Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Plant Material
2.2. Volatile Collection and Gas Chromatography-Mass Spectrometry Analyses
2.3. Estimation of Leaf Dry Mass Per Unit Area
2.4. Statistical Analyses
3. Results
3.1. Constitutive VOC Emission Rates in Leaves of Potato Cultivars with Different Late Blight Resistance Backgrounds
3.2. Cultivar Differences in the Blend of Emitted Volatiles
4. Discussion
4.1. Diversity of Volatile Profiles Compared with Other Commercial Potato Genotypes (Solanum tuberosum) and Solanum spp.
4.2. Quantitative and Qualitative Differences in Constitutive VOC Emissions among the Cultivars
4.3. Are Constitutive Volatile Organic Compounds Emissions Associated with Cultivar Resistance to Potato Late Blight?
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Birch, P.R.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef] [PubMed]
- Runno-Paurson, E.; Hansen, M.; Kotkas, K.; Williams, I.H.; Niinemets, Ü.; Einola, A. Evaluation of late blight foliar resistance of potato cultivars in northern Baltic conditions. Zemdirbyste 2019, 106, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Fry, W. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.C.B.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Visser, R.G.F.; Van der Vossen, E.A.G. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 2008, 51, 47–57. [Google Scholar] [CrossRef]
- Gisi, U.; Cohen, Y. Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Annu. Rev. Phytopathol. 1996, 34, 549–572. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef]
- Pacilly, F.C.; Groot, J.C.; Hofstede, G.J.; Schaap, B.F.; van Bueren, E.T.L. Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping. Agron. Sustain. Dev. 2016, 36, 35. [Google Scholar] [CrossRef]
- Kuznetsova, M.A.; Spiglazova, S.Y.; Rogozhin, A.N.; Smetanina, T.I.; Filippov, A.V. Late blight assessment of potato cultivars using a new express method. В сбoрнике Agrosym 2013, 2013, 601. [Google Scholar]
- Bengtsson, T.; Holefors, A.; Witzell, J.; Andreasson, E.; Liljeroth, E. Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathol. 2014, 63, 193–202. [Google Scholar] [CrossRef]
- Fry, W. Principles of Plant Disease Management; Academic Press Inc.: New York, NY, USA, 1982. [Google Scholar]
- Ros, B.; Thümmler, F.; Wenzel, G. Comparative analysis of Phytophthora infestans induced gene expression in potato cultivars with different levels of resistance. Plant Biol. 2005, 7, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Tomczyńska, I.; Stefańczyk, E.; Chmielarz, M.; Karasiewicz, B.; Kamiński, P.; Jones, J.D.; Lees, A.K.; Śliwka, J. A locus conferring effective late blight resistance in potato cultivar Sárpo Mira maps to chromosome XI. Theor. Appl. Genet. 2014, 127, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Shaner, G.; Finney, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef]
- Fry, W.E. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology 1978, 68, 1650–1655. [Google Scholar] [CrossRef]
- Hansen, J.G.; Koppel, M.; Valskyte, A.; Turka, I.; Kapsa, J. Evaluation of foliar resistance in potato to Phytophthora infestans based on an international field trial network. Plant Pathol. 2005, 54, 169–179. [Google Scholar] [CrossRef]
- Alves, D.P.; Tomaz, R.S.; Laurindo, B.S.; Laurindo, R.D.F.; Silva, F.F.; Cruz, C.D.; Nick, C.; Silva, D.J.H.D. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 2017, 74, 51–59. [Google Scholar] [CrossRef]
- Jeger, M.J.; Viljanen-Rollinson, S.L.H. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 2001, 102, 32–40. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Mohapatra, N.K.; Nayak, P. Estimation of area under the disease progress curves in a rice-blast pathosystem from two data points. Eur. J. Plant Pathol. 2010, 127, 33–39. [Google Scholar] [CrossRef]
- Dehimeche, N.; Buatois, B.; Bertin, N.; Staudt, M. Insights into the intraspecific variability of the above and belowground emissions of volatile organic compounds in tomato. Molecules 2021, 26, 237. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Szafranek, B.; Szafranek, J. Volatiles of Solanum spp.: Analysis, composition and ecological significance. Fruit Veg. Cereal Sci. Biotechnol. 2008, 2, 145–155. [Google Scholar]
- Niinemets, Ü.; Kännaste, A.; Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 2013, 4, 262. [Google Scholar] [CrossRef] [PubMed]
- Lazazzara, V.; Bueschl, C.; Parich, A.; Pertot, I.; Schuhmacher, R.; Perazzolli, M. Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Niederbacher, B.; Winkler, J.B.; Schnitzler, J.P. Volatile organic compounds as non-invasive markers for plant phenotyping. J. Exp. Bot. 2015, 66, 5403–5416. [Google Scholar] [CrossRef]
- Staudt, M.; Jackson, B.; El-Aouni, H.; Buatois, B.; Lacroze, J.P.; Poëssel, J.L.; Sauge, M.H. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol. 2010, 30, 1320–1334. [Google Scholar] [CrossRef]
- Quintana-Rodriguez, E.; Morales-Vargas, A.T.; Molina-Torres, J.; Ádame-Alvarez, R.M.; Acosta-Gallegos, J.A.; Heil, M. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol. 2015, 103, 250–260. [Google Scholar] [CrossRef]
- Kaddes, A.; Parisi, O.; Berhal, C.; Ben Kaab, S.; Fauconnier, M.L.; Nasraoui, B.; Jijakli, M.H.; Massart, S.; De Clerck, C. Evaluation of the effect of two volatile organic compounds on barley pathogens. Molecules 2016, 21, 1124. [Google Scholar] [CrossRef]
- Hunziker, L.; Bönisch, D.; Groenhagen, U.; Bailly, A.; Schulz, S.; Weisskopf, L. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl. Environ. Microbiol. 2015, 81, 821–830. [Google Scholar] [CrossRef]
- Chaurasia, B.; Pandey, A.; Palni, L.M.S.; Trivedi, P.; Kumar, B.; Colvin, N. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 2005, 160, 75–81. [Google Scholar] [CrossRef]
- Fauguel, C.M.; Campos Bermudez, V.A.; Iglesias, J.; Fernandez, M.; Farroni, A.; Andreo, C.S.; Presello, D.A. Volatile compounds released by maize grains and silks in response to infection by Fusarium verticillioides and its association with pathogen resistance. Plant Pathol. 2017, 66, 1128–1138. [Google Scholar] [CrossRef]
- Deng, W.; Hamilton-Kemp, T.R.; Nielsen, M.T.; Andersen, R.A.; Collins, G.B.; Hildebrand, D.F. Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J. Agric. Food Chem. 1993, 41, 506–510. [Google Scholar] [CrossRef]
- Gouinguené, S.; Degen, T.; Turlings, T.C. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 2001, 11, 9–16. [Google Scholar] [CrossRef]
- Snoeren, T.A.; Kappers, I.F.; Broekgaarden, C.; Mumm, R.; Dicke, M.; Bouwmeester, H.J. Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J. Exp. Bot. 2010, 61, 3041–3056. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Arneth, A.; Kuhn, U.; Monson, R.K.; Peñuelas, J.; Staudt, M. The emission factor of volatile isoprenoids: Stress, acclimation, and developmental responses. Biogeosciences 2010, 7, 2203–2223. [Google Scholar] [CrossRef]
- Wason, E.L.; Hunter, M.D. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia 2014, 174, 479–491. [Google Scholar] [CrossRef]
- Splivallo, R.; Valdez, N.; Kirchhoff, N.; Ona, M.C.; Schmidt, J.P.; Feussner, I.; Karlovsky, P. Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol. 2012, 194, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Degen, T.; Dillmann, C.; Marion-Poll, F.; Turlings, T.C. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 2004, 135, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Guarino, S.; Abbate, L.; Mercati, F.; Fatta Del Bosco, S.; Motisi, A.; Arif, M.A.; Cencetti, G.; Palagano, E.; Michelozzi, M. Citrus varieties with different tolerance grades to Tristeza virus show dissimilar volatile terpene profiles. Agronomy 2021, 11, 1120. [Google Scholar] [CrossRef]
- Hijaz, F.; Nehela, Y.; Killiny, N. Possible role of plant volatiles in tolerance against huanglongbing in Citrus. Plant Signal. Behav. 2016, 11, e1138193. [Google Scholar] [CrossRef] [PubMed]
- Laothawornkitkul, J.; Jansen, R.M.C.; Smid, H.M.; Bouwmeester, H.J.; Muller, J.; Van Bruggen, A.H.C. Volatile organic compounds as a diagnostic marker of late blight infected potato plants: A pilot study. Crop Prot. 2010, 29, 872–878. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Niinemets, Ü.; Kuhn, U.; Harley, P.C.; Staudt, M.; Arneth, A.; Cescatti, A.; Ciccioli, P.; Copolovici, L.; Geron, C.; Guenther, A.; et al. Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols. Biogeosciences 2011, 8, 2209–2246. [Google Scholar] [CrossRef]
- Kännaste, A.; Copolovici, L.; Niinemets, Ü. Gas chromatography– mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. In Plant Isoprenoids: Methods and Protocols; Rodríguez-Concepción, M., Ed.; Springer: New York, NY, USA, 2014; pp. 161–169. [Google Scholar]
- Wenig, P.; Odermatt, J. OpenChrom: A cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinform. 2010, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Szafranek, B.; Chrapkowska, K.; Pawińska, M.; Szafranek, J. Analysis of leaf surface sesquiterpenes in potato varieties. J. Agric. Food Chem. 2005, 53, 2817–2822. [Google Scholar] [CrossRef]
- Pagès-Hélary, S.; Dujourdy, L.; Cayot, N. Identification of volatile compounds in blackcurrant berries: Differences among cultivars. Molecules 2021, 26, 6254. [Google Scholar] [CrossRef]
- Fauziah, F.; Permana, A.D.; Faizal, A. Characterization of volatile compounds from tea plants (Camellia sinensis (L.) Kuntze) and the effect of identified compounds on Empoasca flavescens behavior. Horticulturae 2022, 8, 623. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Umashankar, S.; Liang, X.; Lee, H.W.; Swarup, S.; Ong, C.N. Characterization of plant volatiles reveals distinct metabolic profiles and pathways among 12 Brassicaceae vegetables. Metabolites 2018, 8, 94. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 9 January 2023).
- Szafranek, B.; Chrapkowska, K.; Waligóra, D.; Palavinskas, R.; Banach, A.; Szafranek, J. Leaf surface sesquiterpene alcohols of the potato (Solanum tuberosum) and their influence on Colorado beetle (Leptinotarsa decemlineata Say) feeding. J. Agric. Food Chem. 2006, 54, 7729–7734. [Google Scholar] [CrossRef] [PubMed]
- Andersson, B.A.; Holman, R.T.; Lundgren, L.; Stenhagen, G. Capillary gas chromatograms of leaf volatiles. A possible aid to breeders for pest and disease resistance. J. Agric. Food Chem. 1980, 5, 985–989. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C.; Light, D.M. Tomato leaf volatile aroma components. J. Agric. Food Chem. 1987, 35, 1039–1042. [Google Scholar] [CrossRef]
- Huang, M.; Sanchez-Moreiras, A.M.; Abel, C.; Sohrabi, R.; Lee, S.; Gershenzon, J.; Tholl, D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012, 193, 997–1008. [Google Scholar] [CrossRef]
- Gigot, C.; Ongena, M.; Fauconnier, M.L.; Wathelet, J.P.; Du Jardin, P.; Thonart, P. The lipoxygenase metabolic pathway in plants: Potential for industrial production of natural green leaf volatiles. Biotechnol. Agron. Soc. Environ. 2010, 14, 451–460. [Google Scholar]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Kemp, T.R.; McCracken, C.T.; Loughrin, J.H.; Andersen, R.A.; Hildebrand, D.F. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 1992, 18, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Gardner, H.W. Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J. Chem. Ecol. 1993, 19, 2337–2345. [Google Scholar] [CrossRef]
- Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci. 2006, 170, 715–723. [Google Scholar] [CrossRef]
- Song, J.; Leepipattanawit, R.; Deng, W.; Beaudry, R.M. Hexanal vapor is a natural, metabolizable fungicide: Inhibition of fungal activity and enhancement of aroma biosynthesis in apple slices. J. Am. Soc. Hortic. Sci. 1996, 121, 937–942. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, D.; Sundaresan, S.; Iyadurai, A.; Subramanian, K.S.; Janavi, G.J.; Paliyath, G.; Subramanian, J. Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.). Plant Pathol. J. 2020, 36, 133. [Google Scholar] [CrossRef]
- Doehlert, D.C.; Wicklow, D.T.; Gardner, H.W. Evidence implicating the lipoxygenase pathway in providing resistance to soybeans against Aspergillus flavus. Phytopathology 1993, 83, 1473–1477. [Google Scholar] [CrossRef]
- Zeringue, H.J., Jr.; Bhatnagar, D. Effects of neem leaf volatiles on submerged cultures of aflatoxigenic Aspergillus parasiticus. Appl. Environ. Microbiol. 1994, 60, 3543–3547. [Google Scholar] [CrossRef]
- Boué, S.M.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E. Effect of soybean lipoxygenase on volatile generation and inhibition of Aspergillus flavus mycelial growth. J. Agric. Food Chem. 2005, 53, 4778–4783. [Google Scholar] [CrossRef]
- Kask, K. The Effects of Heat Stress Severity on Photosynthesis and Volatile Organic Compound Emissions in Black Mustard and Tobacco. Ph.D. Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2020. Available online: https://dspace.emu.ee/bitstream/handle/10492/5561/Kask_Kaia.pdf?sequence=4&isAllowed=y (accessed on 15 January 2023).
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.M.; Chan, T.F.; Hui, J.H. Terpenes and terpenoids in plants: Interactions with environment and insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jiang, Y.; Zhao, H.; Köllner, T.G.; Chen, S.; Chen, F.; Chen, F. Diverse terpenoids and their associated antifungal properties from roots of different cultivars of Chrysanthemum morifolium Ramat. Molecules 2020, 25, 2083. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Wu, X.Q.; Wen, T.Y.; Feng, Y.Q.; Zhang, Y. Terpene Production Varies in Pinus thunbergii Parl. with Different Levels of Resistance, with Potential Effects on Pinewood Nematode Behavior. Forests 2022, 13, 1140. [Google Scholar] [CrossRef]
- Chalal, M.; Winkler, J.B.; Gourrat, K.; Trouvelot, S.; Adrian, M.; Schnitzler, J.P.; Jamois, F.; Daire, X. Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine. Front. Plant Sci. 2015, 6, 350. [Google Scholar] [CrossRef]
- Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Analysis of defensive responses activated by volatile allo-ocimene treatment in Arabidopsis thaliana. Phytochemistry 2006, 67, 1520–1529. [Google Scholar] [CrossRef]
- Taniguchi, S.; Miyoshi, S.; Tamaoki, D.; Yamada, S.; Tanaka, K.; Uji, Y.; Tanaka, S.; Akimitsu, K.; Gomi, K. Isolation of jasmonate-induced sesquiterpene synthase of rice: Product of which has an antifungal activity against Magnaporthe oryzae. J. Plant Physiol. 2014, 171, 625–632. [Google Scholar] [CrossRef]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Memari, H.R.; Pazouki, L.; Niinemets, Ü. The Biochemistry and Molecular Biology of Volatile Messengers in Trees. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Niinemets, Ü., Monson, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 47–93. ISBN 9789400766068. [Google Scholar]
- Grote, R.; Monson, R.K.; Niinemets, Ü. Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Niinemets, Ü., Monson, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 315–355. [Google Scholar]
- Li, Z.; Sharkey, T.D. Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ. 2013, 36, 429–437. [Google Scholar] [CrossRef]
- Pazouki, L.; Niinemets, Ü. Multi-substrate terpene synthases: Their occurrence and physiological significance. Front. Plant Sci. 2016, 7, 1019. [Google Scholar] [CrossRef]
- Feng, X.Z.; Xiao, Z.; Zhang, L.; Liao, S.; Chen, S.; Luo, H.; He, L.; Fan, G.; Wang, Z. Antifungal activity of β-pinene-based hydronopyl quaternary ammonium salts against phytopathogenic fungi. Nat. Prod. Commun. 2020, 15, 1934578X20948365. [Google Scholar] [CrossRef]
- Shu, H.; Chen, H.; Wang, X.; Hu, Y.; Yun, Y.; Zhong, Q.; Chen, W.; Chen, W. Antimicrobial activity and proposed action mechanism of 3-Carene against Brochothrix thermosphacta and Pseudomonas fluorescens. Molecules 2019, 24, 3246. [Google Scholar] [CrossRef] [PubMed]
- Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control 2008, 19, 346–352. [Google Scholar] [CrossRef]
- Chee, H.Y.; Mm, H.; Lee, M.H. In vitro antifungal activity of limonene against Trichophyton rubrum. Mycobiology 2009, 37, 243–246. [Google Scholar] [CrossRef]
- Simas, D.L.; de Amorim, S.H.; Goulart, F.R.; Alviano, C.S.; Alviano, D.S.; da Silva, A.J.R. Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Ind. Crops Prod. 2017, 98, 108–115. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Kunoh, H.; Yamamoto, H.; Akimitsu, K. Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense. J. Gen. Plant Pathol. 2007, 73, 168–179. [Google Scholar] [CrossRef]
- Fujioka, K.; Gotoh, H.; Noumi, T.; Yoshida, A.; Noutoshi, Y.; Inagaki, Y.; Yamamoto, M.; Ichinose, Y.; Shiraishi, T.; Toyoda, K. Protection induced by volatile limonene against anthracnose disease in Arabidopsis thaliana. J. Gen. Plant Pathol. 2015, 81, 415–419. [Google Scholar] [CrossRef]
- Dong, G.P.; Yang, L. Preliminary report on the correlation between volatile odor components of Pinus massoniana and its resistance to PWD. Anhui For. Sci. Technol. 2015, 41, 12–14. [Google Scholar]
- Marzougui, A.; Rajendran, A.; Mattinson, D.S.; Ma, Y.; McGee, R.J.; Garcia-Perez, M.; Ficklin, S.P.; Sankaran, S. Evaluation of biogenic markers-based phenotyping for resistance to Aphanomyces root rot in field pea. Inf. Process. Agric. 2022, 9, 1–10. [Google Scholar] [CrossRef]
Cultivar * | Maturity | Foliar Resistance to Late Blight (P. infestans) | Leaf Dry Mass Per Unit Area (g m−2) # | Total Emission Rate Per Unit Dry Mass (pmol g−1 s−1) |
---|---|---|---|---|
Alouette | medium | 9 | 20.7 ± 0.3 | 112.9 ± 75.3 |
Sarme | late | 8 | 19.2 ± 1.9 | 91.4 ± 24.9 |
Kuras | late | 8 | 24.4 ± 4.6 | 88.3 ± 31.2 |
Ando | late | 7 | 20.3 ± 0.4 | 93.9 ± 42.4 |
Anti | late | 7 | 18.1 ± 2.3 | 121.2 ± 54.6 |
Jõgeva kollane | late | 5 | 22.6 ± 1.1 | 76.6 ± 15.3 |
Teele | medium | 5 | 18.4 ± 1.8 | 49 ± 2.7 |
1681-11 | medium | 4 | 22.0 ± 0.4 | 55.2 ± 25.4 |
Reet | medium | 4 | 20.3 ± 0.7 | 66.7 ± 17.2 |
p-value | – | – | 0.284 | 0.675 |
Compounds | Cultivar | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lipoxygenase Pathways (LOX) Volatiles | 1681-11 | Reet | Anti | Ando | Sarme | Kuras | Alouette | Jõgeva Kollane | Teele | p-Value | |
1 | 1-hexanol | 1.7 ± 0.5 | 1.8 ± 0.4 | 3.1 ± 1.0 | 1.7 ± 0.5 | 2.2 ± 1.7 | 2.6 ± 0.5 | 4.3 ± 0.8 | 2.2 ± 0.9 | 1.0 ± 1.0 | 0.366 |
2 | hexanal | 17.5 ± 5.6 | 19.5 ± 5.2 | 38.9 ± 22.9 | 17.2 ± 4.7 | 33.2 ± 19.6 | 27.8 ± 10.4 | 48.9 ± 16.0 | 26.1 ± 7.6 | 8.6 ± 8.6 | 0.429 |
Total LOX compounds | 19.2 ± 6.1 | 21.3 ± 5.6 | 42.0 ± 24.0 | 18.9 ± 5.1 | 35.4 ± 21.3 | 30.4 ± 11.0 | 53.2 ± 16.7 | 28.3 ± 8.2 | 9.6 ± 7.5 | 0.422 | |
Long-chained saturated-fatty-acid-derived (FAD) compounds | |||||||||||
3 | decanal | 2.6 ± 1.0 | 2.4 ± 1.2 | 4.1 ± 4.4 | 2.0 ± 0.2 | 6.1 ± 1.8 | 3.4 ± 0.8 | 8.5 ± 1.0 | 2.3 ± 1.9 | 1.1 ± 1.0 | 0.281 |
4 | heptanal | 2.4 ± 0.7 | 2.0 ± 0.5 | 3.8 ± 1.7 | 2.2 ± 1.1 | 4.8 ± 0.4 | 2.9 ± 0.6 | 5.2 ± 0.5 | 2.4 ± 0.9 | 1.1 ± 1.2 | 0.137 |
5 | nonanal | 8.1 ± 3.1 | 5.0 ± 2.1 | 10 ± 6.1 | 3.6 ± 0.3 | 11.1 ± 3.1 | 7.8 ± 2.5 | 16.5 ± 2.7 | 5.3 ± 5.7 | 2.5 ± 2.1 | 0.415 |
6 | octanal | 3.9 ± 1.1 | 3.0 ± 0.8 | 5.9 ± 2.6 | 3.2 ± 0.9 | 6.4 ± 1.5 | 5.0 ± 1.6 | 8.9 ± 1.0 | 3.9 ± 1.8 | 2.1 ± 2.3 | 0.232 |
Total FAD compounds | 17 ± 5.4 | 12.4 ± 4.6 | 23.8 ± 14.8 | 11.0 ± 2.4 | 28.4 ± 6.3 | 19.1 ± 5.4 | 39.1 ± 5.0 | 13.9 ± 10.3 | 6.8 ± 5.5 | 0.292 | |
7 | Isoprene | 32.8 ± 1.8 | 22.7 ± 7.5 | 46.7 ± 25.0 | 37.2 ± 15.2 | 21.8 ± 4.9 | 21.8 ± 6.9 | 16.8 ± 1.2 | 32.9 ± 5.6 | 20.5 ± 3.3 | 0.268 |
Monoterpenes | |||||||||||
8 | camphene | 16.4 ± 2.5 | 10.4 ± 1.0 | 18.9 ± 7.0 | 19.5 ± 8.1 | 12.9 ± 7.2 | 26.7 ± 9.8 | 17.4 ± 5.1 | 19.6 ± 7.3 | 13.4 ± 0.8 | 0.578 |
9 | camphor | 2.3 ± 1.1 | 1.4 ± 0.4 | 2.8 ± 1.4 | 1.8 ± 0.2 | 1.1 ± 1.3 | 1.3 ± 1.3 | 2.1 ± 0.8 | 1.6 ± 0.6 | 1.0 ± 0.3 | 0.385 |
10 | eucalyptol | 1.3 ± 0.9 | 1.0 ± 0.2 | 1.3 ± 0.4 | 1.0 ± 0.3 | 1.5 ± 0.7 | 1.3 ± 0.5 | 1.3 ± 0.3 | 1.3 ± 0.1 | 2.1 ± 0.7 | 0.861 |
11 | limonene | 94.3 ± 18.2 | 52.3 ± 3.0 | 112.9 ± 44.1 | 98.4 ± 38.0 | 70.6 ± 65.7 | 142.8 ± 59.5 | 123.9 ± 40.8 | 116.4 ± 15.1 | 63.9 ± 13.8 | 0.662 |
12 | p-cymene | 29.9 ± 4.5 | 16.7 ± 0.6 | 34.6 ± 11.6 | 33.2 ± 26.8 | 26.8 ± 20.0 | 45.4 ± 17.0 | 33.9 ± 12.0 | 36.7 ± 9.6 | 24.9 ± 2.1 | 0.693 |
13 | tricyclene | 3.3 ± 0.5 | 12 ± 11.4 | 14.2 ± 5.1 | 29.1 ± 21.9 | 2.5 ± 1.0 | 22.9 ± 12.4 | 4.2 ± 1.3 | 7.6 ± 2.3 | 3.2 ± 0.1 | 0.005 |
14 | α-fenchene | 5.7 ± 0.8 | 2.8 ± 0.2 | 6.4 ± 1.7 | 5.7 ± 2.3 | 5.0 ± 2.6 | 8.5 ± 2.7 | 6.0 ± 2.0 | 7.7 ± 1.0 | 4.2 ± 0.2 | 0.387 |
15 | α-pinene | 677.6 ± 119.7 | 382.4 ± 2.5 | 771 ± 270.6 | 625.3 ± 232.7 | 572.1 ± 344.1 | 982.5 ± 357.8 | 807.6 ± 295.8 | 757.4 ± 133.9 | 495.1 ± 24.5 | 0.620 |
16 | α-terpinene | nd | 1.9 ± 0.3 | nd | nd | nd | nd | nd | nd | nd | 0.001 |
17 | α-thujene | 1.7 ± 0.3 | 1.0 ± 0.1 | 1.9 ± 0.7 | 1.4 ± 0.6 | 1.5 ± 1.0 | 2.0 ± 0.8 | 2.1 ± 0.8 | 1.7 ± 0.2 | 1.0 ± 0.1 | 0.576 |
18 | β-myrcene | 6.8 ± 2.1 | 10.0 ± 6.4 | 13.2 ± 6.5 | 21.2 ± 15.2 | 7.6 ± 5.2 | 11.1 ± 6.6 | 11.8 ± 5.8 | 7.5 ± 0.1 | 3.8 ± 1.1 | 0.303 |
19 | β-phellandrene | 6.8 ± 2.0 | 3.6 ± 0.2 | 7.1 ± 4.5 | 6.8 ± 3.3 | 5.1 ± 5.5 | 9.5 ± 5.7 | 9.9 ± 4.1 | 6.5 ± 0.8 | 4.2 ± 1.0 | 0.778 |
20 | β-pinene | 77.3 ± 17.3 | 43.4 ± 3.8 | 96.1 ± 234.9 | 67.9 ± 27.6 | 64.4 ± 49.2 | 107.7 ± 43.0 | 97.4 ± 36.5 | 79.2 ± 4.5 | 46.5 ± 9.5 | 0.639 |
21 | Δ3-carene | 221.2 ± 46.6 | 126.6 ± 3.4 | 261.6 ± 100.6 | 208.9 ± 74.3 | 178.8 ± 139.0 | 317.8 ± 135.8 | 283.7 ± 108.6 | 247.6 ± 35.7 | 140.6 ± 24.3 | 0.664 |
Total monoterpenes | 1144.6 ± 215.4 | 665.5 ± 22.8 | 1342 ± 485.8 | 1120.2 ± 433.0 | 949.9 ± 639.2 | 1679.5 ± 650.7 | 1401.3 ± 512.6 | 1290.8 ± 207.0 | 803.9 ± 75.1 | 0.465 | |
Sesquiterpenes | |||||||||||
22 | (E)-β caryophyllene | 6.8 ± 4.3 | 242.6 ± 177.7 | 53.5 ± 53.0 | 111.4 ± 76.6 | 33.6 ± 33.2 | 50.2 ± 46.7 | 43.0 ± 35.9 | 26.7 ± 6.8 | 1.0 ± 1.0 | 0.000 |
23 | (E)-β -farnesene | 2.2 ± 0.9 | 12.5 ± 7.3 | 11.0 ± 10.4 | 44.0 ± 34.7 | 63.0 ± 17.4 | 11.0 ± 7.4 | 5.1 ± 1.7 | 4.8 ± 0.8 | nd | 0.016 |
24 | longifolene | 2.6 ± 1.9 | 1.9 ± 0.6 | 3.1 ± 1.8 | 1.7 ± 1.1 | 1.9 ± 1.3 | 3.2 ± 1.1 | 2.1 ± 0.5 | 1.9 ± 0.5 | 1.3 ± 0.8 | 0.737 |
25 | thujopsene | nd | nd | nd | nd | 13.1 ± 4.4 | nd | nd | nd | nd | 0.029 |
26 | valencene | nd | 3.4 ± 1.2 | 4.7 ± 1.0 | nd | nd | nd | nd | nd | nd | 0.001 |
27 | α -bergamotene | nd | 15.4 ± 5.2 | 65.0 ± 21.7 | 28.1 ± 23.9 | 32.7 ± 12.4 | 7.7 ± 7.7 | 54.4 ± 42.1 | 6.1 ± 1.5 | nd | 0.029 |
28 | α- caryophyllene | nd | nd | nd | nd | nd | 10.4 ± 3.5 | nd | nd | nd | 0.000 |
29 | α-copaene | 3.9 ± 1.0 | 10.6 ± 3.9 | 68.6 ± 47.9 | 18.8 ± 14.5 | 19.6 ± 6.5 | 15.9 ± 4.6 | 5.9 ± 1.1 | 20.8 ± 6.9 | 1 ± 1 | 0.026 |
30 | α-cubebene | nd | 5.0 ± 3.5 | 6.0 ± 2.7 | 3.5 ± 2.8 | 11.6 ± 2.5 | 4.2 ± 1.6 | 1.1 ± 0.9 | 4.5 ± 1.8 | nd | 0.018 |
31 | α-gurjunene | nd | 11.7 ± 8.5 | 8.6 ± 2.6 | 19.8 ± 12.1 | nd | nd | 15.2 ± 6.7 | 14.5 ± 4.8 | nd | 0.010 |
32 | α-himachalene | 1.8 ± 1.8 | 3.9 ± 2.1 | 18.4 ± 6.1 | 9.6 ± 7.1 | 11.4 ± 7.5 | 4.4 ± 0.8 | 3.2 ± 3.3 | nd | nd | 0.030 |
33 | α-humulene | nd | 9.0 ± 6.5 | 1.9 ± 1.5 | 2.3 ± 2.3 | 1.0 ± 1.0 | 3.0 ± 1.0 | 32.0 ± 28.6 | 1.0 ± 0.2 | nd | 0.005 |
34 | α-muurolene | nd | nd | 5.6 ± 2.9 | nd | nd | nd | nd | 3.8 ± 1.0 | nd | 0.001 |
35 | α-ylangene | nd | 10.0 ± 3.3 | nd | nd | 13.6 ± 3.7 | nd | nd | nd | nd | 0.007 |
36 | β-bergamotene | nd | nd | 13.2 ± 6.1 | nd | nd | nd | nd | nd | nd | 0.001 |
37 | β-bourbonene | nd | 58.3 ± 43.3 | 108.2 ± 103.0 | 51.4 ± 52.7 | 116.8 ± 67.6 | 25.9 ± 23.9 | 31.2 ± 26.9 | 34.2 ± 6.6 | 1.0 ± 1.0 | 0.032 |
38 | β-cedrene | nd | nd | 30.9 ± 7.2 | nd | 30.0 ± 16.7 | 13.9 ± 4.6 | nd | nd | nd | 0.003 |
39 | β-elemene | 1.2 ± 1.0 | 17.2 ± 10.5 | 12.0 ± 11.8 | 18.9 ± 16.3 | 26.3 ± 4.7 | 3.4 ± 2.4 | 30.2 ± 25.3 | 3.7 ± 1.4 | nd | 0.014 |
40 | β-gurjunene | nd | 2.5 ± 1.7 | nd | 6.0 ± 1.0 | nd | nd | nd | 8.9 ± 3.0 | nd | 0.008 |
41 | β-santalene | nd | 5.0 ± 2.1 | 6.2 ± 2.2 | 13.0 ± 8.9 | 13.7 ± 4.6 | nd | nd | 7.9 ± 1.6 | nd | 0.011 |
42 | γ-cadinene | nd | 5 ± 1 | 4 ± 1 | nd | nd | nd | nd | nd | nd | 0.090 |
43 | γ-muurolene | nd | nd | 10.2 ± 2.3 | 12.9 ± 9.5 | nd | 4.9 ± 2.0 | 3.8 ± 3.7 | 2.2 ± 0.4 | nd | 0.014 |
44 | δ-cadinene | nd | 10.2 ± 0.7 | nd | nd | nd | nd | nd | nd | nd | 0.007 |
Total sesquiterpenes | 18.5 ± 6.3 | 424.2 ± 268.7 | 431.1 ± 229.0 | 341.4 ± 258.2 | 388.3 ± 155.7 | 158.1 ± 103.8 | 227.2 ± 186.7 | 141 ± 26.8 | 4.3 ± 1.6 | 0.000 | |
Total terpenoids | 1195.9 ± 220.5 | 1112.4 ± 289.0 | 1819.8 ± 722.9 | 1498.8 ± 701.0 | 1360 ± 506.9 | 1859.4 ± 752.5 | 1645.3 ± 698.1 | 1464.7 ± 232.5 | 828.7 ± 73.1 | 0.713 | |
Geranylgeranyl diphosphate (GGDP) pathway products | |||||||||||
45 | 6-methyl-5-hepten-2-one | 5.7 ± 3.1 | 4.8 ± 1.0 | 6.8 ± 5.4 | 4.7 ± 1.8 | 7.7 ± 6.0 | 6.9 ± 1.7 | 8.1 ± 3.2 | 10.2 ± 1.1 | 4.7 ± 0.4 | 0.823 |
Short-chained oxygenated volatiles (OVOC) | |||||||||||
46 | acetaldehyde | nd | nd | nd | 107.9 ± 36.0 | nd | nd | 46.7 ± 15.6 | nd | 38.6 ± 2.8 | 0.000 |
Total VOCs | 1237.8 ± 233.1 | 1150.9 ± 295.2 | 1892.4 ± 765.3 | 1641.3 ± 737.7 | 1431.5 ± 537.8 | 1915.8 ± 764.8 | 1792.4 ± 731.7 | 1517.1 ± 213.4 | 888.4 ± 97.6 | 0.721 |
PC1 | PC2 | PC3 | PC4 | ||
---|---|---|---|---|---|
Eigenvalues | 10.71 | 8.96 | 7.11 | 5.98 | |
% variation | 23.27 | 19.47 | 15.47 | 13 | |
commulative% | 23.27 | 42.74 | 58.21 | 71.21 | |
Loading | |||||
Lipoxygenase pathways (LOX) volatiles | |||||
1 | 1-hexanol | 0.423095 | 0.873932 | 0.183125 | −0.02479 |
2 | hexanal | 0.325118 | 0.889722 | 0.246182 | 0.148981 |
Long-chained saturated fatty acid-derived (FAD) compounds | |||||
3 | decanal | 0.116949 | 0.964819 | −0.06845 | 0.19238 |
4 | heptanal | 0.19379 | 0.895935 | 0.101792 | 0.36117 |
5 | nonanal | 0.207871 | 0.942118 | 0.065361 | 0.066343 |
6 | octanal | 0.283918 | 0.935551 | 0.062605 | 0.152954 |
7 | Isoprene | 0.140161 | −0.27586 | 0.819493 | 0.014697 |
Monoterpenes | |||||
8 | camphene | 0.961397 | −0.08033 | 0.037266 | −0.08403 |
9 | camphor | 0.154466 | 0.39425 | 0.672138 | −0.3839 |
10 | eucalyptol | −0.18351 | −0.19783 | −0.08726 | −0.02872 |
11 | limonene | 0.914702 | 0.266727 | 0.091243 | −0.18888 |
12 | p-cymene | 0.946021 | 0.061377 | 0.04605 | −0.0309 |
13 | tricyclene | 0.467093 | −0.31973 | 0.102338 | 0.121303 |
14 | α-fenchene | 0.93641 | 0.02269 | 0.062651 | −0.01463 |
15 | α-pinene | 0.937804 | 0.255374 | 0.076056 | −0.10775 |
16 | α-terpinene | −0.44437 | −0.08688 | −0.04666 | −0.03485 |
17 | α-thujene | 0.780768 | 0.497105 | 0.178233 | −0.03042 |
18 | β-myrcene | 0.239572 | 0.132158 | 0.195393 | 0.12115 |
19 | β-phellandrene | 0.785454 | 0.513017 | −0.05613 | −0.23451 |
20 | β-pinene | 0.866342 | 0.416421 | 0.21344 | −0.09975 |
21 | Δ3-carene | 0.903693 | 0.359793 | 0.119169 | −0.13791 |
Sesquiterpenes | |||||
22 | (E)-β caryophyllene | −0.29777 | −0.04812 | 0.012009 | 0.090055 |
23 | (E)-β-farnesene | −0.15699 | 0.083463 | −0.11748 | 0.89168 |
24 | longifolene | 0.721781 | 0.093535 | 0.431241 | −0.06346 |
25 | thujopsene | −0.22349 | 0.222433 | −0.16337 | 0.866308 |
26 | valencene | −0.19777 | 0.045587 | 0.797613 | −0.00057 |
27 | α-bergamotene | 0.000158 | 0.73073 | 0.555791 | 0.18202 |
28 | α-caryophyllene | 0.806852 | −0.18564 | −0.26937 | 0.077299 |
29 | α-copaene | 0.229122 | 0.07233 | 0.916447 | 0.283393 |
30 | α-cubebene | 0.003861 | 0.130598 | 0.191692 | 0.94465 |
31 | α-gurjunene | −0.06896 | 0.252143 | 0.115276 | −0.16672 |
32 | α-himachalene | 0.044749 | 0.211 | 0.710516 | 0.537144 |
33 | α-humulene | −0.02824 | 0.850289 | −0.24035 | −0.35799 |
34 | α-muurolene | 0.211352 | −0.01158 | 0.854113 | 0.000106 |
35 | α-ylangene | −0.4728 | 0.135766 | −0.16961 | 0.720814 |
36 | β-bergamotene | 0.098933 | 0.11782 | 0.966903 | 0.025226 |
37 | β-bourbonene | −0.11645 | 0.301694 | 0.515712 | 0.77391 |
38 | β-cedrene | 0.189365 | 0.192938 | 0.529119 | 0.695526 |
39 | β-elemene | −0.25946 | 0.77921 | −0.09361 | 0.393419 |
40 | β-gurjunene | 0.057422 | −0.33093 | −0.04696 | 0.033654 |
41 | β-santalene | −0.20411 | −0.06907 | 0.154352 | 0.785958 |
42 | γ-cadinene | −0.26991 | 0.020038 | 0.678889 | −0.00825 |
43 | γ-muurolene | 0.352984 | 0.01701 | 0.462227 | 0.049684 |
44 | δ-cadinene | −0.44437 | −0.08688 | −0.04666 | −0.03485 |
GGDP pathway products | |||||
45 | 6-methyl-5-hepten-2-one | 0.440136 | 0.410775 | 0.021837 | 0.175131 |
Short-chained oxygenated volatiles (OVOC) | |||||
46 | acetaldehyde | −0.16219 | 0.008224 | −0.22616 | −0.13996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agho, C.A.; Runno-Paurson, E.; Tähtjärv, T.; Kaurilind, E.; Niinemets, Ü. Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance. Plants 2023, 12, 2100. https://doi.org/10.3390/plants12112100
Agho CA, Runno-Paurson E, Tähtjärv T, Kaurilind E, Niinemets Ü. Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance. Plants. 2023; 12(11):2100. https://doi.org/10.3390/plants12112100
Chicago/Turabian StyleAgho, C. A., E. Runno-Paurson, T. Tähtjärv, E. Kaurilind, and Ü. Niinemets. 2023. "Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance" Plants 12, no. 11: 2100. https://doi.org/10.3390/plants12112100
APA StyleAgho, C. A., Runno-Paurson, E., Tähtjärv, T., Kaurilind, E., & Niinemets, Ü. (2023). Variation in Leaf Volatile Emissions in Potato (Solanum tuberosum) Cultivars with Different Late Blight Resistance. Plants, 12(11), 2100. https://doi.org/10.3390/plants12112100