Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = testicular ischemia reperfusion injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 139910 KiB  
Article
Inhibition of LncRNA H19 Attenuates Testicular Torsion-Induced Apoptosis and Preserves Blood–Testis Barrier Integrity
by Linxin Cheng, Zhibao Yin, Han Liu, Sijing Shi, Limin Lv, Yixi Wang, Meng Zhou, Meishuang Li, Tianxu Guo, Xiyun Guo, Guang Yang, Junjun Ma, Jinbo Yu, Yu Zhang, Shuguang Duo, Lihua Zhao and Rongfeng Li
Int. J. Mol. Sci. 2025, 26(5), 2134; https://doi.org/10.3390/ijms26052134 - 27 Feb 2025
Viewed by 724
Abstract
Testicular torsion is a common emergency in adolescents, and can lead to severe ischemia reperfusion injury (IRI). LncRNA H19 has been shown to increase during ischemia, but its role in testicular IRI remains unknown. Focusing on this research gap, we utilized H19 biallelic [...] Read more.
Testicular torsion is a common emergency in adolescents, and can lead to severe ischemia reperfusion injury (IRI). LncRNA H19 has been shown to increase during ischemia, but its role in testicular IRI remains unknown. Focusing on this research gap, we utilized H19 biallelic mutant mice and Sertoli cell line (TM4) to construct in vivo and in vitro models of ischemia/reperfusion (I/R) and oxygen–glucose deprivation/reperfusion (OGD/R). Compared to WT I/R mice, H19−/− I/R mice showed milder tissue disorganization and cell loss, with a more intact blood–testis barrier (BTB). The cell viability decreased, ROS levels and apoptosis-related factors such as Bax/Bcl-2 increased in TM4 cells after OGD/R, whereas these changes were reversed when H19 was knocked down followed by OGD/R (si-H19+OGD/R). In contrast, over-expression of H19 in TM4 cells exacerbates OGD/R-induced cell apoptosis. Through in-depth analysis of KEGG-enriched pathways, the PI3K/AKT pathway was identified as a potential target of H19 modulation. Western blotting confirmed that, in OGD/R cells, elevated H19 levels were accompanied by the excessive AKT phosphorylation and the tight junction marker ZO-1 degradation; and in si-H19+OGD/R cells, the decreased AKT phosphorylation was recovered and the up-regulated ZO-1 expression was weakened simultaneously via using the AKT activator SC79. These results suggest that inhibiting H19 in OGD/R cells might preserve the integrity of the BTB by reversing the excessive phosphorylation of AKT. Moreover, H19 deficiency in si-H19+OGD/R cells alleviated the disturbances in glycolysis, fatty acid biosynthesis, and amino acid metabolism. Our study indicates that H19 might be a potential therapeutic target for clinic testicular I/R treatment. Full article
(This article belongs to the Special Issue Non-Coding RNA in Physiology and Pathophysiology: Second Edition)
Show Figures

Figure 1

18 pages, 13688 KiB  
Article
Protective Effects of Bromelain in Testicular Torsion-Detorsion: Reducing Inflammation, Oxidative Stress, and Apoptosis While Enhancing Sperm Quality
by Seda Yakut, Merve Karabulut, Recep Hakkı Koca, Elif Erbaş, Seçkin Özkanlar, Berrin Tarakçı Gençer, Adem Kara and K. J. Senthil Kumar
Biomolecules 2025, 15(2), 292; https://doi.org/10.3390/biom15020292 - 15 Feb 2025
Cited by 2 | Viewed by 1637
Abstract
Inflammation and increased oxidative stress in testicular tissue are documented side effects of torsion of the testicles. The preventive role of Bromelain (Bro) against testicle torsion-induced ischemia/reperfusion (I/R) injury was investigated in this research. Five groups of six animals each were created: ischemia, [...] Read more.
Inflammation and increased oxidative stress in testicular tissue are documented side effects of torsion of the testicles. The preventive role of Bromelain (Bro) against testicle torsion-induced ischemia/reperfusion (I/R) injury was investigated in this research. Five groups of six animals each were created: ischemia, Ischemia+Reperfusion (I+R), Ischemia+Reperfusion+Bromelain (I+R+Bro; 10 mg/kg), control (sham), and Bromelain (Bro; 10 mg/kg). An I/R damage resulted from two hours of 720° clockwise twisting of the left testis. Blood samples and epididymal sperm were collected after reperfusion to analyze sperm parameters (recovery, motility, viability, and morphology) and cytokines that promote inflammation (IL-1β, IL-6, and TNF-α). Using Western blotting, testicular tissue was examined for histopathological alterations, antioxidant enzymes (GSH, SOD), lipid peroxidation (MDA), apoptosis, and survival-related proteins (TLR4, Caspase-3, Bcl-2, NRF-2, HO-1, PI3K, mTOR, AKT-1). While raising the activities of GSH and SOD, two antioxidant enzymes, Bro administration dramatically reduced MDA concentrations. The I+R+Bro group had significantly reduced amounts of cytokines that promoted inflammation compared to the I+R group. Bro’s protective properties are also attributed to proteins that are altered by it and participate in the apoptosis and survival of cells. Sperm morphology, motility, and concentration notably improved in the bromelain-treated group, according to spermatological examination. Testicular samples treated with bromelain showed less tissue damage according to histological evaluations than the untreated I+R group. These findings imply that Bro has anti-inflammatory, anti-apoptotic, and antioxidant qualities. It effectively reduces oxidative stress and inflammation by modulating the PI3K/Akt/mTOR and NRF-2/HO-1 pathways, hence minimizing I/R injury. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 6890 KiB  
Article
c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury
by Sarah R. Alotaibi, Waleed M. Renno and May Al-Maghrebi
Int. J. Mol. Sci. 2024, 25(19), 10446; https://doi.org/10.3390/ijms251910446 - 27 Sep 2024
Viewed by 1192
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of [...] Read more.
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries. Full article
Show Figures

Figure 1

15 pages, 2802 KiB  
Article
The Regulatory Effects of JAK2/STAT3 on Spermatogenesis and the Redox Keap1/Nrf2 Axis in an Animal Model of Testicular Ischemia Reperfusion Injury
by Abdullah Alnajem and May Al-Maghrebi
Cells 2023, 12(18), 2292; https://doi.org/10.3390/cells12182292 - 16 Sep 2023
Cited by 9 | Viewed by 2250
Abstract
The male reproductive system requires the pleiotropic activity of JAK/STAT to maintain its function, especially spermatogenesis. The study aims to investigate the effect of JAK2 signaling on the expression of the Keap1/Nrf2 axis, spermatogenesis, and the Sertoli cells (Sc) junctions in an animal [...] Read more.
The male reproductive system requires the pleiotropic activity of JAK/STAT to maintain its function, especially spermatogenesis. The study aims to investigate the effect of JAK2 signaling on the expression of the Keap1/Nrf2 axis, spermatogenesis, and the Sertoli cells (Sc) junctions in an animal model of testicular ischemia reperfusion injury (tIRI). Testes subjected to tIRI exhibited increased JAK2/STAT3 activity associated with spermatogenic arrest and reduced expression of the Sc junctions. In addition, there was an increased protein expression of Keap1 and decreased Nrf2., which was coupled with the downregulation of gene expression of antioxidant enzymes. Reduced SOD and CAT activities were accompanied by increased lipid peroxidation and protein carbonylation during tIRI. Increased caspase 9 activity and Bax/Bcl2 ratio indicated initiation of apoptosis. Inhibition of JAK2 activity by AG490 maintained the integrity of spermatogenesis and SC junctions, normalized the expression of the Keap1/Nrf2 axis and its downstream antioxidant enzymes, and prevented germ cell apoptosis. The results further emphasized the regulatory role of JAK2/STAT3 on spermatogenesis, Keap1/Nrf2 signaling, and maintenance of the testicular redox balance to combat testicular dysfunction and male infertility. Full article
(This article belongs to the Special Issue Investigating Male Reproductive System through Animal Model)
Show Figures

Figure 1

13 pages, 2247 KiB  
Article
NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
by Duaah Almarzouq and May Al-Maghrebi
Antioxidants 2023, 12(1), 145; https://doi.org/10.3390/antiox12010145 - 7 Jan 2023
Cited by 12 | Viewed by 3186
Abstract
Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the [...] Read more.
Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the expression of the NLRP3 inflammasome pathway components. Three groups of male Sprague–Dawley rats (n = 12 each) were studied: sham, unilateral tIRI only and tIRI treated with apocynin, a NOX-specific inhibitor. The tIRI rat model was subjected to 1 h of ischemia followed by 4 h of reperfusion. H&E staining, real time PCR, biochemical assays, and Western blot were utilized to evaluate spermatogenic damage, gene expression, oxidative stress markers, and NLRP3 pathway components, respectively. As a result of tIRI, decreased total antioxidant capacity and suppressed activities of superoxide dismutase and catalase were associated with spermatogenic arrest. The components of the NLRP3 inflammasome pathway (TXNIP, NLRP3, ASC, caspase-1, GSDMD, MMP-9) were upregulated transcriptionally and post-transcriptionally during tIRI. In parallel, tissue inflammation was demonstrated by a marked increase in the concentrations of myeloperoxidase, IL-1β, and IL-18. Apocynin treatment prevented testicular oxidative stress and inflammation. Thus, NOX inhibition by apocynin prevented ROS accumulation, proinflammatory cytokine overexpression and NLRP3 inflammasome activation during tIRI. Full article
Show Figures

Figure 1

16 pages, 2679 KiB  
Article
Effects of Dexmedetomidine on the Localization of α2A-Adrenergic and Imidazoline Receptors in Mouse Testis
by Hayato Nomura, Hayato Terayama, Daisuke Kiyoshima, Ning Qu, Kosuke Shirose, Shuhei Tetsu, Shogo Hayashi, Kou Sakabe and Takeshi Suzuki
Appl. Sci. 2022, 12(20), 10409; https://doi.org/10.3390/app122010409 - 15 Oct 2022
Cited by 1 | Viewed by 2098
Abstract
Dexmedetomidine (DEX) used for sedation was reported to have organ-protecting effects in ischemia–reperfusion injury model animals. However, no testicular cell-protecting effect was observed with DEX treatment. The effects of DEX on a normal testis in vivo have not been reported. Therefore, DEX was [...] Read more.
Dexmedetomidine (DEX) used for sedation was reported to have organ-protecting effects in ischemia–reperfusion injury model animals. However, no testicular cell-protecting effect was observed with DEX treatment. The effects of DEX on a normal testis in vivo have not been reported. Therefore, DEX was administered to mice for 14 days to investigate the reproductive toxicology of DEX on the testis and the localization of DEX-responsive receptors. The testes, pituitary glands, and serum were examined and analyzed using real-time PCR, immunofluorescence staining, and liquid chromatography–mass spectrometry. In the testis, α2A-adrenergic receptors were observed in the cytoplasm of Leydig cells, while imidazoline receptors were observed in germ cells and Leydig cell cytoplasm. The levels of luteinizing hormone and follicle-stimulating hormone mRNA in the pituitary gland significantly temporarily decreased. Serum DEX could not be detected 26 h after DEX administration. DEX administration did not affect serum testosterone levels, some testicular mRNA related to spermatogenesis, and oxidative stress factors. Therefore, although DEX receptors are present in the testis, DEX is metabolized relatively quickly, and DEX administration has no damaging effects on the testis. This study is the first in vivo report about the effects of DEX administration on the testis. Full article
(This article belongs to the Special Issue Toxicity of Chemicals: Evaluation, Analysis and Impact)
Show Figures

Figure 1

14 pages, 2089 KiB  
Article
Astaxanthin Relieves Testicular Ischemia-Reperfusion Injury—Immunohistochemical and Biochemical Analyses
by Marko Bašković, Dajana Krsnik, Marta Himelreich Perić, Ana Katušić Bojanac, Nino Sinčić, Zdenko Sonicki and Davor Ježek
J. Clin. Med. 2022, 11(5), 1284; https://doi.org/10.3390/jcm11051284 - 26 Feb 2022
Cited by 8 | Viewed by 3088
Abstract
Testicular torsion potentially leads to acute scrotum and testicle loss, and requires prompt surgical intervention to restore testicular blood flow, despite the paradoxical negative effect of reperfusion. While no drug is yet approved for this condition, antioxidants are promising candidates. This study aimed [...] Read more.
Testicular torsion potentially leads to acute scrotum and testicle loss, and requires prompt surgical intervention to restore testicular blood flow, despite the paradoxical negative effect of reperfusion. While no drug is yet approved for this condition, antioxidants are promising candidates. This study aimed to determine astaxanthin’s (ASX), a potent antioxidant, effect on rat testicular torsion−detorsion injury. Thirty-two prepubertal male Fischer rats were divided into four groups. Group 1 underwent sham surgery. In group 2, the right testis was twisted at 720° for 90 min. After 90 min of reperfusion, the testis was removed. ASX was administered intraperitoneally at the time of detorsion (group 3) and 45 min after detorsion (group 4). Quantification of caspase-3 positive cells and oxidative stress markers detection were determined immunohistochemically, while the malondialdehyde (MDA) value, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities were determined by colorimetric assays. The number of apoptotic caspase-3 positive cells and the MDA value were lower in group 4 compared to group 2. A significant increase in the SOD and GPx activity was observed in group 4 compared to groups 2 and 3. We conclude that ASX has a favorable effect on testicular ischemia-reperfusion injury in rats. Full article
(This article belongs to the Special Issue Hot Topics in Reproductive Medicine Research)
Show Figures

Figure 1

15 pages, 3529 KiB  
Article
JAK Inhibition Prevents DNA Damage and Apoptosis in Testicular Ischemia-Reperfusion Injury via Modulation of the ATM/ATR/Chk Pathway
by Farah Khashab, Farah Al-Saleh, Nora Al-Kandari, Fatemah Fadel and May Al-Maghrebi
Int. J. Mol. Sci. 2021, 22(24), 13390; https://doi.org/10.3390/ijms222413390 - 13 Dec 2021
Cited by 22 | Viewed by 3469
Abstract
Testicular ischemia reperfusion injury (tIRI) causes oxidative stress-induced DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to establish a direct link between JAK2 activation and the DNA damage response (DDR) signaling pathways and their role in tIRI-induced [...] Read more.
Testicular ischemia reperfusion injury (tIRI) causes oxidative stress-induced DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to establish a direct link between JAK2 activation and the DNA damage response (DDR) signaling pathways and their role in tIRI-induced GCA using AG490, a JAK2 specific inhibitor. Male Sprague Dawley rats (n = 36) were divided into three groups: sham, unilateral tIRI and tIRI + AG490 (40 mg/kg). During tIRI, augmentation in the phosphorylation levels of the JAK2/STAT1/STAT3 was measured by immunohistochemistry. Observed spermatogenic arrest was explained by the presence of considerable levels of DSB, AP sites and 8OHdG and activation of caspase 9, caspase 3 and PARP, which were measured by colorimetric assays and TUNEL. The ATM/Chk2/H2AX and ATR/Chk1 pathways were also activated as judged by their increased phosphorylation using Western blot. These observations were all prevented by AG490 inhibition of JAK2 activity. Our findings demonstrate that JAK2 regulates tIRI-induced GCA, oxidative DNA damage and activation of the ATM/Chk2/H2AX and ATR/Chk1 DDR pathways, but the cell made the apoptosis decision despite DDR efforts. Full article
(This article belongs to the Special Issue New Strategies Protecting from Ischemia/Reperfusion)
Show Figures

Figure 1

26 pages, 6750 KiB  
Article
Vitamin D3 Prevents the Deleterious Effects of Testicular Torsion on Testis by Targeting miRNA-145 and ADAM17: In Silico and In Vivo Study
by Doaa I. Mohamed, Doaa A. Abou-Bakr, Samar F. Ezzat, Hanaa F. Abd El-Kareem, Hebatallah H. Abo Nahas, Hosam A. Saad, Amir E. Mehana and Essa M. Saied
Pharmaceuticals 2021, 14(12), 1222; https://doi.org/10.3390/ph14121222 - 25 Nov 2021
Cited by 52 | Viewed by 5491
Abstract
Testicular torsion (TT) is the most common urological emergency in children and young adults that can lead to infertility in many cases. The ischemia-reperfusion (IR) injury due to TT has been implicated in the pathogenesis of testicular damage. The main pathological mechanisms of [...] Read more.
Testicular torsion (TT) is the most common urological emergency in children and young adults that can lead to infertility in many cases. The ischemia-reperfusion (IR) injury due to TT has been implicated in the pathogenesis of testicular damage. The main pathological mechanisms of contralateral injury after ipsilateral TT are not fully understood. In the presented study, we investigated the molecular and microscopic basis of ipsilateral and contralateral testicular injury following ipsilateral testicular torsion detorsion (T/D) and explored the possible protective role of vitamin D3. The biochemical analysis indicated that IR injury following T/D significantly decreased the activity of testicular glutathione peroxidase (GPx) enzyme, level of serum testosterone, serum inhibin B, and expression of testicular miRNA145, while increased the activity of testicular myeloperoxidase (MPO) enzyme, level of testicular malondialdehyde (MDA), level of serum antisperm-antibody (AsAb), and expression of ADAM-17. The histological and semen analysis revealed that torsion of the testis caused damages on different tissues in testis. Interestingly, administration of vitamin D3 prior to the IR injury reversed the deterioration effect of IR injury on the testicular tissues as indicated by biochemical and histological analysis which revealed normal appearance of the seminiferous tubules with an apparent decrease in collagen fiber deposition in both ipsilateral and contralateral testes. Our results revealed that the protective effect of vitamin D3 treatment could be attributed to target miRNA145 and ADAM17 protein. To further investigate these findings, we performed a detailed molecular modelling study in order to explore the binding affinity of vitamin D3 toward ADAM17 protein. Our results revealed that vitamin D3 has the ability to bind to the active site of ADAM17 protein via a set of hydrophobic and hydrophilic interactions with high docking score. In conclusion, this study highlights the protective pharmacological application of vitamin D3 to ameliorate the damages of testicular T/D on the testicular tissues via targeting miRNA145 and ADAM17 protein. Full article
(This article belongs to the Special Issue Drug Insight: Vitamin D and Its Analogs)
Show Figures

Graphical abstract

18 pages, 2223 KiB  
Article
The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis
by Nora Al-Kandari, Fatemah Fadel, Farah Al-Saleh, Farah Khashab and May Al-Maghrebi
Molecules 2019, 24(18), 3333; https://doi.org/10.3390/molecules24183333 - 12 Sep 2019
Cited by 21 | Viewed by 4623
Abstract
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) [...] Read more.
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) were equally divided into 3 groups: sham, tIRI, and tIRI + NQDI-1 (10 mg/kg, i.p, pre-reperfusion). For tIRI induction, the testicular cord and artery were occluded for 1 h followed by 4 h of reperfusion. Histological analyses, protein immunoexpression, biochemical assays, and real-time PCR were used to evaluate spermatogenesis, ASK-1/Trx axis expression, enzyme activities, and relative mRNA expression, respectively. During tIRI, ipsilateral testes underwent oxidative stress indicated by low levels of superoxide dismutase (SOD) and Glutathione (GSH), increased oxidative damage to lipids and DNA, and spermatogenic damage. This was associated with induced mRNA expression of pro-apoptosis genes, downregulation of antiapoptosis genes, increased caspase 3 activity and activation of the ASK-1/JNK/p38/survivin apoptosis pathway. In parallel, the expression of Trx, Trx reductase were significantly reduced, while the expression of Trx interacting protein (TXNIP) and the NADP+/ nicotinamide Adenine Dinucleotide phosphate (NADPH) ratio were increased. These modulations were attenuated by NQDI-1 treatment. In conclusion, the Trx system is regulated by the ASK-1/Trx/TXNIP axis to maintain cellular redox homeostasis and is linked to tIRI-induced germ cell apoptosis via the ASK-1/JNK/p38/survivin apoptosis pathway. Full article
(This article belongs to the Collection Molecular Medicine)
Show Figures

Graphical abstract

Back to TopTop