Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = tertiary dentine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1429 KiB  
Article
Extracellular Vesicles-Induced Cell Homing and Odontogenesis via microRNA Signaling for Dentin Regeneration
by Venkateswaran Ganesh, Douglas C. Fredericks, Emily B. Petersen, Henry L. Keen, Rui He, Jordon D. Turner, James A. Martin, Aliasger K. Salem, Kyungsup Shin, Abhishek Parolia and Dongrim Seol
Int. J. Mol. Sci. 2025, 26(15), 7182; https://doi.org/10.3390/ijms26157182 - 25 Jul 2025
Viewed by 190
Abstract
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. [...] Read more.
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. This study aimed to evaluate the effects of EVs on DPSC homing and odontogenic differentiation for dentin regeneration. DPSC-derived EVs were cultured in either growth (EV-G) or odontogenic differentiation (EV-O) conditions and isolated using a modified precipitation method. EVs were characterized by nanoparticle tracking analysis, scanning electron microscopy, antibody array, and cellular uptake assay. Treatment with 5 × 108 EVs/mL significantly enhanced DPSC chemotaxis and proliferation compared with a no-treatment control and a lower dosage of EV (5 × 107 EVs/mL). Gene expression and biochemical analyses revealed that EV-O up-regulated odontogenic markers including collagen type 1A1 (COL1A1), runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP). EV-O enhanced dentin regeneration by approximately 55% over vehicle controls in a rabbit partial dentinotomy/pulpotomy model. We identified key microRNAs (miR-21-5p, miR-221-3p, and miR-708-3p) in EV-O involved in cell homing and odontogenesis. In conclusion, our EV-based cell homing and odontogenic differentiation strategy has significant therapeutic potential for dentin regeneration. Full article
Show Figures

Graphical abstract

13 pages, 4818 KiB  
Article
The α1- and β1-Subunits of Nitric Oxide-Sensitive Guanylyl Cyclase in Pericytes of Healthy Human Dental Pulp
by Yüksel Korkmaz, Galyna Pryymachuk, Mechthild M. Schroeter, Behrus Puladi, Nadin Piekarek, Sarah Appel, Wilhelm Bloch, Jan-Wilm Lackmann, James Deschner and Andreas Friebe
Int. J. Mol. Sci. 2025, 26(1), 30; https://doi.org/10.3390/ijms26010030 - 24 Dec 2024
Viewed by 946
Abstract
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an α1β1-heterodimer, NO-GC produces cyclic guanosine-3′,5′-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In [...] Read more.
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an α1β1-heterodimer, NO-GC produces cyclic guanosine-3′,5′-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC α1β1-heterodimer in human pericytes. Since NO-GC is a marker for platelet-derived growth factor-β (PDGFRβ)-positive pericytes, we investigated whether NO-GC is expressed in its active α1β1-heterodimer in pericytes of healthy human dental pulp. In our previous studies, we developed and validated an antibody against the α1-subunit of human NO-GC. Here, we developed a new antibody against the β1-subunit of human NO-GC and validated it by immunoblot, mass spectrometry, and immunohistochemistry on tissue samples from humans and NO-GC knockout (GCKO) mice. Using both antibodies, we detected α1- and β1-subunits of NO-GC in pericytes of pre-capillary arterioles, capillaries, and post-capillary venules in dental pulp of decalcified and non-decalcified human molars. We concluded that NO-GC as an active α1β1-heterodimer may be involved in the regulation of vascular permeability, vascular stability, organ homeostasis, and organ regeneration in healthy human dental pulp. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

24 pages, 4561 KiB  
Review
Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration
by Mariam Amir, Lakshmi Jeevithan, Maham Barkat, Syeda Habib Fatima, Malalai Khan, Sara Israr, Fatima Naseer, Sarmad Fayyaz, Jeevithan Elango, Wenhui Wu, José Eduardo Maté Sánchez de Val and Saeed Ur Rahman
Cells 2024, 13(13), 1153; https://doi.org/10.3390/cells13131153 - 6 Jul 2024
Cited by 2 | Viewed by 2931
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. [...] Read more.
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry. Full article
(This article belongs to the Special Issue Molecular Mechanism of Bone Disease)
Show Figures

Figure 1

16 pages, 16192 KiB  
Article
Impaired Tertiary Dentin Secretion after Shallow Injury in Tgfbr2-Deficient Dental Pulp Cells Is Rescued by Extended CGRP Signaling
by Monica Stanwick, Fatma Fenesha, Ahmed Hamid, Khushroop Kang, Dane Kanniard, Irene Kim, Nicholas Mandarano, Fernanda L. Schumacher and Sarah B. Peters
Int. J. Mol. Sci. 2024, 25(13), 6847; https://doi.org/10.3390/ijms25136847 - 21 Jun 2024
Cited by 1 | Viewed by 1860
Abstract
The transforming growth factor β (TGFβ) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFβ signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFβ receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, [...] Read more.
The transforming growth factor β (TGFβ) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFβ signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFβ receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFβ-related diseases. Full article
(This article belongs to the Special Issue Molecular Advances in Dental Pulp Tissue Engineering, 2nd Edition)
Show Figures

Figure 1

13 pages, 13489 KiB  
Article
The Reparative Function of MMP13 in Tertiary Reactionary Dentinogenesis after Tooth Injury
by Henry F. Duncan, Yoshifumi Kobayashi, Yukako Yamauchi and Emi Shimizu
Int. J. Mol. Sci. 2024, 25(2), 875; https://doi.org/10.3390/ijms25020875 - 10 Jan 2024
Cited by 1 | Viewed by 1791
Abstract
MMP13 gene expression increases up to 2000-fold in mineralizing dental pulp cells (DPCs), with research previously demonstrating that global MMP13 deletion resulted in critical alterations in the dentine phenotype, affecting dentine–tubule regularity, the odontoblast palisade, and significantly reducing the dentine volume. Global MMP13-KO [...] Read more.
MMP13 gene expression increases up to 2000-fold in mineralizing dental pulp cells (DPCs), with research previously demonstrating that global MMP13 deletion resulted in critical alterations in the dentine phenotype, affecting dentine–tubule regularity, the odontoblast palisade, and significantly reducing the dentine volume. Global MMP13-KO and wild-type mice of a range of ages had their molar teeth injured to stimulate reactionary tertiary dentinogenesis. The response was measured qualitatively and quantitatively using histology, immunohistochemistry, micro-CT, and qRT-PCR in order to assess changes in the nature and volume of dentine deposited as well as mechanistic links. MMP13 loss affected the reactionary tertiary dentine quality and volume after cuspal injury and reduced Nestin expression in a non-exposure injury model, as well as mechanistic links between MMP13 and the Wnt-responsive gene Axin2. Acute pulpal injury and pulp exposure to oral fluids in mice teeth showed upregulation of the MMP13 in vivo, with an increase in the gene expression of Mmp8, Mmp9, and Mmp13 evident. These results indicate that MMP13 is involved in tertiary reactionary dentine formation after tooth injury in vivo, potentially acting as a key molecule in the dental pulp during dentine–pulp repair processes. Full article
(This article belongs to the Special Issue The MMPs and Its Associated Proteins and Substrates on the Cell)
Show Figures

Figure 1

13 pages, 9288 KiB  
Article
The Effects of Antimicrobial Photodynamic Therapy Used to Sterilize Carious Dentin on Rat Dental Pulp Tissue
by Tenyu Takahashi, Fumiaki Sato and Koichi Shinkai
Dent. J. 2023, 11(12), 283; https://doi.org/10.3390/dj11120283 - 6 Dec 2023
Cited by 2 | Viewed by 2340
Abstract
Antimicrobial photodynamic therapy (aPDT) used to sterilize carious dentin may irritate pulp tissues because of tissue-penetrating laser and singlet oxygen generation. This study aimed to assess the effects of aPDT on rat pulp tissues. A cavity formed in a rat maxillary first molar [...] Read more.
Antimicrobial photodynamic therapy (aPDT) used to sterilize carious dentin may irritate pulp tissues because of tissue-penetrating laser and singlet oxygen generation. This study aimed to assess the effects of aPDT on rat pulp tissues. A cavity formed in a rat maxillary first molar was treated with aPDT. The combined photosensitizer and laser irradiation conditions in the aPDT groups were as follows: methylene blue and 100 mW for 60 s, brilliant blue (BB) and 100 mW for 60 s, BB and 50 mW for 120 s, and BB and 200 mW for 30 s. Each cavity was treated with an all-in-one adhesive and filled with flowable resin. aPDT was not applied for the control. In each group, the rats were sacrificed on postoperative days 1 and 14, and thin sections of the treated teeth were prepared. Pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), and tertiary dentin formation (TDF) were evaluated. At 1-day evaluation, there were significant differences between the aPDT group and controls with respect to PTD and ICI (p < 0.01); 14 days later, almost all specimens showed tertiary dentin formation. The application of aPDT caused reversible damage to the rat pulp, while in the long term, healing occurred with the formation of tertiary dentin. Full article
Show Figures

Figure 1

26 pages, 1714 KiB  
Review
The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review
by Kacper Nijakowski, Martyna Ortarzewska, Jakub Jankowski, Anna Lehmann and Anna Surdacka
Metabolites 2023, 13(4), 520; https://doi.org/10.3390/metabo13040520 - 5 Apr 2023
Cited by 15 | Viewed by 5795
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, [...] Read more.
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex. Full article
(This article belongs to the Special Issue Cellular Metabolism in the Omics Era)
Show Figures

Figure 1

16 pages, 3271 KiB  
Article
Dentin–Pulp Complex Response in Molars of Rats after Occlusal and Cervical Restorations with Conventional Glass Ionomer Cement and Nano-Hydroxyapatite Silica Glass Ionomer Cement
by Fayez Hussain Niazi, Norhayati Luddin, Masitah Hayati Harun, Arshad Hasan, Thirumulu Ponnuraj Kannan, Suharni Mohamad and Amer Mahmood
Appl. Sci. 2023, 13(5), 3156; https://doi.org/10.3390/app13053156 - 1 Mar 2023
Cited by 1 | Viewed by 2782
Abstract
The purpose of this in vivo study was to evaluate and compare the dentin–pulp complex response following occlusal and cervical restorations in rat molars restored with nano-hydroxyapatite silica glass ionomer cement (nano-HA-SiO2-GIC) and conventional glass ionomer cement (c-GIC). In total, 64 [...] Read more.
The purpose of this in vivo study was to evaluate and compare the dentin–pulp complex response following occlusal and cervical restorations in rat molars restored with nano-hydroxyapatite silica glass ionomer cement (nano-HA-SiO2-GIC) and conventional glass ionomer cement (c-GIC). In total, 64 maxillary first molars of 32 male Wistar rats were restored using Fuji IX (c-GIC) and nano-HA-SiO2-GIC using a split-mouth design. Half of them were reserved for the occlusal type of restoration while the other half was for cervical restorations. After one week and one month, rats were euthanized and were stained with hematoxylin and eosin, Masson’s trichrome, and Brown and Brenn techniques for histological examination. Parameters such as disorganization of the pulp tissue, inflammatory cell infiltration, detection of bacteria, and tertiary dentin deposition were measured for each group. One week after sacrifice, the odontoblastic layer was disrupted, and moderate inflammation in the pulp area close to the cut dentin was observed in both types of restorations. Nano-HA-SiO2-GIC showed significantly superior properties when assessed based on tertiary dentin formation as compared to c-GIC. One month after sacrifice, there was no evidence of disruptions of the odontoblast layer, which exhibited a normal palisade appearance in both groups. In terms of inflammation, the pulp tissue recovered in almost all cases except one of c-GIC, but a few cases of the nano-HA-SiO2-GIC group still displayed mild-to-moderate inflammatory reactions, especially of the occlusal type. Both c-GIC and nano-HA-SiO2-GIC exhibited favorable responses in terms of biocompatibility. Nano-HA-SiO2-GIC exerted more inflammation but encouraged better tertiary dentin formation compared to c-GIC. Full article
Show Figures

Figure 1

19 pages, 14341 KiB  
Case Report
Guided Endodontics as a Personalized Tool for Complicated Clinical Cases
by Wojciech Dąbrowski, Wiesława Puchalska, Adam Ziemlewski and Iwona Ordyniec-Kwaśnica
Int. J. Environ. Res. Public Health 2022, 19(16), 9958; https://doi.org/10.3390/ijerph19169958 - 12 Aug 2022
Cited by 14 | Viewed by 5751
Abstract
The aim of this paper is to present a technique to individualize root canal localization in teeth with calcified root canals using a digitally planned, 3D-printed endodontic guide. Root canal calcification is characterized by the apposition of tertiary dentin along the canal wall. [...] Read more.
The aim of this paper is to present a technique to individualize root canal localization in teeth with calcified root canals using a digitally planned, 3D-printed endodontic guide. Root canal calcification is characterized by the apposition of tertiary dentin along the canal wall. The endodontic treatment of teeth with calcified canals is often challenging. However, digital dentistry meets these challenges. Merging CBCT images with an intraoral scan allows a clinician to prepare an endodontic guide. This article describes the clinical and digital workflow of the guided endodontic access approach in teeth with difficulties in terms of root canal localization due to post-traumatic pulp canal obliteration (PCO) and canal calcification in elderly patients. The path of entry into the root canal system was planned using cone-beam computed tomography (CBCT). The template was printed on a 3D printer using transparent resin. During root canal treatment (RCT), the endodontic tool was inserted through the sleeve until the desired location was reached. The use of an endodontic guide allowed for minimally invasive RCT, avoiding the excessive loss of tooth structures. Navigated endodontics enables clinicians to perform RCT in a more predictable manner and allows clinicians to avoid iatrogenic complications, which improves the treatment prognosis. Full article
(This article belongs to the Special Issue New Advances in Dentistry)
Show Figures

Graphical abstract

16 pages, 3836 KiB  
Article
Inflammation of the Human Dental Pulp Induces Phosphorylation of eNOS at Thr495 in Blood Vessels
by Özlem Erdek, Wilhelm Bloch, Svenja Rink-Notzon, Hubert C. Roggendorf, Senem Uzun, Britta Meul, Manuel Koch, Jörg Neugebauer, James Deschner and Yüksel Korkmaz
Biomedicines 2022, 10(7), 1586; https://doi.org/10.3390/biomedicines10071586 - 3 Jul 2022
Cited by 3 | Viewed by 3260
Abstract
The activity of endothelial nitric oxide synthase (eNOS) in endothelial cells increased with the phosphorylation of the enzyme at Ser1177 and decreased at Thr495. The regulation of the phosphorylation sites of eNOS at Ser1177 and Thr495 in blood vessels of the healthy and [...] Read more.
The activity of endothelial nitric oxide synthase (eNOS) in endothelial cells increased with the phosphorylation of the enzyme at Ser1177 and decreased at Thr495. The regulation of the phosphorylation sites of eNOS at Ser1177 and Thr495 in blood vessels of the healthy and inflamed human dental pulp is unknown. To investigate this, healthy and carious human third molars were immersion-fixed and decalcified. The localization of eNOS, Ser1177, and Thr495 in healthy and inflamed blood vessels was examined in consecutive cryo-sections using quantitative immunohistochemical methods. We found that the staining intensity of Ser1177 in healthy blood vessels decreased in inflamed blood vessels, whereas the weak staining intensity of Thr495 in healthy blood vessels strongly increased in inflamed blood vessels. In blood vessels of the healthy pulp, eNOS is active with phosphorylation of the enzyme at Ser1177. The phosphorylation of eNOS at Thr495 in inflamed blood vessels leads to a decrease in eNOS activity, contributing to eNOS uncoupling and giving evidence for a decrease in NO and an increase in O2 production. Since the formation of the tertiary dentin matrix depends on intact pulp circulation, eNOS uncoupling and phosphorylation of eNOS at Thr495 in the inflamed pulp blood vessels should be considered during caries therapy. Full article
Show Figures

Figure 1

27 pages, 1592 KiB  
Review
The Influence of New Bioactive Materials on Pulp–Dentin Complex Regeneration in the Assessment of Cone Bone Computed Tomography (CBCT) and Computed Micro-Tomography (Micro-CT) from a Present and Future Perspective—A Systematic Review
by Mirona Paula Palczewska-Komsa, Bartosz Gapiński and Alicja Nowicka
J. Clin. Med. 2022, 11(11), 3091; https://doi.org/10.3390/jcm11113091 - 30 May 2022
Cited by 7 | Viewed by 3688
Abstract
The present paper is the first article providing a systematic literature review on the visualization of tertiary dentin influenced by modern bioactive materials in CBCT and micro-CT. Six database searches of studies on tertiary dentin visualization using CBCT produced 622 records in total, [...] Read more.
The present paper is the first article providing a systematic literature review on the visualization of tertiary dentin influenced by modern bioactive materials in CBCT and micro-CT. Six database searches of studies on tertiary dentin visualization using CBCT produced 622 records in total, and the search of the studies on tertiary dentin using micro-CT produced 502 records in total. The results were thoroughly selected considering the inclusion criteria, and five research papers using CBCT and nine research papers using micro-CT for visualization of tertiary dentin were eventually qualified for the analysis. All the non-randomized and randomized studies presented good and high levels of quality evidence, respectively. Among the bioactive materials used, the most frequently analysed were: MTA, Biodentine dentin matrix hydrogel, Pro Root MTA, and EndoSequence root repair material. The highest thickness of the tertiary dentin was achieved after the use of MTA material in both imaging techniques. The remaining parameters had different results, taking into account the CBCT and micro-CT analysis. The possibilities of the qualitative and quantitative assessment of the particular parameters of tertiary dentin using CBCT and micro-CT techniques were presented and analysed. CBCT and micro-CT analyses can be useful in the assessment of tertiary dentin formed beneath the bioactive material applied during vital pulp treatment. The research argues that the presented results differ depending on the material applied to the pulp, the study duration (4–6 weeks), difference in teeth, species (rats, human), as well as the applied technique and differences in computer software used for the analysis. Full article
(This article belongs to the Special Issue Experimental Dental Research—New Concepts for Future Patient Needs)
Show Figures

Figure 1

14 pages, 2974 KiB  
Article
Novel Bioactive Adhesive Monomer CMET Promotes Odontogenic Differentiation and Dentin Regeneration
by Youjing Qiu and Takashi Saito
Int. J. Mol. Sci. 2021, 22(23), 12728; https://doi.org/10.3390/ijms222312728 - 25 Nov 2021
Cited by 9 | Viewed by 2824
Abstract
This study aimed to evaluate the in vitro effect of the novel bioactive adhesive monomer CMET, a calcium salt of 4-methacryloxyethyl trimellitate acid (4-MET), on human dental pulp stem cells (hDPSCs) and its capacity to induce tertiary dentin formation in a rat pulp [...] Read more.
This study aimed to evaluate the in vitro effect of the novel bioactive adhesive monomer CMET, a calcium salt of 4-methacryloxyethyl trimellitate acid (4-MET), on human dental pulp stem cells (hDPSCs) and its capacity to induce tertiary dentin formation in a rat pulp injury model. Aqueous solutions of four tested materials [4-MET, CMET, Ca(OH)2, and mineral trioxide aggregate (MTA)] were added to the culture medium upon confluence, and solvent (dH2O) was used as a control. Cell proliferation was assessed using the Cell Counting Kit-8 assay, and cell differentiation was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. The mineralization-inducing capacity was evaluated using alizarin red S staining and an alkaline phosphatase activity assay. For an in vivo experiment, a mechanical pulp exposure model was prepared on Wistar rats; damaged pulp was capped with Ca(OH)2 or CMET. Cavities were sealed with composite resin, and specimens were assessed after 14 and 28 days. The in vitro results showed that CMET exhibited the lowest cytotoxicity and highest odontogenic differentiation capacity among all tested materials. The favorable outcome on cell mineralization after treatment with CMET involved p38 and c-Jun N-terminal kinases signaling. The nuclear factor kappa B pathway was involved in the CMET-induced mRNA expression of odontogenic markers. Similar to Ca(OH)2, CMET produced a continuous hard tissue bridge at the pulp exposure site, but treatment with only CMET produced a regular dentinal tubule pattern. The findings suggest that (1) the evaluated novel bioactive adhesive monomer provides favorable biocompatibility and odontogenic induction capacity and that (2) CMET might be a very promising adjunctive for pulp-capping materials. Full article
Show Figures

Figure 1

23 pages, 8228 KiB  
Review
The Role of Dendritic Cells during Physiological and Pathological Dentinogenesis
by Angela Quispe-Salcedo and Hayato Ohshima
J. Clin. Med. 2021, 10(15), 3348; https://doi.org/10.3390/jcm10153348 - 29 Jul 2021
Cited by 10 | Viewed by 4170
Abstract
The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct cell populations, capable of interacting with each other to maintain the vitality of the tooth. After tooth injuries, a sequence of complex biological events takes place in the pulpal [...] Read more.
The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct cell populations, capable of interacting with each other to maintain the vitality of the tooth. After tooth injuries, a sequence of complex biological events takes place in the pulpal tissue to restore its homeostasis. The pulpal response begins with establishing an inflammatory reaction that leads to the formation of a matrix of reactionary or reparative dentin, according to the nature of the exogenous stimuli. Using several in vivo designs, antigen-presenting cells, including macrophages and dendritic cells (DCs), are identified in the pulpal tissue before tertiary dentin deposition under the afflicted area. However, the precise nature of this phenomenon and its relationship to inherent pulp cells are not yet clarified. This literature review aims to discuss the role of pulpal DCs and their relationship to progenitor/stem cells, odontoblasts or odontoblast-like cells, and other immunocompetent cells during physiological and pathological dentinogenesis. The concept of “dentin-pulp immunology” is proposed for understanding the crosstalk among these cell types after tooth injuries, and the possibility of immune-based therapies is introduced to accelerate pulpal healing after exogenous stimuli. Full article
(This article belongs to the Special Issue Root Canal Treatment (RCT): Latest Advances and Prospects)
Show Figures

Figure 1

14 pages, 2604 KiB  
Article
Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties
by Alma Antonia Pérez-Mondragón, Carlos Enrique Cuevas-Suárez, Jesús García-Serrano, Nayely Trejo-Carbajal, A. Lobo-Guerrero and Ana M. Herrera-González
Polymers 2021, 13(12), 1944; https://doi.org/10.3390/polym13121944 - 11 Jun 2021
Cited by 2 | Viewed by 2753
Abstract
This work reports the use of two monomers with two tertiary amines and four methacrylic (TTME) or acrylic (TTAC) terminal groups as co-initiators in the formulation of experimental resin adhesive systems. Both monomers were characterized by FT-IR and 1H NMR spectroscopies. The [...] Read more.
This work reports the use of two monomers with two tertiary amines and four methacrylic (TTME) or acrylic (TTAC) terminal groups as co-initiators in the formulation of experimental resin adhesive systems. Both monomers were characterized by FT-IR and 1H NMR spectroscopies. The control adhesive was formulated with BisGMA, TEGDMA, HEMA, and the binary system CQ-EDAB as a photo-initiator system. For the experimental adhesives, the EDAB was completely replaced for the TTME or the TTAC monomers. The adhesives formulated with TTME or TTAC monomers achieved double bond conversion values close to 75%. Regarding the polymerization rate, materials formulated with TTME or TTAC achieved lower values than the material formulated with EDAB, giving them high shelf-life stability. The degree of conversion after shelf simulation was only reduced for the EDAB material. Ultimate tensile strength, translucency parameter, and micro-tensile bond strength to dentin were similar for control and experimental adhesive resins. Due to their characteristics, TTME and TTAC monomers are potentially useful in the formulation of photopolymerizable resins for dental use with high shelf-life stability. Full article
Show Figures

Figure 1

28 pages, 1325 KiB  
Review
The Effect of Calcium-Silicate Cements on Reparative Dentinogenesis Following Direct Pulp Capping on Animal Models
by Mihai Andrei, Raluca Paula Vacaru, Anca Coricovac, Radu Ilinca, Andreea Cristiana Didilescu and Ioana Demetrescu
Molecules 2021, 26(9), 2725; https://doi.org/10.3390/molecules26092725 - 6 May 2021
Cited by 40 | Viewed by 5963
Abstract
Dental pulp vitality is a desideratum for preserving the health and functionality of the tooth. In certain clinical situations that lead to pulp exposure, bioactive agents are used in direct pulp-capping procedures to stimulate the dentin-pulp complex and activate reparative dentinogenesis. Hydraulic calcium-silicate [...] Read more.
Dental pulp vitality is a desideratum for preserving the health and functionality of the tooth. In certain clinical situations that lead to pulp exposure, bioactive agents are used in direct pulp-capping procedures to stimulate the dentin-pulp complex and activate reparative dentinogenesis. Hydraulic calcium-silicate cements, derived from Portland cement, can induce the formation of a new dentin bridge at the interface between the biomaterial and the dental pulp. Odontoblasts are molecularly activated, and, if necessary, undifferentiated stem cells in the dental pulp can differentiate into odontoblasts. An extensive review of literature was conducted on MedLine/PubMed database to evaluate the histological outcomes of direct pulp capping with hydraulic calcium-silicate cements performed on animal models. Overall, irrespective of their physico-chemical properties and the molecular mechanisms involved in pulp healing, the effects of cements on tertiary dentin formation and pulp vitality preservation were positive. Histological examinations showed different degrees of dental pulp inflammatory response and complete/incomplete dentin bridge formation during the pulp healing process at different follow-up periods. Calcium silicate materials have the ability to induce reparative dentinogenesis when applied over exposed pulps, with different behaviors, as related to the animal model used, pulpal inflammatory responses, and quality of dentin bridges. Full article
(This article belongs to the Special Issue Micro and Nanostructures for Applied Chemistry and Medical Sciences)
Show Figures

Figure 1

Back to TopTop