Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (443)

Search Parameters:
Keywords = the Yangtze River economic belt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

25 pages, 1343 KiB  
Article
Is the Energy Quota Trading Policy a Solution to the Decarbonization of Energy Consumption in China?
by Mengyu Li, Bin Zhong and Bingnan Guo
Sustainability 2025, 17(14), 6644; https://doi.org/10.3390/su17146644 - 21 Jul 2025
Viewed by 302
Abstract
The energy quota trading policy is a pivotal market-oriented environmental regulation policy that propels the reform of the energy structure. Utilizing panel data from 30 provinces in China covering the period from 2012 to 2022, this study employed a difference-in-differences model to systematically [...] Read more.
The energy quota trading policy is a pivotal market-oriented environmental regulation policy that propels the reform of the energy structure. Utilizing panel data from 30 provinces in China covering the period from 2012 to 2022, this study employed a difference-in-differences model to systematically examine the influence of the energy quota trading policy on the decarbonization of energy consumption, and further explores two transmission mechanisms of green technology innovation and energy consumption intensity through mechanism tests. The study reveals several key findings: (1) The energy quota trading policy significantly enhances the decarbonization of energy consumption. (2) This policy encourages the adoption of clean energy by fostering green technological innovation and decreasing overall energy consumption. As a result, it makes a considerable contribution to the decarbonization process in energy usage. (3) The heterogeneity analysis demonstrates that in areas with low levels of industrialization and plentiful resources, as well as within the Yangtze River Economic Belt and the central and western regions, the effects of the policy are significantly more pronounced. Conversely, in regions characterized by high industrialization and limited resources, particularly in the eastern region, the effectiveness of the policy is comparatively diminished. Furthermore, this study not only offers empirical evidence supporting the optimization and enhancement of the energy quota trading policy but also presents recommendations for improving the trading market, regional policies, and fostering green technological innovation. Full article
Show Figures

Figure 1

25 pages, 8466 KiB  
Article
Influence on Existing Underlying Metro Tunnel Deformation from Small Clear-Distance Rectangular Box Jacking: Monitoring and Simulation
by Chong Ma, Hao Zhou and Baosong Ma
Buildings 2025, 15(14), 2547; https://doi.org/10.3390/buildings15142547 - 19 Jul 2025
Viewed by 280
Abstract
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line [...] Read more.
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line metro tunnel with minimal vertical clear distance. Integrated field monitoring and finite element simulations were conducted to analyze the tunnel’s deformation behavior during various jacking phases. The results show that the upline tunnel experienced greater uplift than the downline tunnel, with maximum vertical displacement occurring directly beneath the jacking axis. The affected zone extended approximately 20 m beyond the pipe gallery boundaries. Both the tunnel vault and ballast bed exhibited vertical uplift, while the hance displaced laterally toward the launching shaft. These deformations showed clear stage-dependent patterns strongly influenced by the relative position of the jacking machine. Numerical simulations demonstrated that doubling the pipe–tunnel clearance reduced the vault displacement by 58.87% (upline) and 51.95% (downline). Increasing the pipe–slurry friction coefficient from 0.1 to 0.3 caused the hance displacement difference to rise from 0.12 mm to 0.36 mm. Further sensitivity analysis reveals that when the jacking machine is positioned directly above the tunnel, grouting pressure is the greatest influence on the structural response and must be carefully controlled. The proposed methodology and findings offer valuable insights for future applications in similar tunnelling projects. Full article
Show Figures

Figure 1

21 pages, 831 KiB  
Article
Exploring Carbon Emission Reduction Pathways: Analysis of Energy Conservation Potential in Yangtze River Economic Belt
by Weiping Cui, Rongjia Song and Zhen Li
Systems 2025, 13(7), 601; https://doi.org/10.3390/systems13070601 - 17 Jul 2025
Viewed by 242
Abstract
In response to the escalating global energy demands, the optimization of energy efficiency has emerged as a linchpin for sustainable development. This study considers the potential of energy conservation and emission reduction in one of the most economically vibrant and resource-intensive regions in [...] Read more.
In response to the escalating global energy demands, the optimization of energy efficiency has emerged as a linchpin for sustainable development. This study considers the potential of energy conservation and emission reduction in one of the most economically vibrant and resource-intensive regions in China, the Yangtze River Economic Belt, encompassing 11 provinces and cities. The SBM-Undesirable model is used to measure the energy efficiency and analyze the temporal-spatial distribution. Moran’s I is employed to analyze the overall spatial pattern and local regional differences in energy efficiency. The systematic analysis shows that the temporal fluctuation exists in the development of energy efficiency, and the average of the Yangtze River Economic Belt exhibits a development pattern of “downstream > midstream > upstream” from the spatial perspective. The upstream region would require way more effort than others to decarbonize and improve efficiency. At the municipal level, the overall energy efficiency of 11 provinces and cities fails to reach an efficient state, and potential for improvement exists. Moreover, the potential model of energy conservation and emission reduction is constructed. We further explore the pathways of energy efficiency improvement for each region in the Yangtze River Economic Belt, including pathways of “High-Efficiency Type”, “High Emission Reduction Potential”, and “Extensive Development Type”. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

13 pages, 710 KiB  
Article
A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
by Yinhua Guo, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang and Zhan Chen
Plants 2025, 14(14), 2202; https://doi.org/10.3390/plants14142202 - 16 Jul 2025
Viewed by 305
Abstract
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were [...] Read more.
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were collected from an abandoned coal mine and adjacent pristine natural areas within the dam-adjacent section of the Three Gorges Reservoir Area to establish three soil treatment groups: unpolluted soil (T1, 0.18 mg·kg−1 Cd), a 1:1 mixture of contaminated and unpolluted soil (T2, 0.35 mg·kg−1 Cd), and contaminated coal mine soil (T3, 0.54 mg·kg−1 Cd). This study aimed to investigate the growth status of plants, Cd accumulation and translocation characteristics, and the relationship between them and soil environmental factors. Woody plants exhibited significant advantages in aboveground biomass accumulation. Under T3 treatment, the Cd extraction amount of S. babylonica (224.93 mg) increased by about 36 times compared to T1, and the extraction efficiency (6.42%) was significantly higher than other species. Among the herbaceous species, A. argyi showed the maximum Cd extraction amount (66.26 mg) and extraction efficiency (3.11%) during T2 treatment. While A. hypochondriacus exhibited a trend of increasing extraction amount but decreasing extraction efficiency with increasing concentration. With the exception of S. babylonica under T1 treatment (BCF = 0.78), the bioconcentration factor was greater than 1 in both woody (BCF = 1.39–6.42) and herbaceous species (BCF = 1.39–3.11). However, herbaceous plants demonstrated significantly higher translocation factors (TF = 1.58–3.43) compared to woody species (TF = 0.31–0.87). There was a significant negative correlation between aboveground phosphorus (P) content and root Cd (p < 0.05), while underground nitrogen (N) content was positively correlated to aboveground Cd content (p < 0.05). Soil total N and available P were significantly positively correlated with plant Cd absorption, whereas total potassium (K) showed a negative correlation. This study demonstrated that woody plants can achieve long-term remediation through biomass advantages, while herbaceous plants, with their high transfer efficiency, are suitable for short-term rotation. In the future, it is suggested to conduct a mixed planting model of woody and herbaceous plants to remediate Cd-contaminated soils in the tailing areas of reservoir areas. This would synergistically leverage the dual advantages of root retention and aboveground removal, enhancing remediation efficiency. Concurrent optimization of soil nutrient management would further improve the Cd remediation efficiency of plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

22 pages, 8509 KiB  
Article
The Spatial Distribution and Risk Assessment of Nutrient Elements and Heavy Metal Pollution in Sediments: A Case Study of a Typical Urban Lake in the Middle and Lower Reaches of the Yangtze River
by Ji Li, Menglu Zhu, Yong Zhang, Jun Zhang, Jiang Du, Yifan Wu, Zhaocai Zeng, Quan Sun, Hongxuan Li, Lei Zhang, Yajie Zheng and Bolin Li
Water 2025, 17(14), 2094; https://doi.org/10.3390/w17142094 - 14 Jul 2025
Viewed by 295
Abstract
The ecological environment of urban lakes affected by human activities is deteriorating rapidly. As a source and sink of pollutants in the lake environment, sediments have become the focus of environmental assessments. At present, most of the studies only conduct pollution assessments on [...] Read more.
The ecological environment of urban lakes affected by human activities is deteriorating rapidly. As a source and sink of pollutants in the lake environment, sediments have become the focus of environmental assessments. At present, most of the studies only conduct pollution assessments on surface sediments. In this study, taking the typical urban lakes GanTang Lake and NanMen Lake (G&N Lake) as the background, not only is the planar spatial distribution of their nutrient elements, seven kinds of heavy metals, and As analyzed in detail, but risk assessments are also carried out on the pollution conditions at different depths. The causes of pollution at different depths are analyzed. It is found that in this lake, with the increase in depth, the pollution situation decreases slightly, but the pollution of nutrient elements is severe. There is severe pollution of nutrient elements at a depth of up to 1 m in the whole lake sediment. In the sediments with a depth of up to 1 m, more than 90% of the areas in the whole lake are at or above the moderate pollution level of Hg, and more than 70% of the areas are under slight pollution of Cd, resulting in the ecological risk level of the whole lake being at or above the high-risk level. Urban lake sediment management is inherently complex, driven by multifaceted factors where intensive anthropogenic activities constitute the primary pollution source. This research provides insights to guide restoration strategies and sustainable development policies for lacustrine ecosystems. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 244
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

21 pages, 579 KiB  
Article
Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides
by Yan-Bo Cheng, Dan Wu, Liang Gao, Shun Rong, Guo-Huan Xu and Xu-Fang Liang
Fishes 2025, 10(7), 345; https://doi.org/10.3390/fishes10070345 - 11 Jul 2025
Viewed by 337
Abstract
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control [...] Read more.
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control (15% SF; GK00) and three other diets replacing 33.3% (GK05), 66.7% (GK10), or 100% (GK15) of SF with GKM. Each diet was randomly administered to triplicate tanks of fish (10.49 ± 0.232 g) for a 10-week feeding trial. Results showed that the GKM inclusion groups significantly improved the fish survival and feed intake. Fish in GK05 and GK10 groups exhibited significantly higher final body weight, weight gain, and specific growth rate than the GK00 group, while GK15 showed no significant increase in these metrics. There was no impairment in protein, lipid, phosphorus, and energy retention efficiency in the GK05 and GK10 groups compared to those of the GK00 group. Apparent digestibility for feed dry matter, protein, lipid, phosphorus, and the 16 amino acids was not decreased in the GK05 and GK10 groups relative to the GK00 group. In addition, this study revealed reduced phosphorus waste per kilogram of weight gain in GK05 and GK10. In conclusion, these findings position GKM as a sustainable alternative to SF in feed for LMB. Full article
Show Figures

Figure 1

43 pages, 2590 KiB  
Article
A Study on the Impact of Industrial Robot Applications on Labor Resource Allocation
by Kexu Wu, Zhiwei Tang and Longpeng Zhang
Systems 2025, 13(7), 569; https://doi.org/10.3390/systems13070569 - 11 Jul 2025
Viewed by 512
Abstract
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path [...] Read more.
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path of these technologies, while systematic analyses of how industrial robots affect labor resource allocation efficiency across different regional and industrial contexts in China remain scarce. In particular, research on the mechanisms and heterogeneity of these effects is still underdeveloped, calling for deeper investigation into their transmission channels and policy implications. Drawing on panel data from 280 prefecture-level cities in China from 2006 to 2023, this paper employs a Bartik-style instrumental variable approach to measure the level of industrial robot penetration and constructs a two-way fixed effects model to assess its impact on urban labor misallocation. Furthermore, the analysis introduces two mediating variables, industrial upgrading and urban innovation capacity, and applies a mediation effect model combined with Bootstrap methods to empirically test the underlying transmission mechanisms. The results reveal that a higher level of industrial robot adoption is significantly associated with a lower degree of labor misallocation, indicating a notable improvement in labor resource allocation efficiency. Heterogeneity analysis shows that this effect is more pronounced in cities outside the Yangtze River Economic Belt, in those experiencing severe population aging, and in areas with a relatively weak manufacturing base. Mechanism tests further indicate that industrial robots indirectly promote labor allocation efficiency by facilitating industrial upgrades and enhancing innovation capacity. However, in the short term, improvements in innovation capacity may temporarily intensify labor mismatch due to structural frictions. Overall, industrial robots not only exert a direct positive impact on the efficiency of urban labor allocation but also indirectly contribute to resource optimization through structural transformation and innovation system development. These findings underscore the need to account for regional disparities and demographic structures when advancing intelligent manufacturing strategies. Policymakers should coordinate the development of vocational training systems and innovation ecosystems to strengthen the dynamic alignment between technological adoption and labor market restructuring, thereby fostering more inclusive and high-quality economic growth. Full article
Show Figures

Figure 1

28 pages, 4142 KiB  
Article
Evaluating and Predicting Green Technology Innovation Efficiency in the Yangtze River Economic Belt: Based on the Joint SBM Model and GM(1,N|λ,γ) Model
by Jie Wang, Pingping Xiong, Shanshan Wang, Ziheng Yuan and Jiawei Shangguan
Sustainability 2025, 17(13), 6229; https://doi.org/10.3390/su17136229 - 7 Jul 2025
Viewed by 450
Abstract
Green technology innovation (GTI) is pivotal for driving energy transition and low-carbon development in manufacturing. This study evaluates the spatiotemporal efficiency and predicts trends of GTI in China’s Yangtze River Economic Belt (YREB, 2010–2022) using a combined “input-desirable output-undesirable output” framework. Combining the [...] Read more.
Green technology innovation (GTI) is pivotal for driving energy transition and low-carbon development in manufacturing. This study evaluates the spatiotemporal efficiency and predicts trends of GTI in China’s Yangtze River Economic Belt (YREB, 2010–2022) using a combined “input-desirable output-undesirable output” framework. Combining the SBM and super-efficiency SBM models, we evaluate regional GTI efficiency (2010–2022) and reveal its spatiotemporal patterns. An improved GM(1,N|λ,γ) model with a new information adjustment parameter (λ) and nonlinear parameter (γ) is applied for prediction. Key findings include: (1) The GTI efficiency remains generally low during the study period (provincial average: 0.7049–1.4526), showing an “east-high, west-low” spatial heterogeneity. Temporally, provincial efficiency peaked in 2016, with intensified fluctuations around 2020 due to policy iterations and external shocks. (2) Regional efficiency displays a stepwise decline pattern from downstream to middle-upstream areas. Middle-upstream regions face efficiency constraints from insufficient inputs and undesirable output redundancy, yet exhibit significant optimization potential. (3) Parameter analysis highlights that downstream provinces (γ ≈ 1) exhibit mature green adoption, while mid-upstream regions (e.g., Hubei) face severe technological lock-in and reliance on traditional energy. Additionally, middle and downstream provinces (e.g., Sichuan, Anhui) with low λ values show rapid policy responsiveness, but face efficiency volatility from frequent shifts. (4) The improved GM(1,N|λ,γ) model shows markedly enhanced prediction accuracy compared to traditional grey models, effectively addressing the “poor-information, grey-characteristic” data trend extraction challenges in GTI research. Based on these findings, targeted policy recommendations are proposed to advance GTI development. Full article
Show Figures

Graphical abstract

22 pages, 3591 KiB  
Article
Dietary Supplementation with Encapsulated or Non-Encapsulated Sodium Butyrate Enhances Growth, Antioxidant Defense, Immunity, and Gut Health in Largemouth Bass (Micropterus salmoides)
by Minghui He, Zhiwei Zou, Wanjia Zhu, Haipeng Li, Ting Liang, Liwei Liu and Jianmei Su
Microorganisms 2025, 13(7), 1594; https://doi.org/10.3390/microorganisms13071594 - 6 Jul 2025
Viewed by 473
Abstract
This study aimed to evaluate the effects of dietary supplementation with sodium butyrate (SB) in different forms on the growth performance, antioxidant capacity, immune response, and intestinal health of largemouth bass (Micropterus salmoides). Five diets were formulated: a basal diet (SB0), [...] Read more.
This study aimed to evaluate the effects of dietary supplementation with sodium butyrate (SB) in different forms on the growth performance, antioxidant capacity, immune response, and intestinal health of largemouth bass (Micropterus salmoides). Five diets were formulated: a basal diet (SB0), diets with 1000 (ESB1), 1500 (ESB2), and 2000 mg/kg encapsulated SB (ESB3), and a diet with 2000 mg/kg raw powder sodium butyrate (RSB, non-encapsulated). After 49 days of feeding trials, the ESB2 group exhibited significantly higher weight gain and specific growth rates and a lower feed coefficient than those of the SB0 group (p < 0.05). Compared with the SB0 group, proximal intestinal villus length and width were significantly increased in the ESB1, ESB2, and ESB3 groups (p < 0.05). The expressions of tight junction genes zo-1, claudin-1, and claudin-4 were up-regulated in these SB-supplemented groups and most pronounced in the ESB2 group (p < 0.05). Compared with the SB0 group, antioxidant enzyme activities (catalase and superoxide dismutase) and their gene expressions increased in the ESB1, ESB2, and RSB groups (p < 0.05). Immune-related genes il-10 and tgf-β1 were up-regulated in the ESB1 and ESB2 groups, while their il-8, il-1β, and tnf-α were down-regulated (p < 0.05). The ESB2 group had higher intestinal abundance of Firmicutes and Lactobacillus. In conclusion, dietary supplementation with 1500 mg/kg encapsulated SB (ESB2) improved growth, antioxidant capacity, immunity, and gut health in largemouth bass. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

27 pages, 6583 KiB  
Article
Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China
by Nana Zhang, Kun Zeng, Xingsheng Xia and Gang Jiang
Sustainability 2025, 17(13), 6134; https://doi.org/10.3390/su17136134 - 4 Jul 2025
Viewed by 321
Abstract
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) [...] Read more.
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) model, spatial autocorrelation analysis, and Geodetector were employed in this study along with panel data from 125 cities in the Yangtze River Economic Belt (YREB) for 2010, 2015, 2020, and 2022. Three key aspects in the region were investigated: the spatiotemporal evolution of cultivated land functions, characteristics of coupling coordination, and their underlying influencing factors. The results show the following: (1) The functions of cultivated land for food production, social support, and ecological maintenance are within the ranges of [0.023, 0.460], [0.071, 0.451], and [0.134, 0.836], respectively. The grain production function (GPF) shows a continuous increase, the social carrying function (SCF) first decreases and then increases, and the ecological maintenance function (EMF) first increases and then decreases. Spatially, these functions exhibit non-equilibrium characteristics: the grain production function is higher in the central and eastern regions and lower in the western region; the social support function is higher in the eastern and western regions and lower in the central region; and the ecological maintenance function is higher in the central and eastern regions and lower in the western region. (2) The coupling coordination degree of multiple functions of cultivated land is within the range of [0.158, 0.907], forming a spatial pattern where the eastern region takes the lead, the central region is rising, and the western region is catching up. (3) Moran’s I index increased from 0.376 in 2010 to 0.437 in 2022, indicating that the spatial agglomeration of the cultivated land multifunctionality coupling coordination degree has been continuously strengthening over time. (4) The spatial evolution of the coupling coordination of cultivated land multifunctionality is mainly influenced by the average elevation and average slope. However, the explanatory power of socioeconomic factors is continuously increasing. Interaction detection reveals characteristics of nonlinear enhancement or double-factor enhancement. The research results enrich the study of cultivated land multifunctionality and provide a decision-making basis for implementing the differentiated management of cultivated land resources and promoting mutual enhancement among different functions of cultivated land. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

24 pages, 2493 KiB  
Article
Green Transportation-Enabled High-Quality Economic Development in the Yangtze River Economic Belt: Regional Disparities and Dynamic Characteristics
by Cheng Li, Shiguo Deng, Yangzhou Li and Liping Zhu
Sustainability 2025, 17(13), 6018; https://doi.org/10.3390/su17136018 - 30 Jun 2025
Viewed by 404
Abstract
The Yangtze River Economic Belt (YEB), serving as a pivotal transportation corridor connecting eastern and western China and a national strategic development hub, plays a central role in driving high-quality economic development (HQAED) across the country. Based on the new development paradigm with [...] Read more.
The Yangtze River Economic Belt (YEB), serving as a pivotal transportation corridor connecting eastern and western China and a national strategic development hub, plays a central role in driving high-quality economic development (HQAED) across the country. Based on the new development paradigm with emphasis on green transformation and transportation integration, this study proposes a comprehensive evaluation framework for an HQAED index (HQAED) across five core dimensions. Employing the entropy-weighted CRITIC method to quantify provincial HQAED values, combined with Dagum–Gini coefficient analysis to examine regional inequality patterns and determinants, and complemented by kernel density estimation (KDE) for temporal dynamics analysis, this research reveals four key findings: (1) There are significant disparities in HQEDI levels across the YEB, with a clear east–west gradient: the lower reaches > middle reaches > upper reaches. (2) While the dimensions of green development and shared development have shown steady growth despite initial disadvantages, the openness dimension faces structural challenges that require particular attention. (3) The overall Gini coefficient fluctuates between 0.068 and 0.094, indicating moderate regional disparities with relatively limited inequality. (4) The rightward shift in the HQEDI kernel density curves confirms overall progress, but also highlights widening disparities in the upstream regions and growth stagnation in the midstream areas. Practically, the entropy–CRITIC fusion methodology offers a transferable framework for emerging economies measuring sustainability-transition progress, while the quantified “green transportation empowerment” effects provide actionable levers for policymakers to optimize ecological compensation mechanisms and cross-regional infrastructure investments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

24 pages, 4485 KiB  
Article
Spatiotemporal Evolution and Proximity Dynamics of “Three-Zone Spaces” in Yangtze River Basin Counties from 2000 to 2020
by Jiawuhaier Aishanjiang, Xiaofen Li, Fan Qiu, Yichen Jia, Kai Li and Junnan Xia
Land 2025, 14(7), 1380; https://doi.org/10.3390/land14071380 - 30 Jun 2025
Viewed by 287
Abstract
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and [...] Read more.
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and driving mechanisms of the “three types of spaces” (urban, agricultural, and ecological) in 130 counties along the Yangtze River mainstem from 2000 to 2020, utilizing an integrated approach incorporating land use transfer matrices, centroid-based distance metrics and GeoDetector models. Key findings reveal: (1) Urban space exhibited significant irreversible expansion while agricultural space continued to shrink, with ecological space maintaining overall stability but showing high-frequency bidirectional conversion with agricultural areas in localized zones. (2) Spatial proximity analysis demonstrated contrasting patterns—eastern riparian counties showed urban spatial agglomeration towards the river, whereas most mid-western regions experienced urban expansion away from the watercourse, with marked regional disparities in agricultural and ecological spatial changes. (3) Driving mechanism analysis identified topography as the dominant natural factor influencing ecological space evolution, while socioeconomic factors exerted stronger impacts on proximity variations of agricultural and urban spaces, with natural–socioeconomic interactive effects showing the most significant explanatory power. These spatial dynamics reflect universal trade-offs between economic development and ecosystem conservation in large river basins worldwide. We advocate differentiated spatial governance strategies, including rigorous riparian ecological redlines, eco-agricultural models in agricultural retreat zones, and proximity-based real-time monitoring for ecological early warning. The integrated methodology and spatial governance framework offer transferable solutions for sustainable management of major fluvial systems under rapid urbanization pressure. These findings provide scientific evidence and implementable pathways for coordinating socioeconomic development with ecosystem resilience in the Yangtze River Economic Belt. Full article
Show Figures

Figure 1

17 pages, 9016 KiB  
Article
GCRV-II Triggers B and T Lymphocyte Apoptosis via Mitochondrial ROS Pathway
by Jie Wang, Wen-Jing Dong, Chang-Song Wu, Tian-Tian Tian, Xu-Jie Zhang and Yong-An Zhang
Viruses 2025, 17(7), 930; https://doi.org/10.3390/v17070930 - 30 Jun 2025
Viewed by 303
Abstract
Grass carp reovirus (GCRV), particularly the highly prevalent genotype II (GCRV-II), is known to infect peripheral blood leukocytes (PBLs) of grass carp. However, it is unclear whether GCRV-II can induce apoptosis in bystander lymphocytes within infected PBLs. Here, we have shown that GCRV-II [...] Read more.
Grass carp reovirus (GCRV), particularly the highly prevalent genotype II (GCRV-II), is known to infect peripheral blood leukocytes (PBLs) of grass carp. However, it is unclear whether GCRV-II can induce apoptosis in bystander lymphocytes within infected PBLs. Here, we have shown that GCRV-II infection induces apoptosis via the mitochondria-dependent caspase-3 pathway in infected PBLs. GCRV-II infection was also found to induce a significant increase in reactive oxygen species (ROS) accumulation in leukocytes and lymphocytes, accompanied by increased apoptosis in IgM+ B and CD4+ T lymphocyte subsets. Further studies have demonstrated that the targeted inhibition of mitochondrial ROS production can effectively attenuate apoptosis in neighboring B and T lymphocytes within infected PBLs, suggesting that GCRV-II-induced pro-apoptotic effects on bystander lymphocytes largely require the involvement of the mitochondrial-dependent ROS pathway. Taken together, our study reveals the underlying mechanism by which GCRV-II induces apoptosis in bystander B and T lymphocytes through ROS production, providing new insights into understanding the virus-induced pro-apoptotic mechanism in specific immune cells and a potential strategy for viral immune escape. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop