Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = terpenoid emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1363 KB  
Review
Biosynthetic Machinery to Abiotic Stress-Driven Emission: Decoding Multilayer Regulation of Volatile Terpenoids in Plants
by Yingying Shan and Songheng Jin
Antioxidants 2025, 14(6), 673; https://doi.org/10.3390/antiox14060673 - 31 May 2025
Cited by 2 | Viewed by 1739
Abstract
Volatile terpenoids (VTs) are key secondary metabolites that play dual roles as endogenous antioxidants and airborne signals in plants under abiotic stress. Their biosynthesis is orchestrated via the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, with metabolic plasticity regulated by transcription factors, phytohormonal [...] Read more.
Volatile terpenoids (VTs) are key secondary metabolites that play dual roles as endogenous antioxidants and airborne signals in plants under abiotic stress. Their biosynthesis is orchestrated via the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, with metabolic plasticity regulated by transcription factors, phytohormonal crosstalk, and stress-responsive elements. Recent advances have revealed that VTs such as isoprene, monoterpenes, and sesquiterpenes help mitigate oxidative stress by scavenging reactive oxygen species (ROS) and modulating antioxidant enzyme systems. However, regulatory mechanisms of stress-induced VT emissions remain fragmented and species-dependent. This review synthesizes current knowledge of VT biosynthesis and emission under abiotic stress, highlights their antioxidant functions and regulatory architecture, and underscores their protective roles in redox homeostasis and stress signal transduction. By identifying key metabolic nodes (e.g., TPS, DXS and MYC2) and stress-responsive pathways, we propose potential molecular targets for the development of stress-resilient cultivars. The integration of VT-based traits into breeding strategies and production-oriented metabolic engineering offers promising avenues for improving crop performance, reducing oxidative damage, and supporting sustainable agricultural systems. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

11 pages, 1217 KB  
Article
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Viewed by 702
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal [...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 2891 KB  
Article
Unlocking the Potential of Thermal Post-Treatments: A Study on Odor Emission Control in Eucalyptus Wood Particleboard
by Wenhang Yin, Yueyun Zhang, Churan Li, Boxiao Wu, Zhaojin Yang, Heming Huang, Bangrui Luo, Guanben Du, Ping Zhao and Xiaoqin Yang
Molecules 2025, 30(9), 1949; https://doi.org/10.3390/molecules30091949 - 28 Apr 2025
Cited by 2 | Viewed by 856
Abstract
Eucalyptus wood particleboard (EPB), commonly used in indoor decoration, releases volatile organic compounds (VOCs) that can adversely affect indoor air quality and human health. This study systematically examined the VOC emission characteristics of EPB using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography [...] Read more.
Eucalyptus wood particleboard (EPB), commonly used in indoor decoration, releases volatile organic compounds (VOCs) that can adversely affect indoor air quality and human health. This study systematically examined the VOC emission characteristics of EPB using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography mass spectrometry (GC-MS). A total of 65 VOCs were identified, with medium-volatility organic compounds (MVOCs) accounting for 28 compounds, low-volatility organic compounds (LVOCs) for 26, and high-volatility organic compounds (HVOCs) for 11. Terpenoids dominated the VOCs, comprising 78.46%, followed by aldehydes (10.77%) and alkanes (7.69%). Key odorant compounds (KOCs) were identified using the relative odor activity value (ROAV), with hexanal (ROAV = 100) and o-cymene (ROAV = 76.90) emerging as the most significant contributors to the overall odor profile. Thermal post-treatment at temperatures of 50–60 °C for durations of 6–12 h was found to be an effective method for reducing the residual VOCs and KOCs in the EPB, leading to a marked decrease in the peak areas of key odorants. The findings suggest several strategies for minimizing VOC emissions and eliminating residual odor, including reducing the use of miscellaneous wood materials, controlling the production of o-cymene, and employing thermal post-treatment at moderate temperatures. These measures provide a promising approach to reducing VOC and odor emissions from EPB and similar composite wood products, thereby enhancing their suitability for indoor applications. This study innovatively establishes an evaluation system for VOC emission characteristics in wood-based panels based on the ROAV. It elucidates the contribution mechanisms of key odor-active substances (e.g., hexanal and pentanal) and presents a thermal post-treatment process for source control, achieving simultaneous VOCs and odor elimination. A ROAV-guided hierarchical management strategy is proposed, providing scientific guidelines for the industrial production of high-quality particleboards with ultralow emissions (TVOC < 50 μg/m3) and minimal odor intensity (OI < Grade 3). Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

16 pages, 3299 KB  
Article
Citrus Yellow Vein Clearing Virus Infection in Lemon Influences Host Preference of the Citrus Whitefly by Affecting the Host Metabolite Composition
by Yong-Duo Sun, Christopher M. Wallis, Rodrigo Krugner and Raymond Yokomi
Plants 2025, 14(2), 288; https://doi.org/10.3390/plants14020288 - 20 Jan 2025
Cited by 1 | Viewed by 1449
Abstract
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether Citrus yellow vein clearing virus (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, Dialeurodes citri (Ashmead). Free choice assays showed that [...] Read more.
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether Citrus yellow vein clearing virus (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, Dialeurodes citri (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants. Using chromatography techniques, we found that the levels of sugars were similar in leaves and stems of both plant groups, while the contents of several amino acids in leaf or stem samples and non-volatile phenolic compounds in the leaf samples of CYVCV-infected and healthy plants differ drastically. In addition, volatile terpenes/terpenoids decreased significantly in virus-infected plants compared to healthy controls. Several of the identified volatile compounds such as α-phellandrene, α-terpinolene, p-cymene, linalool, and citral are known for their whitefly repellent properties. Further Y-tube olfactometer bioassays revealed that emissions of volatile organic compounds (VOCs) from infected plants attracted more citrus whiteflies, but not alate spirea aphids, Aphis spiraecola Patch, than those from healthy plants, suggesting that the VOCs released from CYVCV-infected lemon plants may specifically affect citrus whiteflies. Therefore, we suggest that, in addition to the visual cue of yellow vein symptoms, the preference of citrus whiteflies that settled on CYVCV-infected lemon plants was attributed to a reduction in the levels of repellent volatile compounds. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

13 pages, 3767 KB  
Article
Unveiling the Floral Scent Dynamics of Calamondin (Citrus × microcarpa) Across Developmental Stages
by Yiwei Chen, Zhiqing Liang, Shiyu Chen, Fulong Yan, Jingjuan He, Yiwei Zhou and Ting Gao
Separations 2024, 11(12), 359; https://doi.org/10.3390/separations11120359 - 23 Dec 2024
Viewed by 1730
Abstract
The calamondin (Citrus × microcarpa) is highly valued for its ornamental appeal and rich aromatic compounds, making it suitable for therapeutic gardens and widely applicable in the cosmetics, food, pharmaceutical, and perfume industries. Despite its importance, there is a lack of [...] Read more.
The calamondin (Citrus × microcarpa) is highly valued for its ornamental appeal and rich aromatic compounds, making it suitable for therapeutic gardens and widely applicable in the cosmetics, food, pharmaceutical, and perfume industries. Despite its importance, there is a lack of research on its floral volatiles. This study utilized headspace solid-phase microextraction gas chromatography–mass spectrometry (HS–SPME–GC–MS) to detect the volatile organic compounds (VOCs) of calamondin at different floral developmental stages: bud (BS), half-open (HS), full bloom (FS), and senescence (SS). Multivariate statistical analysis was employed to elucidate the aromatic characteristics. The results identified 67 VOCs across the four stages, including forty-eight terpenoids, six esters, five aromatics, four aldehydes, one olefin, one alcohol, and two others. Thirty-three VOCs were common across all stages, while BS, HS, FS, and SS had three, three, four, and nine unique VOCs, respectively. The total VOC content increased initially and then decreased as the flowers developed, with terpenoids being the predominant compounds, accounting for over 90% of the total emissions at all stages. Principal component analysis and hierarchical cluster analysis confirmed significant differences in VOC profiles at different stages. Partial least squares discriminant analysis identified five VOCs with variable importance in projection (VIP) values greater than one, including limonene, linalool, β-pinene, germacrene D, and β-ocimene, indicating their varying emission levels across stages. These findings enhance our understanding of the VOC characteristics of calamondin flowers and provide a scientific basis for further ornamental and industrial applications. Full article
(This article belongs to the Special Issue Research Progress for Isolation of Plant Active Compounds)
Show Figures

Figure 1

16 pages, 2393 KB  
Article
Chemical Diversity of Mediterranean Seagrasses Volatilome
by Salomé Coquin, Elena Ormeno, Vanina Pasqualini, Briac Monnier, Gérald Culioli, Caroline Lecareux, Catherine Fernandez and Amélie Saunier
Metabolites 2024, 14(12), 705; https://doi.org/10.3390/metabo14120705 - 14 Dec 2024
Cited by 6 | Viewed by 1482
Abstract
Background/Objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr−1, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000–600,000 km2). This study [...] Read more.
Background/Objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr−1, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000–600,000 km2). This study aims to examine BVOC emissions from key Mediterranean seagrass species (Cymodocea nodosa, Posidonia oceanica, Zostera noltei, and Zostera marina) in marine and coastal lagoon environments. Methods: BVOCs were collected using headspace solid-phase microextraction (HS-SPME) using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibers and analyzed by gas chromatography–mass spectrometry (GC-MS). Results: An important chemical diversity was found with a total of 92 volatile compounds (61 for Z. noltei, 59 for C. nodosa, 55 for P. oceanica, and 51 for Z. marina), from different biosynthetic pathways (e.g., terpenoids, benzenoids, and fatty acid derivatives) and with several types of chemical functions (e.g., alkanes, esters, aldehydes, and ketones) or heteroatoms (e.g., sulfur). No differences in chemical richness or diversity of compounds were observed between species. The four species shared 29 compounds enabling us to establish a specific chemical footprint for Mediterranean marine plants, including compounds like benzaldehyde, benzeneacetaldehyde, 8-heptadecene, heneicosane, heptadecane, nonadecane, octadecane, pentadecane, tetradecane, and tridecanal. PLS-DA and Heatmap show that the four species presented significantly different chemical profiles. The major compounds per species in relative abundance were isopropyl myristate for C. nodosa (25.6%), DMS for P. oceanica (39.3%), pentadecane for Z. marina (42.9%), and heptadecane for Z. noltei (46%). Conclusions: These results highlight the potential of BVOCs’ emission from seagrass ecosystems and reveal species-specific chemical markers. Full article
Show Figures

Figure 1

16 pages, 3382 KB  
Article
Infestation of Rice Striped Stem Borer (Chilo suppressalis) Larvae Induces Emission of Volatile Organic Compounds in Rice and Repels Female Adult Oviposition
by Chen Shen, Shan Yu, Xinyang Tan, Guanghua Luo, Zhengping Yu, Jiafei Ju, Lei Yang, Yuxuan Huang, Shuai Li, Rui Ji, Chunqing Zhao and Jichao Fang
Int. J. Mol. Sci. 2024, 25(16), 8827; https://doi.org/10.3390/ijms25168827 - 13 Aug 2024
Cited by 3 | Viewed by 2334
Abstract
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female [...] Read more.
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female adult oviposition preference. Widely targeted volatilomics and transcriptome sequencing were used to identify released volatile metabolic profiles and differentially expressed genes in SSB-infested and uninfested rice plants. SSB infestation significantly altered the accumulation of 71 volatile organic compounds (VOCs), including 13 terpenoids. A total of 7897 significantly differentially expressed genes were identified, and genes involved in the terpenoid and phenylpropanoid metabolic pathways were highly enriched. Correlation analysis revealed that DEGs in terpenoid metabolism-related pathways were likely involved in the regulation of VOC biosynthesis in SSB-infested rice plants. Furthermore, two terpenoids, (−)-carvone and cedrol, were selected to analyse the behaviour of SSB and predators. Y-tube olfactometer tests demonstrated that both (−)-carvone and cedrol could repel SSB adults at higher concentrations; (−)-carvone could simultaneously attract the natural enemies of SSB, Cotesia chilonis and Trichogramma japonicum, and cedrol could only attract T. japonicum at lower concentrations. These findings provide a better understanding of the response of rice plants to SSB and contribute to the development of new strategies to control herbivorous pests. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

29 pages, 6688 KB  
Article
Comparative Analysis of Grape Seed Oil, Linseed Oil, and a Blend: In Vivo Effects of Supplementation
by Carolina Di Pietro Fernandes, Arnildo Pott, Priscila Aiko Hiane, Valter Aragão do Nascimento, Wander Fernando de Oliveira Filiú, Lincoln Carlos Silva de Oliveira, Eliana Janet Sanjinez-Argandoña, Leandro Fontoura Cavalheiro, Carlos Eduardo Domingues Nazário, Anderson Rodrigues Lima Caires, Flavio Santana Michels, Karine de Cássia Freitas, Marcel Arakaki Asato, Juliana Rodrigues Donadon, Danielle Bogo and Rita de Cássia Avellaneda Guimarães
Foods 2024, 13(14), 2283; https://doi.org/10.3390/foods13142283 - 20 Jul 2024
Cited by 4 | Viewed by 3868
Abstract
Grape seeds are rich in bioactive substances, including polyphenols, terpenoids, and phytosterols. Linseed (Linum usitatissimum L.) boasts a high concentration of polyunsaturated fatty acids (PUFAs), lignans, phytoestrogens, and soluble fibers, all contributing to its therapeutic potential. In this study, we pioneered the [...] Read more.
Grape seeds are rich in bioactive substances, including polyphenols, terpenoids, and phytosterols. Linseed (Linum usitatissimum L.) boasts a high concentration of polyunsaturated fatty acids (PUFAs), lignans, phytoestrogens, and soluble fibers, all contributing to its therapeutic potential. In this study, we pioneered the formulation of an oil blend (GL) combining grape seed oil (G) and golden linseed oil (GL) in equal volumes (1:1 (v/v)) and we evaluated in terms of the nutritional, physical, and chemical properties and their influence in an in vivo experimental model. We analyzed the oils by performing physical–chemical analyses, examining the oxidative stability using Rancimat; conducting thermal analyses via thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC), performing optical UV–vis absorption analyses; examining the fluorescence emission–excitation matrix, total carotenoids, and color, and conducting metabolic assessments in an in vivo experimental trial. The fatty acid profile presented a higher fraction of linoleic acid (C18:2) in G and GL and alpha-linolenic acid (C18:3) in L. The acidity and peroxide indices were within the recommended ranges. The TG/DTG, DSC, and Rancimat analyses revealed similar behaviors, and the optical analyses revealed color variations caused by carotenoid contents in L and GL. In the in vivo trial, G (G2: 2000 mg/kg/day) promoted lower total consumption, and the blend (GL: 2000 mg/kg/day) group exhibited less weight gain per gram of consumed food. The group with G supplementation (G2: 2000 mg/kg/day) and GL had the highest levels of HDL-c. The group with L supplementation (L2: 2000 mg/kg/day) had the lowest total cholesterol level. The L2, G1 (1000 mg/kg/day), and G2 groups exhibited the lowest MCP-1 and TNF-α values. Additionally, the lowest adipocyte areas occurred in G and GL. Our results suggest that this combination is of high quality for consumption and can influence lipid profiles, markers of inflammation, and antioxidant status. Full article
Show Figures

Figure 1

15 pages, 267 KB  
Article
Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis
by Valery A. Isidorov, Andrea M. Dallagnol and Adam Zalewski
Molecules 2024, 29(8), 1863; https://doi.org/10.3390/molecules29081863 - 19 Apr 2024
Cited by 5 | Viewed by 1790
Abstract
The vegetation of the Canary Islands is characterized by a large number of endemic species confined to different altitudinal levels. It can be assumed that these circumstances determine the characteristic features of the chemical composition of local beekeeping products, including propolis. We report, [...] Read more.
The vegetation of the Canary Islands is characterized by a large number of endemic species confined to different altitudinal levels. It can be assumed that these circumstances determine the characteristic features of the chemical composition of local beekeeping products, including propolis. We report, for the first time, the chemical composition of propolis from Tenerife (Canary Islands). The volatile emissions of three propolis samples collected from different apiaries are represented by 162 C1–C20 compounds, of which 144 were identified using the HS-SPME/GC-MS technique. The main group of volatiles, consisting of 72 compounds, is formed by terpenoids, which account for 42–68% of the total ion current (TIC) of the chromatograms. The next most numerous groups are formed by C6–C17 alkanes and alkenes (6–32% TIC) and aliphatic C3–C11 carbonyl compounds (7–20% TIC). The volatile emissions also contain C1–C6 aliphatic acids and C2–C8 alcohols, as well as their esters. Peaks of 138 organic C3–C34 compounds were recorded in the chromatograms of the ether extracts of the studied propolis. Terpene compounds form the most numerous group, but their number and content in different samples is within very wide limits (9–63% TIC), which is probably due to the origin of the samples from apiaries located at different altitudes. A peculiarity of the chemical composition of the extractive substances is the almost complete absence of phenylcarboxylic acids and flavonoids, characteristic of Apis mellifera propolis from different regions of Eurasia and North America. Aromatic compounds of propolis from Tenerife are represented by a group of nine isomeric furofuranoid lignans, as well as alkyl- and alkenyl-substituted derivatives of salicylic acid and resorcinol. Full article
22 pages, 12233 KB  
Article
Green Synthesis of Magnetite Nanoparticles Mediated Fumaria officinalis L. Plant as Sustainable and Renewable Adsorbing Materials
by Akram A. Haji, Rihan S. Abduljabar, Suhad A. Yasin, Zagros A. Omar, Hozan A. Ahmed, Mohammed A. Assiri and Gomaa A. M. Ali
Separations 2023, 10(9), 518; https://doi.org/10.3390/separations10090518 - 21 Sep 2023
Cited by 3 | Viewed by 3272
Abstract
Magnetite nanoparticles (Fe3O4) have been utilized to mediate Fumaria officinalis L., a plant known for its rich source of various phytogredients such as diterpenes, nor-diterpenoids, tri-terpenoids, flavonoids, and phenolic acids. These natural compounds act as capping, reducing, and stabilizing [...] Read more.
Magnetite nanoparticles (Fe3O4) have been utilized to mediate Fumaria officinalis L., a plant known for its rich source of various phytogredients such as diterpenes, nor-diterpenoids, tri-terpenoids, flavonoids, and phenolic acids. These natural compounds act as capping, reducing, and stabilizing agents, offering an affordable and safer approach to synthesize nanoparticles in line with sustainable and eco-friendly concepts, such as green nanoparticles. The cost-effective synthesized nanoparticles were employed to adsorb Pb(II) from an aqueous solution. For investigating the surface characteristics of the adsorbent, a range of techniques were employed, including Field Emission Scanning Electron Microscope (FE-SEM), Fourier Transform Infrared Spectroscopy, and X-ray Diffraction. Fourier Transform Infrared (FT-IR) spectroscopy was specifically applied to discern the functional groups present within the compounds. To optimize the adsorption process and achieve the best removal efficiency (R%), several parameters, including pH, initial concentration, temperature, and contact time, were optimized using the Response Surface Methodology (RSM). The experimental results indicated that the Langmuir isotherm provided a well-fitted model, suggesting a monolayer of Pb(II) capping on the surface of magnetite nanoparticles, with a maximum adsorption capacity of 147.1 mg/g. Moreover, the kinetic findings demonstrated a strong alignment with the pseudo-second-order model. The computed (qe) and observed outcomes associated with the pseudo-second-order kinetic model exhibited a commendable concurrence, underscoring the model’s remarkable precision in forecasting the adsorption mechanism of Pb(II) within the examined parameters. The antioxidant activity and green nanocomposite properties were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and standard analytical methods. The phytochemical profile exhibited a total phenolic content of 596 ± 0.001 mg GAE/g dry weight and a total flavonoid content of 18.25 ± 0.001 mg QE/g dry weight. The DPPH radical’s inhibition showed potent antioxidant activity at various concentrations (44.74, 73.86, 119.791, and 120.16% at 200, 400, 600, and 800 μg/mL, respectively), demonstrating the potential of the plant as a natural capping and reducing agent during the green process of nanoparticle formation. Full article
Show Figures

Figure 1

13 pages, 5777 KB  
Article
The Nighttime Fragrance of Guettarda scabra (Rubiaceae): Flower Scent and Its Implications for Moth Pollination
by María Cleopatra Pimienta, Diego Salazar and Suzanne Koptur
Molecules 2023, 28(17), 6312; https://doi.org/10.3390/molecules28176312 - 29 Aug 2023
Cited by 3 | Viewed by 2923
Abstract
Floral scent is crucial for attracting pollinators, especially in plants that bloom at night. However, chemical profiles of flowers from nocturnal plants with varied floral morphs are poorly documented, limiting our understanding of their pollination ecology. We investigated the floral scent in Guettarda [...] Read more.
Floral scent is crucial for attracting pollinators, especially in plants that bloom at night. However, chemical profiles of flowers from nocturnal plants with varied floral morphs are poorly documented, limiting our understanding of their pollination ecology. We investigated the floral scent in Guettarda scabra (L.) Vent. (Rubiaceae), a night-blooming species with short- and long-styled floral morphs, found in the threatened pine rocklands in south Florida, US. By using dynamic headspace sampling and GC–MS analysis, we characterized the chemical profiles of the floral scent in both morphs. Neutral red staining was also employed to determine the specific floral regions responsible for scent emission in G. scabra. The results revealed that G. scabra’s fragrance consists entirely of benzenoid and terpenoid compounds, with benzeneacetaldehyde and (E)-β-ocimene as dominant components. There were no differences in the chemical profiles between the long- and short-styled flowers. Staining assays indicated that the corolla lobes, anthers, and stigma were the primary sources of the scent. These findings indicate that G. scabra’s floral scent is consistent with that of night-blooming plants pollinated by nocturnal hawkmoths, providing important insights into its chemical ecology and pollinator attraction. This study demonstrates how floral scent chemistry can validate predictions based on flower morphology in hawkmoth-pollinated plants. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

32 pages, 3833 KB  
Article
Comprehensive Phytochemical Analysis and Bioactivity Evaluation of Padina boergesenii: Unveiling Its Prospects as a Promising Cosmetic Component
by Haresh S. Kalasariya, Leonel Pereira and Nikunj B. Patel
Mar. Drugs 2023, 21(7), 385; https://doi.org/10.3390/md21070385 - 29 Jun 2023
Cited by 18 | Viewed by 9479
Abstract
Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), [...] Read more.
Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), gas chromatography–mass spectrometry (GCMS), and high-resolution liquid chromatography–mass spectrometry quadrupole time-of-flight (HRLCMS QTOF) analyses were employed to assess the functional groups, phycocompounds, and beneficial compounds present in P. boergesenii. Pigment estimation, total phenol and protein content determination, DPPH antioxidant analysis, and tyrosinase inhibition assay were conducted to evaluate the extracts’ ability to counteract oxidative stress and address hyperpigmentation concerns. Elemental composition and amino acid quantification were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and HRLCMS, respectively. FTIR spectroscopy confirmed diverse functional groups, including halo compounds, alcohols, esters, amines, and acids. GCMS analysis identified moisturizing, conditioning, and anti-aging compounds such as long-chain fatty alcohols, fatty esters, fatty acids, and hydrocarbon derivatives. HRLCMS QTOF analysis revealed phenolic compounds, fatty acid derivatives, peptides, terpenoids, and amino acids with antioxidant, anti-inflammatory, and skin-nourishing properties. Elemental analysis indicated varying concentrations of elements, with silicon (Si) being the most abundant and copper (Cu) being the least abundant. The total phenol content was 86.50 µg/mL, suggesting the presence of antioxidants. The total protein content was 113.72 µg/mL, indicating nourishing and rejuvenating effects. The ethanolic extract exhibited an IC50 value of 36.75 μg/mL in the DPPH assay, indicating significant antioxidant activity. The methanolic extract showed an IC50 value of 42.784 μg/mL. Furthermore, P. boergesenii extracts demonstrated 62.14% inhibition of tyrosinase activity. This comprehensive analysis underscores the potential of P. boergesenii as an effective cosmetic ingredient for enhancing skin health. Given the increasing use of seaweed-based bioactive components in cosmetics, further exploration of P. boergesenii’s potential in the cosmetics industry is warranted to leverage its valuable properties. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Graphical abstract

21 pages, 1821 KB  
Article
Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance
by C. A. Agho, E. Runno-Paurson, T. Tähtjärv, E. Kaurilind and Ü. Niinemets
Plants 2023, 12(11), 2100; https://doi.org/10.3390/plants12112100 - 25 May 2023
Cited by 5 | Viewed by 2590
Abstract
Volatile organic compounds (VOCs) play key roles in plant abiotic and biotic stress resistance, but even for widespread crops, there is limited information on variations in the magnitude and composition of constitutive VOC emissions among cultivars with varying stress resistance. The foliage VOC [...] Read more.
Volatile organic compounds (VOCs) play key roles in plant abiotic and biotic stress resistance, but even for widespread crops, there is limited information on variations in the magnitude and composition of constitutive VOC emissions among cultivars with varying stress resistance. The foliage VOC emissions from nine local and commercial potato cultivars (Alouette, Sarme, Kuras, Ando, Anti, Jõgeva Kollane, Teele, 1681-11, and Reet) with medium to late maturities and varying Phytophthora infestans (the causative agent of late blight disease) resistance backgrounds were analyzed to gain an insight into the genetic diversity of constitutive VOC emissions and to test the hypothesis that cultivars more resistant to Phytophthora infestans have greater VOC emissions and different VOC fingerprints. Forty-six VOCs were identified in the emission blends of potato leaves. The majority of the VOCs were sesquiterpenes (50% of the total number of compounds and 0.5–36.9% of the total emissions) and monoterpenes (30.4% of the total number of compounds and 57.8–92.5% of the total VOC emissions). Qualitative differences in leaf volatiles, mainly in sesquiterpenes, were related to the potato genotype background. Among the volatile groups, the monoterpenes α-pinene, β-pinene, Δ3-carene, limonene, and p-cymene, the sesquiterpenes (E)-β-caryophyllene and α-copaene, and green leaf volatile hexanal were the major volatiles in all cultivars. A higher share of VOCs known to have antimicrobial activities was observed. Interestingly, the cultivars were grouped into high and low resistance categories based on the VOC profiles, and the total terpenoid and total constitutive VOC emission scale positively with resistance. To support and expedite advances in breeding for resistance to diseases such as late blight disease, the plant research community must develop a fast and precise approach to measure disease resistance. We conclude that the blend of emitted volatiles is a fast, non-invasive, and promising indicator to identify cultivars resistant to potato late blight disease. Full article
(This article belongs to the Special Issue Plant Volatile Emissions: From Constitutive to Stress-Induced)
Show Figures

Figure 1

17 pages, 4764 KB  
Article
Geographical Classification of Saffron (Crocus Sativus L.) Using Total and Synchronous Fluorescence Combined with Chemometric Approaches
by Ouarda El Hani, Juan José García-Guzmán, José María Palacios-Santander, Khalid Digua, Aziz Amine, Said Gharby and Laura Cubillana-Aguilera
Foods 2023, 12(9), 1747; https://doi.org/10.3390/foods12091747 - 23 Apr 2023
Cited by 10 | Viewed by 3495
Abstract
There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from [...] Read more.
There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from Taroudant, Ouarzazate, and Azilal. Moreover, to differentiate between Afghan, Iranian, and Moroccan saffron, a unique fingerprint was assigned to each sample by visualizing the EEM physiognomy. Moreover, principal component analysis (LDA) and linear discriminant analysis (LDA) were successfully applied to classify the synchronous spectra of samples. High fluorescence intensities were registered for Ouarzazate and Taroudant saffron. Yet, the Azilal saffron was distinguished by its low intensities. Furthermore, Moroccan, Afghan, and Iranian saffron were correctly assigned to their origins using PCA and LDA for different offsets (Δλ) (20–250 nm) such that the difference in the fluorescence composition of the three countries’ saffron was registered in the following excitation/emission ranges: 250–325 nm/300–480 nm and 360–425 nm/500–550 nm. These regions are characterized by the high polyphenolic content of Moroccan saffron and the important composition of Afghan saffron, including vitamins and terpenoids. However, weak intensities of these compounds were found in Iranian saffron. Furthermore, a substantial explained variance (97–100% for PC1 and PC2) and an important classification rate (70–90%) were achieved. Thus, the non-destructive applied methodology of discrimination was rapid, straightforward, reliable, and accurate. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 12655 KB  
Article
Bio-Fabrication of Silver Nanoparticles Using Citrus aurantifolia Fruit Peel Extract (CAFPE) and the Role of Plant Extract in the Synthesis
by Tijjani Mustapha, Nur Raihana Ithnin, Hidayatulfathi Othman, Zatul-’Iffah Abu Hasan and Norashiqin Misni
Plants 2023, 12(8), 1648; https://doi.org/10.3390/plants12081648 - 14 Apr 2023
Cited by 25 | Viewed by 4343
Abstract
The green synthesis of silver nanoparticles has been proposed as an eco-friendly and cost-effective substitute for chemical and physical methods. The aim of this study was to synthesize and characterize silver nanoparticles using the peel extract of Citrus aurantifolia fruit, and to determine [...] Read more.
The green synthesis of silver nanoparticles has been proposed as an eco-friendly and cost-effective substitute for chemical and physical methods. The aim of this study was to synthesize and characterize silver nanoparticles using the peel extract of Citrus aurantifolia fruit, and to determine the possible phytochemical constituents’ presence in the plant extracts that might be responsible for the synthesis. Citrus aurantifolia fruit peel extraction was followed by phytochemical studies of secondary metabolites, FTIR analysis confirmation of functional groups, and GC–MS analysis. Silver nanoparticles were synthesized through bio-reduction of silver ions (Ag+) to silver nanoparticles using CAFPE and characterized using UV-Vis spectroscopy, HR–TEM, FESEM, EDX, XRD, DLS, and FTIR. The presence of plant secondary metabolites such as alkaloids, flavonoids, tannins, saponins, phenols, terpenoids, and steroids was detected. The FTIR analysis of the extract revealed the presence of functional groups like hydroxyl, carboxyl, carbonyl, amine, and phenyl, whereas the GC–MS analysis indicated presence of chemical compounds such as 1,2,4-Benzenetricarboxylic acid, Fumaric acid, nonyl pentadecyl, and 4-Methyl-2-trimethylsilyloxy-acetophenone, etc., with similar functional groups. The synthesized silver nanoparticle (AgNP) has displayed the characteristics of a surface plasmon resonance (SPR) band peak from 360–405 nm. High resolution transmission electron microscope (HR-TEM) and field emission scan electron microscope (FESEM) confirm polydisperse, spherical shaped, and smooth surface nanoparticles with an average size of 24.023 nm. Energy dispersive X-ray (EDX) analysis further revealed that silver is the most abundant element found in the micrograph of the nanoparticles, and FTIR analysis further confirmed the presence of different functional groups in the surface of the nanoparticle. The XRD analysis also confirmed that the nanoparticles synthesized are crystalline in nature. Based on the findings of this study, it is understood that the variety of natural compounds that are present in plant extracts of Citrus aurantifolia fruit peel can act as both reducing and stabilizing agents for the synthesis of silver nanoparticles. It is, therefore, concluded that Citrus aurantifolia peel extract can be potentially used for the large production of silver nanoparticles for several applications. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

Back to TopTop