphor/linalool extraction efficiency while eliminating solvent contamination. Relative to dynamic headspace sampling, DTD mitigated the environmental interference and reduced the pretreatment time. The study confirmed that 110 °C is the optimal temperature for maximized characterization of terpenoids (63.3%), providing technical support for selecting high-terpenoid-emitting trees in forest therapy and evaluating the therapeutic efficacy. It also reveals the linkages between leaf volatiles and stand-level air composition and promotes the development of dynamic forest VOC databases. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

24 pages, 4005 KB  
Article
Separation of the Biofuel Methyl Ethyl Ketone from Aqueous Solutions Using Avocado-Based Activated Carbons: Synthesis Conditions and Multilayer Adsorption Properties
by Hilda Elizabeth Reynel-Avila, Eduardo Ledea-Figueredo, Lizbeth Liliana Díaz-Muñoz, Adrián Bonilla-Petriciolet, Ismael Alejandro Aguayo-Villarreal, Laura Gabriela Elvir-Padilla and Carlos Javier Durán-Valle
Molecules 2025, 30(16), 3426; https://doi.org/10.3390/molecules30163426 - 20 Aug 2025
Viewed by 715
Abstract
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 [...] Read more.
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 and KOH. A Taguchi experimental design was applied to tailor synthesis conditions, with MEK adsorption capacity as the target property. Adsorption kinetics and isotherms were evaluated to determine the thermodynamic behavior of MEK separation using the best-performing activated carbons. The carbon activated with H2SO4 achieved the highest adsorption capacity (142 mg g−1) at 20 °C and pH 4, surpassing KOH-based materials. This enhanced performance correlated to increased surface area and acidic oxygenated functionalities. However, higher pH and temperature reduced the adsorption efficiency for all adsorbents. Comprehensive characterization was performed using XRD, XRF, FTIR, SEM, N2 adsorption–desorption isotherms, pH at point of zero charge, and surface acidity/basicity analysis via Boehm titration. Thermodynamic data and surface characterization indicated that MEK adsorption occurs via a double-layer mechanism dominated by electrostatic interactions and hydrogen bonding. The findings highlight an optimized approach for tailoring avocado-based activated carbons to efficiently recover MEK from aqueous media, supporting its potential application in downstream purification of fermentation broths for biofuel production and energy transition processes. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

10 pages, 1814 KB  
Article
Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys
by Mehrdad Hoseinpoor, Nikola Macháčková, Terezie Košová Altnerová, Sandrine Zanna, Darja Rudomilova and Tomáš Prošek
Metals 2025, 15(8), 913; https://doi.org/10.3390/met15080913 - 17 Aug 2025
Viewed by 693
Abstract
The impact of final surface preparation immediately prior to hydrogen content measurements in aluminum alloy samples was investigated using thermal desorption analysis (TDA). Samples ground in water showed an apparent hydrogen signal. Glow-discharge optical emission spectroscopy (GDOES) confirmed that the analyzed hydrogen originated [...] Read more.
The impact of final surface preparation immediately prior to hydrogen content measurements in aluminum alloy samples was investigated using thermal desorption analysis (TDA). Samples ground in water showed an apparent hydrogen signal. Glow-discharge optical emission spectroscopy (GDOES) confirmed that the analyzed hydrogen originated from the subsurface layer. X-ray photoelectron spectroscopy (XPS) revealed the presence of a thin aluminum oxide/hydroxide layer on the surface. Formation of these compounds indicates that hydrogen was introduced into the material by the reaction of oxide-free aluminum with water molecules during the grinding, followed by its entrapment at near-surface interstitial lattice sites. Chemical pickling in concentrated nitric acid and combined grinding, chemical pickling, and electrochemical polishing approaches are proposed as proper surface-preparation techniques for samples without and with adherent corrosion products, respectively. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Figure 1

12 pages, 468 KB  
Article
Determination of Total Mercury and Mercury Thermospecies in Cement and Cement Raw Materials
by Yolisa A. Lucwaba and Khakhathi L. Mandiwana
Analytica 2025, 6(3), 26; https://doi.org/10.3390/analytica6030026 - 15 Aug 2025
Viewed by 469
Abstract
Cement manufacturing is the second largest anthropogenic source of Hg emissions in the environment. Therefore, the establishment of analytical methodologies that can be utilized in the determination of Hg concentration from cement raw materials and cement is of great importance. The total Hg [...] Read more.
Cement manufacturing is the second largest anthropogenic source of Hg emissions in the environment. Therefore, the establishment of analytical methodologies that can be utilized in the determination of Hg concentration from cement raw materials and cement is of great importance. The total Hg and Hg thermospecies in cement raw materials and cements were determined by thermal desorption techniques with a Zeeman Hg analyzer. No chemical pre-treatment of samples is required for this technique prior to analysis. An optimum single-stage temperature program was applied to determine total Hg at an optimum heating rate of approximately 5 °C s−1 while Hg thermospecies were determined over four stages at an optimum heating rate of approximately 0.2 °C s−1 per stage from ambient temperature to 720 °C. Total mercury concentrations in cement raw materials ranged between 2.19 ng g−1 and 395 ng g−1, while in cement, concentrations ranged between 1.32 ng g−1 and 31.0 ng g−1. The highest Hg contents were found in dust return (580 ng g−1 and 679 ng g−1). Hg thermospecies determination showed that cement raw materials and cements contain one Hg thermospecies that is released at 20–180 °C while dust return contained one to four Hg thermospecies that could be released at 20–180 °C, 180–360 °C, 360–540 °C, and/or 540–720 °C, thus indicating that new Hg compounds are formed during cement production. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

15 pages, 961 KB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Viewed by 409
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of RIP-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of PVC-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 3222 KB  
Article
Process Optimization of Thawed Cloudy Huyou Juice Clarification Using a Composite of Carboxymethyl Chitosan and Sodium Alginate
by Peichao Zhang, Liang Zhang, Xiayu Liu, Yuxi Wang, Jiatong Xu, Pengfei Liu and Boyuan Guan
Foods 2025, 14(15), 2658; https://doi.org/10.3390/foods14152658 - 29 Jul 2025
Viewed by 380
Abstract
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) [...] Read more.
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) and sodium alginate (SA), prepared via ionic and covalent crosslinking. The composite was characterized by SEM, FTIR, and thermal analysis. Transmittance was used to evaluate clarification performance. The effects of dosage, adsorption time, and temperature were first assessed through single-factor experiments, followed by optimization using a Box–Behnken response surface methodology. The composite significantly improved clarity (p < 0.05), reaching 85.38% transmittance under optimal conditions: 22 mg dosage, 80 min time, and 38 °C. The composite dosage and temperature were the most influential factors. Reusability tests showed declining performance, with the transmittance dropping to 57.13% after five cycles, likely due to incomplete desorption of adsorbed compounds. These results suggest that the CC-SA composite is an effective and reusable clarifying agent with potential for industrial applications in turbid fruit juice processing. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

16 pages, 2206 KB  
Article
Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash
by Anas Krime, Sanaâ Saoiabi, Mouhaydine Tlemcani, Ahmed Saoiabi, Elisabete P. Carreiro and Manuela Ribeiro Carrott
Recycling 2025, 10(4), 143; https://doi.org/10.3390/recycling10040143 - 20 Jul 2025
Viewed by 531
Abstract
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using [...] Read more.
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using a sol–gel process assisted by polyethylene glycol (PEG-6000) as a soft template. The resulting AS-Si material was extensively characterized to confirm its potential for environmental remediation. FTIR analysis revealed characteristic vibrational bands corresponding to Si–OH and Si–O–Si bonds, while XRD confirmed its amorphous nature with a broad diffraction peak at 2θ ≈ 22.5°. SEM imaging revealed a highly porous, sponge-like morphology composed of aggregated nanoscale particles, consistent with the nitrogen adsorption–desorption isotherm. The material exhibited a specific surface area of 68 m2/g, a maximum in the pore size distribution at a pore diameter of 2.4 nm, and a cumulative pore volume of 0.11 cm3/g for pores up to 78 nm. DLS analysis indicated an average hydrodynamic diameter of 779 nm with moderate polydispersity (PDI = 0.48), while a zeta potential of –34.10 mV confirmed good colloidal stability. Furthermore, thermogravimetric analysis (TGA) and DSC suggested the thermal stability of our amorphous silica. The adsorption performance of AS-Si was evaluated using methylene blue (MB) and ciprofloxacin (Cipro) as model pollutants. Kinetic data were best fitted by the pseudo-second-order model, while isotherm studies favored the Langmuir model, suggesting monolayer adsorption. AS-Si could be used four times for the removal of MB and Cipro. These results collectively demonstrate that AS-Si is a promising, low-cost, and sustainable adsorbent derived from Moroccan oil shale ash for the effective removal of organic contaminants from aqueous media. Full article
Show Figures

Figure 1

24 pages, 4568 KB  
Article
Greener Synthesis of Eco-Friendly Biodegradable Mesoporous Bioactive Glasses with and Without Thermal Treatment and Its Effects on Drug Delivery and In Vitro Bioactivity
by Dana Almasri and Yaser Dahman
Int. J. Mol. Sci. 2025, 26(13), 6524; https://doi.org/10.3390/ijms26136524 - 7 Jul 2025
Viewed by 523
Abstract
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties [...] Read more.
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties of glass synthesized without thermal treatment. The MBGs were synthesized in a TRIS buffer solution at a pH of 9.5 to allow hydrolysis of the metal oxide precursors. The glass was then washed with mild acid to remove the template. After the samples were washed, some were subjected to thermal treatment, while others were not to investigate the impact of thermal treatment on the structure of the MBG. The successful synthesis of MBG was confirmed by X-ray diffraction, Fourier-transfer infrared spectroscopy, scanning emission scanning microscope, and nitrogen adsorption–desorption analysis. This synthesized MBG had a large surface area, pore volume, pore size, and high drug loading efficiency. MBG synthesized without thermal treatment had slower degradation over the test period, but higher loading efficiency and slower drug release, making it appropriate for applications requiring long-term drug delivery while maintaining its bioactivity. Full article
Show Figures

Figure 1

17 pages, 3255 KB  
Article
Novel Aerogel Structure of β-Eucryptite: Featuring Low Density, High Specific Surface Area, and Negative Thermal Expansion Coefficient
by Haoren Ma, Sijia Liu, Jinyi Ren, Xiaochan Liu, Weiyi Zhang, Ying Zhu, Zhipeng Yuan, Jinxu Zhu and Xibin Yi
Gels 2025, 11(6), 440; https://doi.org/10.3390/gels11060440 - 9 Jun 2025
Viewed by 1064
Abstract
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the [...] Read more.
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the sol–gel process and supercritical drying method and using alumina sol as a cost-effective precursor. The synthesized β-eucryptite aerogel demonstrated unique properties including a negative thermal expansion coefficient (−7.85 × 10−6 K−1), low density (0.60 g/cm3), and high specific surface area (18.1 m2/g). X-ray diffraction (XRD) and transmission electron microscopy (TEM) mutually corroborated the crystalline structure of β-eucryptite, with XRD confirming the phase purity and TEM imaging revealing well-defined crystal lattice characteristics. Combined nitrogen adsorption–desorption analysis and scanning electron microscopy observations supported the hierarchical porous microstructure, with SEM visualizing interconnected nanoporous networks and nitrogen sorption data verifying the porosity. The negative thermal expansion behavior was directly linked to the β-eucryptite crystal structure, as collectively validated by thermal expansion measurements. Additionally, Fourier transform infrared spectroscopy (FTIR) independently confirmed the aluminosilicate framework structure through characteristic vibrational modes. This research shows the innovation in the synthesis of β-eucryptite aerogel, especially its application potential in precision instruments and building materials that need low thermal expansion and high stability, and the use of aluminum sol as an aluminum source has simplified the preparation steps and reduced production costs. Full article
Show Figures

Figure 1

20 pages, 8410 KB  
Review
CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
by Yinan Cui, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, Yaozu Zhang, Guangrong Zhang, Bei Zhang, Shiqi Liu and Sijian Zheng
Energies 2025, 18(11), 2841; https://doi.org/10.3390/en18112841 - 29 May 2025
Viewed by 713
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from a full-chain perspective (Mechanism, Practices, and Outlook), covering fundamental mechanisms and key engineering practices. It highlights the complex multi-physics processes involved, including competitive adsorption–desorption, diffusion and seepage, thermal effects, stress responses, and geochemical interactions. Recent progress in laboratory experiments, capacity assessments, site evaluations, monitoring techniques, and numerical simulations are systematically reviewed. Field studies indicate that CO2-ECBM performance is strongly influenced by reservoir pressure, temperature, injection rate, and coal seam properties. Structural conditions and multi-field coupling further affect storage efficiency and long-term security. This work also addresses major technical challenges such as real-time monitoring limitations, environmental risks, injection-induced seismicity, and economic constraints. Future research directions emphasize the need to deepen understanding of coupling mechanisms, improve monitoring frameworks, and advance integrated engineering optimization. By synthesizing recent advances and identifying research priorities, this review aims to provide theoretical support and practical guidance for the scalable deployment of CO2-ECBM, contributing to global energy transition and carbon neutrality goals. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

Back to TopTop