error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = texture transformation of thin film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6988 KB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 - 3 Aug 2025
Cited by 1 | Viewed by 807
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

24 pages, 4823 KB  
Article
Bioactive Glass and Melittin Thin Films Deposited by MAPLE for Titanium Implant Functionalization
by Mihaela Dinu, Bogdan Bita, Anca Constantina Parau, Carmen Ristoscu and Irina Negut
Materials 2025, 18(10), 2410; https://doi.org/10.3390/ma18102410 - 21 May 2025
Viewed by 1024
Abstract
The development of bioactive coatings for metallic implants is essential to enhance osseointegration and improve implant longevity. In this study, composite thin films based on bioactive glass and melittin were synthesized using the matrix-assisted pulsed laser evaporation technique and deposited onto titanium substrates. [...] Read more.
The development of bioactive coatings for metallic implants is essential to enhance osseointegration and improve implant longevity. In this study, composite thin films based on bioactive glass and melittin were synthesized using the matrix-assisted pulsed laser evaporation technique and deposited onto titanium substrates. The coatings were characterized using physicochemical analysis methods, including scanning electron microscopy, atomic force microscopy, contact angle measurements, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. Simulated body fluid immersion tests were also conducted to assess bioactivity over time. Scanning electron microscopy and atomic force microscopy revealed dense, irregular surface textures with nanoscale features and an average roughness of ~120 nm, favorable for cell adhesion. Contact angle measurements showed a significant shift from hydrophobic (~95° for bare titanium) to moderately hydrophilic (~62° for the bioglass and melittin coating) surfaces, indicating improved biocompatibility. Electrochemical impedance spectroscopy demonstrated enhanced corrosion resistance in simulated body fluid, with the coating exhibiting a ~45% decrease in impedance magnitude after 12 h of immersion, compared to only 4% for bare titanium. Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analyses confirmed the progressive formation of a carbonated apatite layer after 7 days of simulated body fluid exposure, suggesting high bioactivity and osteoconductive potential. The combined effects of bioactive glass and melittin in the thin film structure offer promising applications in orthopedic and dental implants, enhancing both biological performance and structural integrity. Full article
Show Figures

Figure 1

26 pages, 8095 KB  
Article
Deposition of Sol–Gel ZnO:Mg Films and Investigation of Their Structural and Optical Properties
by Tatyana Ivanova, Antoaneta Harizanova, Tatyana Koutzarova, Benedicte Vertruyen and Raphael Closset
Materials 2022, 15(24), 8883; https://doi.org/10.3390/ma15248883 - 12 Dec 2022
Cited by 27 | Viewed by 3568
Abstract
This work presents a facile sol–gel method for the deposition of ZnO and ZnO:Mg films. The films are spin coated on silicon and quartz substrates. The impact of magnesium concentrations (0, 0.5, 1, 2 and 3 wt%) and post-annealing treatments (300–600 °C) on [...] Read more.
This work presents a facile sol–gel method for the deposition of ZnO and ZnO:Mg films. The films are spin coated on silicon and quartz substrates. The impact of magnesium concentrations (0, 0.5, 1, 2 and 3 wt%) and post-annealing treatments (300–600 °C) on the film’s structural, vibrational and optical properties is investigated. Undoped ZnO films crystallize in the wurtzite phase, with crystallite sizes ranging from 9.1 nm (300 °C) to 29.7 nm (600 °C). Mg doping deteriorates the film crystallization and shifting of 002 peak towards higher diffraction angles is observed, indicating the successful incorporation of Mg into the ZnO matrix. ZnO:Mg films (2 wt%) possess the smallest crystallite size, ranging from 6.2 nm (300 °C) to 25.2 nm (600 °C). The highest Mg concentration (3 wt%) results into a segregation of the MgO phase. Lattice constants, texture coefficients and Zn–O bond lengths are discussed. The diminution of the c lattice parameter is related to the replacement of Zn2+ by Mg2+ in the ZnO host lattice. The vibrational properties are studied by Fourier transform infrared (FTIR) spectroscopy. IR lines related to Mg–O bonds are found for ZnO:Mg films with dopant concentrations of 2 and 3 wt%. The optical characterization showed that the transmittance of ZnO:Mg thin films increased from 74.5% (undoped ZnO) to about 89.1% and the optical band gap energy from 3.24 to 3.56 eV. Mg doping leads to a higher refractive index compared to undoped ZnO films. The FESEM (field emission scanning electron microscopy) technique is used for observation of the surface morphology modification of ZnO:Mg films. The doped ZnO films possess a smoother grained surface structure, opposite to the wrinkle-type morphology of undoped sol–gel ZnO films. The smoother surface leads to improved transparency of ZnO:Mg films. Full article
Show Figures

Figure 1

15 pages, 6344 KB  
Article
Comprehensive Study on the Performance of Waste HDPE and LDPE Modified Asphalt Binders for Construction of Asphalt Pavements Application
by Usman Ghani, Bakht Zamin, Muhammad Tariq Bashir, Mahmood Ahmad, Mohanad Muayad Sabri Sabri and Suraparb Keawsawasvong
Polymers 2022, 14(17), 3673; https://doi.org/10.3390/polym14173673 - 4 Sep 2022
Cited by 39 | Viewed by 7111
Abstract
This research is aimed at investigating the mechanical behavior of the bitumen by the addition of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) obtained from waste plastic bottles and bags. Polymers (HDPE and LDPE) with percentages of 0%, 2%, 4%, and 6% in [...] Read more.
This research is aimed at investigating the mechanical behavior of the bitumen by the addition of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) obtained from waste plastic bottles and bags. Polymers (HDPE and LDPE) with percentages of 0%, 2%, 4%, and 6% in shredded form by weight of bitumen were used to evaluate the spectroscopic, structural, morphological, and rheological properties of polymer-modified binders. The rheological properties for different factors; viscosity (ἠ) from Rotational Viscometer (RV), rutting factor G*/Sin (δ), fatigue characteristics G*. Sin (δ), for the modified binder from dynamic shear rheometer (DSR), Short and long-term aging from rolling thin film oven (RTFO), and pressure aging vessel (PAV) was determined. The thermal characteristics, grain size, and texture of polymers for both LDPE and HDPE were found using bending beam rheometer (BBR) and X-ray diffraction (XRD), respectively. Fourier transform infrared (FTIR) analysis revealed the presence of polymer contents in the modified binder. Scanning electron microscopy (SEM) images revealed the presence of HDPE and LDPE particles on the surface of the binder. Creep Rate (m) and Stiffness (S) analysis in relationship with temperature showed a deduction in stress rate relaxation. Results have revealed the best rutting resistance for 6% HDPE. It also showed an improvement of 95.27% in G*/Sin (δ) which increased the performance of the bituminous mix. Similarly, the addition of 4% LDPE resulted in maximum dynamic viscosity irrespective of the temperatures. Moreover, fatigue resistance has shown a significant change with the HDPE and LDPE. The festinating features of waste plastic modified binder make it important to be used in the new construction of roads to address the high viscosity and mixing problems produced by plastic waste and to improve the performance of flexible pavements all over the world. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Pavement Design)
Show Figures

Figure 1

14 pages, 2507 KB  
Article
Cuprous Oxide Nanoparticles: Synthesis, Characterization, and Their Application for Enhancing the Humidity-Sensing Properties of Poly(dioctylfluorene)
by Muhammad Tahir, Muhammad Zeb, Alamgeer, Shahid Hussain, Mahidur R. Sarker, Dil Nawaz Khan, Fazal Wahab and Sawal Hamid Md Ali
Polymers 2022, 14(8), 1503; https://doi.org/10.3390/polym14081503 - 7 Apr 2022
Cited by 21 | Viewed by 4984
Abstract
In this paper, we report on the synthesis—via the wet chemical precipitation route method—and thin film characteristics of inorganic semiconductor, cuprous oxide (Cu2O) nanoparticles, for their potential application in enhancing the humidity-sensing properties of semiconducting polymer poly(9,9-dioctylfluorene) (F8). For morphological analysis [...] Read more.
In this paper, we report on the synthesis—via the wet chemical precipitation route method—and thin film characteristics of inorganic semiconductor, cuprous oxide (Cu2O) nanoparticles, for their potential application in enhancing the humidity-sensing properties of semiconducting polymer poly(9,9-dioctylfluorene) (F8). For morphological analysis of the synthesized Cu2O nanoparticles, transmission electron microscope (TEM) and scanning electron microscope (SEM) micrographs are studied to investigate the texture, distribution, shape, and sizes of Cu2O crystallites. The TEM image of the Cu2O nanoparticles exhibits somewhat non-uniform distribution with almost uniform shape and size having an average particle size of ≈24 ± 2 nm. Fourier transformed infrared (FTIR) and X-ray diffraction (XRD) spectra are studied to validate the formation of Cu2O nanoparticles. Additionally, atomic force microscopy (AFM) is performed to analyze the surface morphology of polymer-inorganic (F8-Cu2O) nanocomposites thin film to see the grain sizes, mosaics, and average surface roughness. In order to study the enhancement in sensing properties of F8, a hybrid organic–inorganic (F8-Cu2O) surface-type humidity sensor Ag/F8-Cu2O/Ag is fabricated by employing F8 polymer as an active matrix layer and Cu2O nanoparticles as a dopant. The Ag/F8-Cu2O/Ag device is prepared by spin coating a 10:1 wt% solution of F8-Cu2O nanocomposite on pre-patterned silver (Ag) electrodes on glass. The inter-electrode gap (≈5 μm) between Ag is developed by photolithography. To study humidity sensing, the Ag/F8-Cu2O/Ag device is characterized by measuring its capacitance (C) as a function of relative humidity (%RH) at two different frequencies (120 Hz and 1 kHz). The device exhibits a broad humidity sensing range (27–86%RH) with shorter response time and recovery time, i.e., 9 s and 8 s, respectively. The present results show significant enhancement in the humidity-sensing properties as compared to our previously reported results of Ag/F8/Ag sensor wherein the humidity sensing range was 45–78%RH with 15 s and 7 s response and recovery times, respectively. The improvement in the humidity-sensing properties is attributed to the potential use of Cu2O nanoparticles, which change the hydrophobicity, surface to volume ratio of Cu2O nanoparticles, as well as modification in electron polarizability and polarity of the F8 matrix layer. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

18 pages, 8398 KB  
Article
The Effects of Stresses and Interfaces on Texture Transformation in Silver Thin Films
by Nhat Minh Dang, Zhao-Ying Wang, Chi-Hang Lin and Ming-Tzer Lin
Nanomaterials 2022, 12(3), 329; https://doi.org/10.3390/nano12030329 - 20 Jan 2022
Cited by 8 | Viewed by 3243
Abstract
Thin metal films are critical elements in nano- and micro-fabricated technologies. The texture orientation of thin films has a significant effect on applied devices. For Face-Centered Cubic (FCC) metal thin films, when the critical thickness is reached, the texture orientation can transform from [...] Read more.
Thin metal films are critical elements in nano- and micro-fabricated technologies. The texture orientation of thin films has a significant effect on applied devices. For Face-Centered Cubic (FCC) metal thin films, when the critical thickness is reached, the texture orientation can transform from (111) to (100) based on the model related to the balance between interfacial energy and strain energy. This research focused on the texture transformation of thin films under two conditions: (1) with or without an adhesion layer in the thin film and (2) with or without initial stress applied through a four-point bending load. In the experiment, two samples (silicon/silver and silicon/titanium/silver) were used to apply different initial stress/strain values and different annealing times. After annealing, an X-ray Diffractometer (XRD) was used to ascertain the preferred orientation of the thin films and the percentage of (111) and (100). Finally, Electron Back-Scattered Diffraction (EBSD) was used to observe the grain size of the thin films. The results showed that, regardless of the existence of an adhesion layer, texture transformation occurred, and this was relatively significant with Ti adhesion layers. Further, the initial stress was found to be small compared to the internal stress; thus, the initial stress imposed in the tests in this research was not significantly influenced by the texture transformation. Full article
(This article belongs to the Special Issue Structure, Properties and Applications of Nanocrystalline Thin Films)
Show Figures

Figure 1

20 pages, 16257 KB  
Article
New Photoresponsive Poly(meth)acrylates Bearing Azobenzene Moieties Obtained via ATRP Polymerization Exhibiting Liquid-Crystalline Behavior
by Piotr Cieciórski, Paweł W. Majewski and Elżbieta Megiel
Polymers 2021, 13(13), 2172; https://doi.org/10.3390/polym13132172 - 30 Jun 2021
Cited by 4 | Viewed by 4115
Abstract
Here, we report our studies on photoresponsive poly(meth)acrylates containing azobenzene groups connected to a polymer backbone via a short methylene linker. A series of side-chain azobenzene polymers was synthesized via the atom transfer radical polymerization (ATRP) technique using several catalytic systems. The polymers [...] Read more.
Here, we report our studies on photoresponsive poly(meth)acrylates containing azobenzene groups connected to a polymer backbone via a short methylene linker. A series of side-chain azobenzene polymers was synthesized via the atom transfer radical polymerization (ATRP) technique using several catalytic systems. The polymers synthesized under the optimized conditions were characterized by a narrow polydispersity (Đ ≤ 1.35), and they underwent a reversible transformation of their structure under light illumination. The fabricated polymers can store and release energy accumulated during the UV-light illumination by the thermal cis-trans isomerization of the chromophore groups. The enthalpy of the process (determined from DSC) was relatively high and equaled 61.9 J∙g−1 (17 Wh∙kg−1), indicating a high potential of these materials in energy storage applications. The liquid-crystalline behavior of the synthesized poly(meth)acrylates was demonstrated by the birefringent optical textures as observed in thin-films and X-ray scattering studies. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

10 pages, 3109 KB  
Article
Epitaxial Versus Polycrystalline Shape Memory Cu-Al-Ni Thin Films
by Doga Bilican, Samer Kurdi, Yi Zhu, Pau Solsona, Eva Pellicer, Zoe H. Barber, Alan Lindsay Greer, Jordi Sort and Jordina Fornell
Coatings 2019, 9(5), 308; https://doi.org/10.3390/coatings9050308 - 8 May 2019
Cited by 2 | Viewed by 4508
Abstract
In this work, two different approaches were followed to obtain Cu-Al-Ni thin films with shape memory potential. On the one hand, Cu-Ni/Al multilayers were grown by magnetron sputtering at room temperature. To promote diffusion and martensitic/austenitic phase transformation, the multilayers were subjected to [...] Read more.
In this work, two different approaches were followed to obtain Cu-Al-Ni thin films with shape memory potential. On the one hand, Cu-Ni/Al multilayers were grown by magnetron sputtering at room temperature. To promote diffusion and martensitic/austenitic phase transformation, the multilayers were subjected to subsequent heat treatment at 800 °C and quenched in iced water. On the other hand, Cu, Al, and Ni were co-sputtered onto heated MgO (001) substrates held at 700 °C. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy analyses were carried out to study the resulting microstructures. In the former method, with the aim of tuning the thin film’s composition, and, consequently, the martensitic transformation temperature, the sputtering time and applied power were adjusted. Accordingly, martensitic Cu-14Al-4Ni (wt.%) and Cu-13Al-5Ni (wt.%) thin films and austenitic Cu-12Al-7Ni (wt.%) thin films were obtained. In the latter, in situ heating during film growth led to austenitic Cu-12Al-7Ni (wt.%) thin films with a (200) textured growth as a result of the epitaxial relationship MgO(001)[100]/Cu-Al-Ni(001)[110]. Resistance versus temperature measurements were carried out to investigate the shape memory behavior of the austenitic Cu-12Al-7Ni (wt.%) thin films produced from the two approaches. While no signs of martensitic transformation were detected in the quenched multilayered thin films, a trend that might be indicative of thermal hysteresis was encountered for the epitaxially grown thin films. In the present work, the differences in the crystallographic structure and the shape memory behavior of the Cu-Al-Ni thin films obtained by the two different preparation approaches are discussed. Full article
(This article belongs to the Special Issue Advanced Thin Films Deposited by Magnetron Sputtering)
Show Figures

Graphical abstract

15 pages, 4992 KB  
Article
Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties
by Karkeng Lim, Muhammad Azmi Abdul Hamid, Roslinda Shamsudin, N.H. Al-Hardan, Ishak Mansor and Weesiong Chiu
Materials 2016, 9(4), 300; https://doi.org/10.3390/ma9040300 - 20 Apr 2016
Cited by 54 | Viewed by 8111
Abstract
In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained [...] Read more.
In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 504 KB  
Article
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
by Haihua Hu, Yezhen Han, Aiguo Song, Shanguang Chen, Chunhui Wang and Zheng Wang
Sensors 2014, 14(3), 4899-4913; https://doi.org/10.3390/s140304899 - 11 Mar 2014
Cited by 57 | Viewed by 8799
Abstract
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface [...] Read more.
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. Full article
(This article belongs to the Special Issue Tactile Sensors and Sensing Systems)
Show Figures

14 pages, 865 KB  
Article
AZO Thin Films by Sol-Gel Process for Integrated Optics
by Lamia Znaidi, Tahar Touam, Dominique Vrel, Nacer Souded, Sana Ben Yahia, Ovidiu Brinza, Alexis Fischer and Azzedine Boudrioua
Coatings 2013, 3(3), 126-139; https://doi.org/10.3390/coatings3030126 - 3 Jul 2013
Cited by 104 | Viewed by 18245
Abstract
Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel process. Zinc acetate dihydrate, ethanol, and monoethanolamine are used as precursor, solvent, and stabilizer, respectively. In the case of AZO, aluminum nitrate nonahydrate is added to the precursor solution with [...] Read more.
Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel process. Zinc acetate dihydrate, ethanol, and monoethanolamine are used as precursor, solvent, and stabilizer, respectively. In the case of AZO, aluminum nitrate nonahydrate is added to the precursor solution with an atomic percentage equal to 1 and 2 at.% Al. The multi thin layers are deposited by spin-coating onto glass substrates, and are transformed into ZnO upon annealing at 550 °C. Films display a strong preferential orientation, with high values for the Texture Coefficients (TC) of the (002) direction (TC(002) ≈ 3). The structural, morphological, and optical properties of the thin films as a function of aluminum content have been investigated using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electronic Microscopy (SEM). Waveguiding properties of the thin films have been also studied using m-lines spectroscopy. The results indicate that the films are monomodes at 632.8 nm with optical propagation optical losses estimated around 1.6 decibel per cm (dB/cm). Full article
Show Figures

Figure 1

Back to TopTop