Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = the ontology of information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3052 KiB  
Article
A Novel Dual-Strategy Approach for Constructing Knowledge Graphs in the Home Appliance Fault Domain
by Daokun Zhang, Jian Zhang, Yanhe Jia and Mengjie Liao
Algorithms 2025, 18(8), 485; https://doi.org/10.3390/a18080485 - 5 Aug 2025
Viewed by 29
Abstract
Knowledge graph technology holds significant importance for efficient fault diagnosis in household appliances. However, the scarcity of public fault diagnosis data and the lack of automated knowledge extraction pose major challenges to knowledge graph construction. To address issues such as ambiguous entity boundaries, [...] Read more.
Knowledge graph technology holds significant importance for efficient fault diagnosis in household appliances. However, the scarcity of public fault diagnosis data and the lack of automated knowledge extraction pose major challenges to knowledge graph construction. To address issues such as ambiguous entity boundaries, severe entity nesting, and poor entity extraction performance in fault diagnosis texts, this paper proposes a dual-strategy progressive knowledge extraction framework. First, to tackle the high complexity of fault diagnosis texts, an entity recognition model named RoBERTa-zh-BiLSTM-MUL-CRF is designed, improving the accuracy of nested entity extraction. Second, leveraging the semantic understanding capability of large language models, a progressive prompting strategy is adopted for ontology alignment and relation extraction, achieving automated knowledge extraction. Experimental results show that the proposed named entity recognition model outperforms traditional models, with improvements of 3.87%, 5.82%, and 2.05% in F1-score, recall, and precision, respectively. Additionally, the large language model demonstrates better performance in ontology alignment compared to traditional machine learning models. The constructed knowledge graph for household appliance fault diagnosis integrates structured fault diagnosis information. It effectively processes unstructured fault texts and supports visual queries and entity tracing. This framework can assist maintenance personnel in making rapid judgments, thereby improving fault diagnosis efficiency. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

27 pages, 5776 KiB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 202
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

25 pages, 3632 KiB  
Article
A Semantic Web and IFC-Based Framework for Automated BIM Compliance Checking
by Lu Jia, Maokang Chen, Chen Chen and Yanfeng Jin
Buildings 2025, 15(15), 2633; https://doi.org/10.3390/buildings15152633 - 25 Jul 2025
Viewed by 301
Abstract
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a [...] Read more.
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a method combining semantic web technology and IFC data to enhance human–machine collaborative inspection capabilities. First, a five-step process integrated with domain specifications is designed to construct a building object ontology, covering most architectural objects in the AEC domain. Second, a set of mapping rules is developed based on the expression mechanisms of IFC entities to establish a semantic bridge between IfcOWL and the building object ontology. Then, by analyzing regulatory codes, query rule templates for major constraint types are developed using semantic web SPARQL. Finally, the feasibility of the method is validated through a case study based on the Jena framework. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

26 pages, 16392 KiB  
Article
TOSD: A Hierarchical Object-Centric Descriptor Integrating Shape, Color, and Topology
by Jun-Hyeon Choi, Jeong-Won Pyo, Ye-Chan An and Tae-Yong Kuc
Sensors 2025, 25(15), 4614; https://doi.org/10.3390/s25154614 - 25 Jul 2025
Viewed by 326
Abstract
This paper introduces a hierarchical object-centric descriptor framework called TOSD (Triplet Object-Centric Semantic Descriptor). The goal of this method is to overcome the limitations of existing pixel-based and global feature embedding approaches. To this end, the framework adopts a hierarchical representation that is [...] Read more.
This paper introduces a hierarchical object-centric descriptor framework called TOSD (Triplet Object-Centric Semantic Descriptor). The goal of this method is to overcome the limitations of existing pixel-based and global feature embedding approaches. To this end, the framework adopts a hierarchical representation that is explicitly designed for multi-level reasoning. TOSD combines shape, color, and topological information without depending on predefined class labels. The shape descriptor captures the geometric configuration of each object. The color descriptor focuses on internal appearance by extracting normalized color features. The topology descriptor models the spatial and semantic relationships between objects in a scene. These components are integrated at both object and scene levels to produce compact and consistent embeddings. The resulting representation covers three levels of abstraction: low-level pixel details, mid-level object features, and high-level semantic structure. This hierarchical organization makes it possible to represent both local cues and global context in a unified form. We evaluate the proposed method on multiple vision tasks. The results show that TOSD performs competitively compared to baseline methods, while maintaining robustness in challenging cases such as occlusion and viewpoint changes. The framework is applicable to visual odometry, SLAM, object tracking, global localization, scene clustering, and image retrieval. In addition, this work extends our previous research on the Semantic Modeling Framework, which represents environments using layered structures of places, objects, and their ontological relations. Full article
(This article belongs to the Special Issue Event-Driven Vision Sensor Architectures and Application Scenarios)
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Advancing Semantic Enrichment Compliance in BIM: An Ontology-Based Framework and IDS Evaluation
by Tomo Cerovšek and Mohamed Omar
Buildings 2025, 15(15), 2621; https://doi.org/10.3390/buildings15152621 - 24 Jul 2025
Viewed by 416
Abstract
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of [...] Read more.
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of the Information Delivery Specification (IDS) and its associated tools. The controlled vocabularies are important as they provide support to standardization, information retrieval, data-driven workflows, and AI integration. Information requirements are classified by input type and project interaction context (phase, origin, project role, and communication), as well as by applicability (data management function, model granularity, BIM usage, and checkability). The ontology comprises seven categories: identity, geometry, design/performance, fabrication/construction, operation/maintenance, cost, and regulatory category, each linked to verification principles such as uniqueness and consistency. This enables systematic implementation of validation checks aligned with company and project needs. We introduce three ICC workflows in relation to the BIM authoring tools (inside, outside, and hybrid) and suggest key criteria for the functional and non-functional evaluation of IDS tools. Empirical results from a real project using five IDS tools reveal implementation issues with the classification facet, regular expressions, and issue reporting. The proposed ontology and framework lay the foundation for a scalable, transparent ICC within openBIM. The results also provide ICC process guidance for practitioners, a SWOT analysis that can inform enhancements to the existing IDS schema, identify possible inputs for certification of IDS tools, and generate innovative ideas for research and development. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

19 pages, 2689 KiB  
Article
A Multi-Temporal Knowledge Graph Framework for Landslide Monitoring and Hazard Assessment
by Runze Wu, Min Huang, Haishan Ma, Jicai Huang, Zhenhua Li, Hongbo Mei and Chengbin Wang
GeoHazards 2025, 6(3), 39; https://doi.org/10.3390/geohazards6030039 - 23 Jul 2025
Viewed by 322
Abstract
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, [...] Read more.
In the landslide chain from pre-disaster conditions to landslide mitigation and recovery, time is an important factor in understanding the geological hazards process and managing landsides. Static knowledge graphs are unable to capture the temporal dynamics of landslide events. To address this limitation, we propose a systematic framework for constructing a multi-temporal knowledge graph of landslides that integrates multi-source temporal data, enabling the dynamic tracking of landslide processes. Our approach comprises three key steps. First, we summarize domain knowledge and develop a temporal ontology model based on the disaster chain management system. Second, we map heterogeneous datasets (both tabular and textual data) into triples/quadruples and represent them based on the RDF (Resource Description Framework) and quadruple approaches. Finally, we validate the utility of multi-temporal knowledge graphs through multidimensional queries and develop a web interface that allows users to input landslide names to retrieve location and time-axis information. A case study of the Zhangjiawan landslide in the Three Gorges Reservoir Area demonstrates the multi-temporal knowledge graph’s capability to track temporal updates effectively. The query results show that multi-temporal knowledge graphs effectively support multi-temporal queries. This study advances landslide research by combining static knowledge representation with the dynamic evolution of landslides, laying the foundation for hazard forecasting and intelligent early-warning systems. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

24 pages, 355 KiB  
Article
Psychedelics and New Materialism: Challenging the Science–Spirituality Binary and the Onto-Epistemological Order of Modernity
by Mateo Sánchez Petrement
Religions 2025, 16(8), 949; https://doi.org/10.3390/rel16080949 - 22 Jul 2025
Viewed by 942
Abstract
This essay argues for the reciprocal benefits of joining the new theories of matter emerging out of critical posthumanism and the psychedelic drugs currently experiencing a so-called “renaissance” in global north societies. While the former’s twin emphasis on relationality and embodiment is perfectly [...] Read more.
This essay argues for the reciprocal benefits of joining the new theories of matter emerging out of critical posthumanism and the psychedelic drugs currently experiencing a so-called “renaissance” in global north societies. While the former’s twin emphasis on relationality and embodiment is perfectly suited to capture and ground the ontological, epistemological, and ethical implications of psychedelic experiences of interconnectedness and transformation, these substances are in turn powerful companions through which to enact a “posthuman phenomenology” that helps us with the urgent task to “access, amplify, and describe” our deep imbrication with our more-than-human environments. In other words, I argue that while the “new materialism” emerging out of posthumanism can help elaborate a psychedelic rationality, psychedelics can in turn operate as educators in materiality. It is from this materialist perspective that we can best make sense of psychedelics’ often touted potential for social transformation and the enduring suspicion that they are somehow at odds with the “ontoepistemological order” of modernity. From this point of view, I contend that a crucial critical move is to push against the common trope that this opposition is best expressed as a turn from the narrow scientific and “consumerist materialism” of modern Western societies to more expansive “spiritual” worldviews. Pushing against this science-–spirituality binary, which in fact reproduces modern “indivi/dualism” by confining psychedelic experience inside our heads, I argue instead that what is in fact needed to think through and actualize such potentials is an increased attention to our material transcorporeality. In a nutshell, if we want psychedelics to inform social change, we must be more, not less, materialist—albeit by redefining matter in a rather “weird”, non-reductive way and by redefining consciousness as embodied. By the end of the essay, attaching psychedelics to a new materialism will enable us to formulate a “material spirituality” that establishes psychedelics’ political value less in an idealistic or cognitive “politics of consciousness” and more in a “materialization of critique”. Full article
(This article belongs to the Special Issue Psychedelics and Religion)
23 pages, 1842 KiB  
Article
From Dots and Lines to Connections: Re-Evaluation of Relational Thinking in Architecture
by Ömür Kararmaz and Çiğdem Polatoğlu Serter
Buildings 2025, 15(14), 2548; https://doi.org/10.3390/buildings15142548 - 19 Jul 2025
Viewed by 381
Abstract
Relational thinking, as both an ontological and epistemological approach, is inherently intertwined with the discipline of architecture. Yet, despite its growing visibility in the information age, its conceptual depth and theoretical implications remain systematically underexplored within architectural discourse. This study investigates how relational [...] Read more.
Relational thinking, as both an ontological and epistemological approach, is inherently intertwined with the discipline of architecture. Yet, despite its growing visibility in the information age, its conceptual depth and theoretical implications remain systematically underexplored within architectural discourse. This study investigates how relational thinking is reflected in 21st-century architecture by analyzing the relevant literature and identifying both commonalities and divergences. Methodologically, the research follows a qualitative framework structured in three phases. First, 40 texts engaging with relationality in architecture were systematically selected via JSTOR and SCOPUS using the PRISMA protocol. Second, a descriptive content analysis was conducted, resulting in five thematic clusters: theoretical, methodological, technological, ecological, and social. Finally, an interpretive synthesis was developed by analyzing the convergence and divergence across these clusters. The findings demonstrate that relational thinking in architecture manifests through complex, multi-scalar integrations of knowledge, practice, and context. Each cluster foregrounds specific aspects of relationality, yet their overlaps reveal underlying patterns of cross-disciplinary resonance. This study suggests that relational thinking is reshaping architectural epistemology—moving it beyond static, form-based paradigms toward dynamic, interconnected systems thinking. These insights underline the necessity of further theoretical engagement with relationality as a core principle of contemporary architectural knowledge. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 2051 KiB  
Article
Urinary Extracellular Vesicle Signatures as Biomarkers in Prostate Cancer Patients
by Sigrun Lange, Darryl Ethan Bernstein, Nikolay Dimov, Srinivasu Puttaswamy, Ian Johnston, Igor Kraev, Sarah R. Needham, Nikhil Vasdev and Jameel M. Inal
Int. J. Mol. Sci. 2025, 26(14), 6895; https://doi.org/10.3390/ijms26146895 - 18 Jul 2025
Viewed by 617
Abstract
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study [...] Read more.
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study assessed U-EV profiles from individuals affected by PCa at Gleason scores 6–9, compared with healthy controls. U-EVs were characterised and assessed for proteomic cargo content by LC-MS/MS analysis. The U-EV proteomes were compared for enrichment of gene ontology (GO), KEGG, and Reactome pathways, as well as disease–gene associations. U-EVs ranged in size from 50 to 350 nm, with the majority falling within the 100–200 nm size range for all groups. U-EV protein cargoes from the PCa groups differed significantly from healthy controls, with 16 protein hits unique to the GS 6–7 and 88 hits to the GS 8–9 U-EVs. Pathway analysis showed increased enrichment in the PCa U-EVs of biological process GO (5 and 37 unique to GS 6–7 and GS 8–9, respectively), molecular function GO (3 and 6 unique to GS 6–7 and GS 8–9, respectively), and cellular component GO (10 and 22 unique to GS 6–7 and GS 8–9, respectively) pathways. A similar increase was seen for KEGG pathways (11 unique to GS 8–9) and Reactome pathways (102 unique to GS 8–9). Enrichment of disease–gene associations was also increased in the PCa U-EVs, with highest differences for the GS 8–9 U-EVs (26 unique terms). The pathway enrichment in the PCa U-EVs was related to several key inflammatory, cell differentiation, cell adhesion, oestrogen signalling, and infection pathways. Unique GO and KEGG pathways enriched for the GS 8–9 U-EVs were associated with cell–cell communication, immune and stress responses, apoptosis, peptidase activity, antioxidant activity, platelet aggregation, mitosis, proteasome, mRNA stability oxytocin signalling, cardiomyopathy, and several neurodegenerative diseases. Our findings highlight U-EVs as biomarkers to inform disease pathways in prostate cancer patients and offer a non-invasive biomarker tool for clinical use. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Functions of Extracellular Vesicles)
Show Figures

Figure 1

28 pages, 4054 KiB  
Article
A Core Ontology for Whole Life Costing in Construction Projects
by Adam Yousfi, Érik Andrew Poirier and Daniel Forgues
Buildings 2025, 15(14), 2381; https://doi.org/10.3390/buildings15142381 - 8 Jul 2025
Viewed by 394
Abstract
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. [...] Read more.
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. The ontology formalizes WLC knowledge based on ISO 15686-5 and incorporates professional insights from surveys and expert focus groups. Implemented in web ontology language (OWL), it models cost categories, temporal aspects, and discounting logic in a machine-interpretable format. The ontology’s interoperability and extensibility are validated through its integration with the building topology ontology (BOT). Results show that the ontology effectively supports cost breakdown, time-based projections, and calculation of discounted values, offering a reusable structure for different project contexts. Practical validation was conducted using SQWRL queries and Python scripts for cost computation. The solution enables structured data integration and can support decision-making throughout the building life cycle. This work lays the foundation for future semantic web applications such as knowledge graphs, bridging the current technological gap and facilitating more informed and collaborative use of WLC in construction. Full article
(This article belongs to the Special Issue Emerging Technologies and Workflows for BIM and Digital Construction)
Show Figures

Figure 1

35 pages, 4572 KiB  
Review
Land Use and Land Cover Products for Agricultural Mapping Applications in Brazil: Challenges and Limitations
by Priscilla Azevedo dos Santos, Marcos Adami, Michelle Cristina Araujo Picoli, Victor Hugo Rohden Prudente, Júlio César Dalla Mora Esquerdo, Gilberto Ribeiro de Queiroz, Cleverton Tiago Carneiro de Santana and Michel Eustáquio Dantas Chaves
Remote Sens. 2025, 17(13), 2324; https://doi.org/10.3390/rs17132324 - 7 Jul 2025
Viewed by 1401
Abstract
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC [...] Read more.
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC products specifically tailored for this purpose. However, the differences and the results of these products have not yet been synthesized to provide coherent guidance in assessing their spatio-temporal agricultural dynamics and identifying promising approaches and issues that affect LULC analysis. This review represents the first comprehensive assessment of the advantages, challenges, and limitations, highlighting the main issues when dealing with contrasting LULC maps. These challenges include incompatibility, a lack of updates, non-systematic classification ontologies, and insufficient data to monitor Brazilian LULC information. The consequences include impacts on intercropping estimation, diminished representation or misrepresentation of croplands; temporal discontinuity; an insufficient number of classes for subannual cropping evaluation; and reduced compatibility, comparability, and spectral separability. The study provides insights into the use of these products as primary input data for remote sensing-based applications. Moreover, it provides prospects for enhancing existing mapping efforts or developing new national-level initiatives to represent the spatio-temporal variation of Brazilian agriculture. Full article
Show Figures

Figure 1

29 pages, 3568 KiB  
Article
Gender-Responsive Research and Innovation: Issues and Initiatives
by Sanaz Nikghadam-Hojjati, Eda Marchetti, Maria Gustavsson, Filipa Ferrada, Ana Inês Oliveira, Agneta Halvarsson Lundqvist, Anna Fogelberg Eriksson, Oliviu Matei, Jose Barata, Sepideh Kalateh, Nataša Božić, Simona Stojanova, Said Daoudagh and Laura Andreica
Sustainability 2025, 17(13), 6215; https://doi.org/10.3390/su17136215 - 7 Jul 2025
Viewed by 905
Abstract
The demands and preferences of men are often prioritized in societal challenges, despite women comprising half of the world’s population. Gender-Responsive Research and Innovation (GRRI) offers an approach to address this bias, promoting comprehensive and equitable solutions to better-understood real-world problems. The successful [...] Read more.
The demands and preferences of men are often prioritized in societal challenges, despite women comprising half of the world’s population. Gender-Responsive Research and Innovation (GRRI) offers an approach to address this bias, promoting comprehensive and equitable solutions to better-understood real-world problems. The successful implementation of GRRI depends on recognizing obstacles, staying informed about relevant initiatives, and using this knowledge to develop effective strategies, ultimately contributing to a fairer and more responsive society. This research, using a mixed-methods approach, identified 10 critical GRRI concerns, measures, and strategies to address them, as well as 18 noteworthy initiatives across research, industrial, and regulatory contextual fields. It also enhances the understanding of GRRI, laying the groundwork for an ontology of GRRI that can benefit policymakers, organizations, and researchers seeking more inclusive strategies and practices. Full article
Show Figures

Figure 1

12 pages, 349 KiB  
Article
Agentic AI for Cultural Heritage: Embedding Risk Memory in Semantic Digital Twins
by George Pavlidis
Computers 2025, 14(7), 266; https://doi.org/10.3390/computers14070266 - 7 Jul 2025
Viewed by 772
Abstract
Cultural heritage preservation increasingly relies on data-driven technologies, yet most existing systems lack the cognitive and temporal depth required to support meaningful, transparent, and policy-informed decision-making. This paper proposes a conceptual framework for memory-enabled, semantically grounded AI agents in the cultural domain, showing [...] Read more.
Cultural heritage preservation increasingly relies on data-driven technologies, yet most existing systems lack the cognitive and temporal depth required to support meaningful, transparent, and policy-informed decision-making. This paper proposes a conceptual framework for memory-enabled, semantically grounded AI agents in the cultural domain, showing how the integration of the ICCROM/CCI ABC method for risk assessment into the Panoptes ontology enables the structured encoding of risk cognition over time. This structured risk memory becomes the foundation for agentic reasoning, supporting prioritization, justification, and long-term preservation planning. It is argued that this approach constitutes a principled step toward the development of Cultural Agentic AI: autonomous systems that remember, reason, and act in alignment with cultural values. Proof-of-concept simulations illustrate how memory-enabled agents can trace evolving risk patterns, trigger policy responses, and evaluate mitigation outcomes through structured, explainable reasoning. Full article
Show Figures

Figure 1

23 pages, 1290 KiB  
Article
A KeyBERT-Enhanced Pipeline for Electronic Information Curriculum Knowledge Graphs: Design, Evaluation, and Ontology Alignment
by Guanghe Zhuang and Xiang Lu
Information 2025, 16(7), 580; https://doi.org/10.3390/info16070580 - 6 Jul 2025
Viewed by 503
Abstract
This paper proposes a KeyBERT-based method for constructing a knowledge graph of the electronic information curriculum system, aiming to enhance the structured representation and relational analysis of educational content. Electronic Information Engineering curricula encompass diverse and rapidly evolving topics; however, existing knowledge graphs [...] Read more.
This paper proposes a KeyBERT-based method for constructing a knowledge graph of the electronic information curriculum system, aiming to enhance the structured representation and relational analysis of educational content. Electronic Information Engineering curricula encompass diverse and rapidly evolving topics; however, existing knowledge graphs often overlook multi-word concepts and more nuanced semantic relationships. To address this gap, this paper presents a KeyBERT-enhanced method for constructing a knowledge graph of the electronic information curriculum system. Utilizing teaching plans, syllabi, and approximately 500,000 words of course materials from 17 courses, we first extracted 500 knowledge points via the Term Frequency–Inverse Document Frequency (TF-IDF) algorithm to build a baseline course–knowledge matrix and visualize the preliminary graph using Graph Convolutional Networks (GCN) and Neo4j. We then applied KeyBERT to extract about 1000 knowledge points—approximately 65% of extracted terms were multi-word phrases—and augment the graph with co-occurrence and semantic-similarity edges. Comparative experiments demonstrate a ~20% increase in non-zero matrix coverage and a ~40% boost in edge count (from 5100 to 7100), significantly enhancing graph connectivity. Moreover, we performed sensitivity analysis on extraction thresholds (co-occurrence ≥ 5, similarity ≥ 0.7), revealing that (5, 0.7) maximizes the F1-score at 0.83. Hyperparameter ablation over n-gram ranges [(1,1),(1,2),(1,3)] and top_n [5, 10, 15] identifies (1,3) + top_n = 10 as optimal (Precision = 0.86, Recall = 0.81, F1 = 0.83). Finally, GCN downstream tests show that, despite higher sparsity (KeyBERT 64% vs. TF-IDF 40%), KeyBERT features achieve Accuracy = 0.78 and F1 = 0.75, outperforming TF-IDF’s 0.66/0.69. This approach offers a novel, rigorously evaluated solution for optimizing the electronic information curriculum system and can be extended through terminology standardization or larger data integration. Full article
Show Figures

Figure 1

21 pages, 2655 KiB  
Article
Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations
by Fiona Hui, Zhiqiang Pang, Charles Viau, Gerd U. Balcke, Julius N. Fobil, Niladri Basu and Jianguo Xia
Metabolites 2025, 15(7), 456; https://doi.org/10.3390/metabo15070456 - 5 Jul 2025
Viewed by 694
Abstract
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this [...] Read more.
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this study, we investigated the alterations in metabolic profiles due to e-waste exposure and linked these metabolites to systemic biological effects. Methods: We applied untargeted high-resolution metabolomics using dual-column LC-MS/MS and a multi-step analysis workflow combining MS1 feature detection, MS2 annotation, and chemical ontology classification, to characterize urinary metabolic alterations in 91 e-waste workers and 51 community controls associated with the Agbogbloshie site (Accra, Ghana). The impacts of heavy metal exposure in e-waste workers were assessed by establishing linear regression and four-parameter logistic (4PL) models between heavy metal levels and metabolite concentrations. Results: Significant metal-associated metabolomic changes were identified. Both linear and nonlinear models revealed distinct sets of exposure-responsive compounds, highlighting diverse biological responses. Ontology-informed annotation revealed systemic effects on lipid metabolism, oxidative stress pathways, and xenobiotic biotransformation. This study demonstrates how integrating chemical ontology and nonlinear modeling facilitates exposome interpretation in complex environments and provides a scalable template for environmental biomarker discovery. Conclusions: Integrating dose–response modeling and chemical ontology analysis enables robust interpretation of exposomics datasets when direct compound identification is limited. Our findings indicate that e-waste exposure induces systemic metabolic alterations that can underlie health risks and diseases. Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
Show Figures

Graphical abstract

Back to TopTop