Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153,100)

Search Parameters:
Keywords = temperatures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3888 KB  
Article
From MAX to MXene: Unveiling Robust Magnetism and Half-Metallicity in Cr2ZnC and Its Half-Metallic 2D Cr2C Through Ab-Initio Investigation
by Ahmed Lokbaichi, Ahmed Gueddouh, Djelloul Gueribiz, Mourad Rougab, Brahim Lagoun, Fatima Elhamra, Ahmed Mahammedi and Brahim Marfoua
Nanomaterials 2026, 16(2), 110; https://doi.org/10.3390/nano16020110 (registering DOI) - 14 Jan 2026
Abstract
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, [...] Read more.
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, yields a dramatically enhanced magnetic moment of 12.80 μB (vs. 1.88 μB), confirming the necessity of this approach for Cr-based carbides. The phase stability is confirmed through rigorous analysis of its thermodynamic, dynamic, and mechanical properties. For the derived 2D Cr2C, results confirm a robust half-metallic state with a total magnetic moment of 8.00 μB, characterized by a metallic spin-majority channel and a semiconducting spin-minority channel with a 2.41 eV direct gap, leading to near-ideal spin polarization. These combined features establish Cr2C as a highly promising candidate for next-generation spintronic applications and 2D magnetic devices requiring room-temperature stability. Full article
(This article belongs to the Special Issue Advances in Nanoscale Spintronics)
Show Figures

Graphical abstract

16 pages, 2263 KB  
Article
Optimization of Conditions for Ethyl Acetate Extraction of Mono-, Di-, Triglycerides and Free Fatty Acids from Soapstock Using Response Surface Methodology
by Svetlana Zhizhkun, Lauma Laipniece and Igors Astrausks
ChemEngineering 2026, 10(1), 16; https://doi.org/10.3390/chemengineering10010016 (registering DOI) - 14 Jan 2026
Abstract
Soapstock (SS), a by-product of vegetable oil refining, is a promising source of a mixture of mono-, di-, triglycerides, and free fatty acids (MDTG-FFA), a valuable feedstock for biodiesel production. In this study, the selective extraction of MDTG-FFA from SS using green solvents [...] Read more.
Soapstock (SS), a by-product of vegetable oil refining, is a promising source of a mixture of mono-, di-, triglycerides, and free fatty acids (MDTG-FFA), a valuable feedstock for biodiesel production. In this study, the selective extraction of MDTG-FFA from SS using green solvents (ethyl acetate, ethyl formate, methyl acetate, isopropyl acetate, and isobutanol) was investigated. Ethyl acetate showed the highest efficiency, allowing the elimination of the phosphatide (PL) precipitation step with acetone. The process optimization was carried out by response surface methodology with central composite design. Statistical analysis confirmed the significance of the obtained models: F-values were 4.55 (p = 0.013) for MDTG-FFA and 9.62 (p = 0.00074) for PL. Regression analysis revealed a good fit of the experimental data with quadratic models for MDTG-FFA and PL, with coefficients of determination (R2) of 0.804 and 0.897, respectively. The optimum extraction parameters were a solvent-to-dry-matter-of-SS ratio 5:1, time 10.2 min, and initial extraction temperature 21.7 °C. Under these conditions, maximum MDTG-FFA yields of 12.6% and 13.4% were achieved for the two batches of SS, respectively, with minimum PL yields of 0.02% and 0.1%. The obtained MDTG-FFA extracts rich in free fatty acids represent a promising feedstock for biodiesel production. The proposed method provides a rational, resource-efficient, and environmentally preferable extraction of valuable components from SS. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
22 pages, 2171 KB  
Article
The Influence of Acute Cold Stress on Intestinal Health of the Juvenile Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
by Xiaona Ma, Qing Shi, Zhen Dong, Chen Chen, Junxian Zhu, Xiaoli Liu, Xiaoyou Hong, Chengqing Wei, Xinping Zhu, Weijia Song, Wei Li and Liqin Ji
Animals 2026, 16(2), 256; https://doi.org/10.3390/ani16020256 (registering DOI) - 14 Jan 2026
Abstract
Sharp declines in temperature pose a significant risk for mass mortality events in the Chinese soft-shelled turtle (Pelodiscus sinensis). To assess the effects of acute cold stress on intestinal health, turtles were exposed to temperatures of 28 °C (control), 14 °C, [...] Read more.
Sharp declines in temperature pose a significant risk for mass mortality events in the Chinese soft-shelled turtle (Pelodiscus sinensis). To assess the effects of acute cold stress on intestinal health, turtles were exposed to temperatures of 28 °C (control), 14 °C, and 7 °C for 1, 2, 4, 8, and 16 days. The results showed that acute cold stress at 14 °C and 7 °C induced time-dependent alterations in intestinal morphology and histopathology. The damage was more severe at 7 °C, characterized by inflammatory cell infiltration, lymphoid hyperplasia, and extensive detachment and necrosis across the villi, muscle layer, and submucosa. 16S rDNA sequencing revealed significant shifts in intestinal microbiota composition in the 7 °C group, dominated by Helicobacter and Citrobacter. Transcriptomic analysis identified differentially expressed genes (DEGs) that respond to acute cold stress and are involved in the Toll-like receptor signaling pathway (Tlr2, Tlr4, Tlr5, Tlr7, and Tlr8), the NOD-like receptor signaling pathway (Traf6, Traf2, Casr, Rnasel, Pstpip1, Plcb2, Atg5, and Mfn2), apoptosis (Tuba1c, Ctsz, Ctsb, Kras, Hras, Pik3ca, Bcl2l11, Gadd45a, Pmaip1, Ddit3, and Fos), and the p53 signaling pathway (Serpine1, Sesn2, Ccng2, Igf1, Mdm2, Gadd45a, Pmaip1, and Cdkn1a). Metabolomic profiling highlighted differentially expressed metabolites (DEMs) that cope with acute cold stress, such as organic acids (oxoglutaric acid, L-aspartic acid, fumaric acid, DL-malic acid, and citric acid) and amino acids (including L-lysine, L-homoserine, and allysine). The integrated analysis of DEGs and DEMs underscored three key pathways modulated by acute cold stress: linoleic acid metabolism, neuroactive ligand–receptor interaction, and the FoxO signaling pathway. This study provides a comprehensive evaluation of intestinal health in Chinese soft-shelled turtles under acute cold stress and elucidates the underlying mechanisms. Full article
27 pages, 4419 KB  
Review
Adhesive Gelatin-Based Eutectogels: A Review of Synthesis, Properties, and Applications
by Raluca Ioana Baron, Andreea Laura Chibac-Scutaru, Gabriela Biliuta and Sergiu Coseri
Polymers 2026, 18(2), 222; https://doi.org/10.3390/polym18020222 (registering DOI) - 14 Jan 2026
Abstract
This review presents a focused assessment of the rapidly expanding field of gelatin-based eutectogels and identifies the gaps in current literature that justify this examination. Research on deep eutectic solvents (DESs and NADES) has advanced quickly, yet there is still no integrated view [...] Read more.
This review presents a focused assessment of the rapidly expanding field of gelatin-based eutectogels and identifies the gaps in current literature that justify this examination. Research on deep eutectic solvents (DESs and NADES) has advanced quickly, yet there is still no integrated view of how these solvent systems influence adhesion in gelatin-based gels. Eutectogels are soft materials formed by gelling DESs or NADES with biopolymers. Gelatin is widely used because it is biocompatible, biodegradable, and readily available. We provide a clear overview of the chemistry of DESs and NADES and describe how gelatin forms networks in these media. The review summarizes established knowledge on adhesion, highlighting the contributions of polymer network density, interfacial hydrogen bonding, and solvent mobility. New perspectives are introduced on how these factors interact to control adhesion strength, toughness, and reversibility. A key topic is the role of hydrogen bond donors (HBDs) and acceptors (HBAs). They define the hydrogen bonding environment of the solvent and represent an underexplored way to tune mechanical and adhesive behavior. Examples such as moisture-resistant adhesion and temperature-responsive bonding show why these systems offer unique and adjustable properties. The review concludes by outlining major challenges, including the lack of standardized adhesion tests and constraints in scalable production, and identifying directions for future work. Full article
34 pages, 2251 KB  
Article
Towards Cleaner Diesel Engines: Performance and Emission Characteristics of Diesel–Ammonia–Methanol Fuel Blends
by Onur Kocatepe and Güven Gonca
Processes 2026, 14(2), 298; https://doi.org/10.3390/pr14020298 (registering DOI) - 14 Jan 2026
Abstract
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia () offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 ) and high auto-ignition temperature (657 °). Methanol provides improved reactivity and bound oxygen content [...] Read more.
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia () offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 ) and high auto-ignition temperature (657 °). Methanol provides improved reactivity and bound oxygen content that can enhance ignition characteristics. This computational study investigates diesel–ammonia–methanol ternary fuel blends using validated three-dimensional CFD simulations (ANSYS Forte 2023 R2; ANSYS, Inc., Canonsburg, PA, USA) with merged chemical kinetic mechanisms (247 species, 2431 reactions). The model was validated against experimental in-cylinder pressure data with deviations below 5% on a single-cylinder diesel engine (510 cm3, 17.5:1 compression ratio, 1500 rpm). Ammonia energy ratios were systematically varied (10–50%) with methanol substitution levels (0–90%). Fuel preheating at 530 K was employed for high-alcohol compositions exhibiting ignition failure at standard temperature. Results demonstrate that peak cylinder pressures of 130–145 bar are achievable at 10–30% ammonia with M30K–M60K configurations, comparable to baseline diesel (140 bar). Indicated thermal efficiency reaches 38–42% at 30% ammonia-representing 5–8 percentage point improvements over diesel baseline (31%)-but declines to 30–32% at 50% ammonia due to fundamental combustion limitations. reductions scale approximately linearly with ammonia content: 35–55% at 30% ammonia and 75–78% at 50% ammonia. emissions demonstrate 30–60% reductions at efficiency-optimal configurations. Multi-objective optimization analysis identifies the A30M60K configuration (30% ammonia, 60% methanol, 530 K preheating) as optimal, achieving 42% thermal efficiency, 58% reduction, 51% reduction, and 11% power enhancement versus diesel. This configuration occupies the Pareto frontier “knee point” with cross-scenario robustness. Full article
20 pages, 4305 KB  
Article
A Mathematical Model Accounting for Pore Pressure Generation in Sedimentary Basins
by Lihao Zhou, Liangbin Dou, Chengyun Ma, Shanshan Quan, Fengtao Qu, Wenxuan Kou, Chenbo Gu, Chi Zhao, Baiqi Mao and Kai Zhao
Processes 2026, 14(2), 297; https://doi.org/10.3390/pr14020297 (registering DOI) - 14 Jan 2026
Abstract
The abnormal pore pressure is possibly generated through a comprehensive process including geological, physical, geochemical, or hydrodynamic factors. Generally, all mechanisms are abstracted as four typical categories, namely skeleton deformation, pore fluid mass increase, temperature change, and other mechanisms. Traditional methods for evaluating [...] Read more.
The abnormal pore pressure is possibly generated through a comprehensive process including geological, physical, geochemical, or hydrodynamic factors. Generally, all mechanisms are abstracted as four typical categories, namely skeleton deformation, pore fluid mass increase, temperature change, and other mechanisms. Traditional methods for evaluating reservoir overpressure often only consider the influence of a single factor and lack mathematical methods for a comprehensive explanation of reservoir overpressure. Therefore, this article is dedicated to proposing a comprehensive mathematical model, incorporating effective mean stress, shear stress, temperature, pore collapse-induced plastic deformation, time-dependent skeleton deformation, and pore fluid mass increase, to account for pore pressure generation in sedimentary basins. The effects of various factors on pore pressure generation are analyzed, and case studies are conducted. Main conclusions are drawn that both the compressibility of sediments and the porosity at the surface control the pore pressure generation rate and vertical gradient. The pore pressure generation rate and vertical gradient in deep formation are larger than those in shallow formation. The higher compressibility and lower porosity at the surface lead to a greater pore pressure generation rate and vertical gradient during the skeleton deformation. The lower compressibility and a lower porosity at the surface can cause a higher pore pressure change rate and vertical gradient during the pore pressure mass increase and temperature change. By comparison, mechanical loading plays a more important role in pore pressure generation rate and vertical gradient than aquathermal pressuring. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

20 pages, 6887 KB  
Article
State-of-Charge Estimation of Lithium-Ion Batteries Based on GMMCC-AEKF in Non-Gaussian Noise Environment
by Fuxiang Li, Haifeng Wang, Hao Chen, Limin Geng and Chunling Wu
Batteries 2026, 12(1), 29; https://doi.org/10.3390/batteries12010029 (registering DOI) - 14 Jan 2026
Abstract
To improve the accuracy and robustness of lithium-ion battery state of charge (SOC) estimation, this paper proposes a generalized mixture maximum correlation-entropy criterion-based adaptive extended Kalman filter (GMMCC-AEKF) algorithm, addressing the performance degradation of the traditional extended Kalman filter (EKF) under non-Gaussian noise [...] Read more.
To improve the accuracy and robustness of lithium-ion battery state of charge (SOC) estimation, this paper proposes a generalized mixture maximum correlation-entropy criterion-based adaptive extended Kalman filter (GMMCC-AEKF) algorithm, addressing the performance degradation of the traditional extended Kalman filter (EKF) under non-Gaussian noise and inaccurate initial conditions. Based on the GMMCC theory, the proposed algorithm introduces an adaptive mechanism and employs two generalized Gaussian kernels to construct a mixed kernel function, thereby formulating the generalized mixture correlation-entropy criterion. This enhances the algorithm’s adaptability to complex non-Gaussian noise. Simultaneously, by incorporating adaptive filtering concepts, the state and measurement covariance matrices are dynamically adjusted to improve stability under varying noise intensities and environmental conditions. Furthermore, the use of statistical linearization and fixed-point iteration techniques effectively improves both the convergence behavior and the accuracy of nonlinear system estimation. To investigate the effectiveness of the suggested method, experiments for SOC estimation were implemented using two lithium-ion cells featuring distinct rated capacities. These tests employed both dynamic stress test (DST) and federal test procedure (FTP) profiles under three representative temperature settings: 40 °C, 25 °C, and 10 °C. The experimental findings prove that when exposed to non-Gaussian noise, the GMMCC-AEKF algorithm consistently outperforms both the traditional EKF and the generalized mixture maximum correlation-entropy-based extended Kalman filter (GMMCC-EKF) under various test conditions. Specifically, under the 25 °C DST profile, GMMCC-AEKF improves estimation accuracy by 86.54% and 10.47% over EKF and GMMCC-EKF, respectively, for the No. 1 battery. Under the FTP profile for the No. 2 battery, it achieves improvements of 55.89% and 28.61%, respectively. Even under extreme temperatures (10 °C, 40 °C), GMMCC-AEKF maintains high accuracy and stable convergence, and the algorithm demonstrates rapid convergence to the true SOC value. In summary, the GMMCC-AEKF confirms excellent estimation accuracy under various temperatures and non-Gaussian noise conditions, contributing a practical approach for accurate SOC estimation in power battery systems. Full article
11 pages, 1178 KB  
Article
Species and Functional Trait Determinants of Biochar Carbon Retention: Insights from Uniform Smoldering Experiments
by Jingyuan Wang
Forests 2026, 17(1), 116; https://doi.org/10.3390/f17010116 (registering DOI) - 14 Jan 2026
Abstract
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar [...] Read more.
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar properties, the extent of species-level variation within woody biomass under standardized pyrolysis conditions remains insufficiently quantified. Here, we synthesized biochar from seven common subtropical tree species at 600 °C under oxygen-limited smoldering conditions and quantified three key indices: biochar yield (Y), carbon recovery efficiency (ηC), and carbon enrichment factor (EC). We further examined the relationships of these indices with feedstock characteristics (initial carbon content, wood density) and functional group identity (conifer vs. broadleaf). Analysis of variance revealed significant interspecific differences in ηC but weaker effects on Y, indicating that species identity primarily governs carbon retention rather than total mass yield. Broadleaf species (Liquidambar formosana, Castanea mollissima) exhibited consistently higher ηC and EC than conifers (Pinus massoniana, P. elliottii), reflecting higher lignin content and wood density that favor aromatic char formation. Principal component and cluster analyses clearly separated coniferous and broadleaf taxa, accounting for over 80% of total variance in carbon-related traits. Regression models showed that feedstock carbon content, biochar carbon content, and wood density together explained 15.5% of the variance in ηC, with feedstock carbon content exerting a significant negative effect, whereas wood density correlated positively with carbon retention. These findings demonstrate that tree species and their functional traits jointly determine carbon fixation efficiency during smoldering. High initial carbon content alone does not guarantee enhanced carbon recovery; instead, wood density and lignin-derived structural stability dominate retention outcomes. Our results underscore the need for trait-based feedstock selection to improve biochar quality and carbon sequestration potential, and provide a mechanistic framework linking species identity, functional traits, and carbon stabilization in biochar production. Full article
(This article belongs to the Section Forest Ecology and Management)
25 pages, 2416 KB  
Article
Investigation of the Effects of Ambient Conditions and Injection Strategies on Methanol Spray Characteristics
by Decheng Wang, Wuzhe Zhu, Zhijie Li, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Yunliang Qi and Zhi Wang
Energies 2026, 19(2), 416; https://doi.org/10.3390/en19020416 - 14 Jan 2026
Abstract
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume [...] Read more.
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume combustion chamber experiments and three-dimensional CFD simulations. The formation, evolution, and interaction mechanisms of the liquid column core and cooling core are revealed. The results indicate that temperature is the dominant factor influencing methanol spray atomization. When the temperature increases from 255 K to 333 K, the spray penetration distance increases by approximately 70%, accompanied by a pronounced shortening of the liquid-core length and enhanced evaporation and air entrainment. Under low-temperature conditions, a stable liquid-core structure and a strong cooling core are formed, characterized by a high-density, long-axis morphology and an extensive low-temperature region, which suppress fuel–air mixing and ignition. Increasing the ambient pressure improves spray–air mixing but reduces penetration; at 255 K, increasing the ambient pressure from 0.05 MPa to 0.2 MPa increases the spray cone angle by approximately 10% while reducing the penetration distance by about 50%. Furthermore, optimizing the injection pressure or shortening the injection pulse width effectively enhances atomization performance: increasing the injection pressure from 0.4 MPa to 0.6 MPa and reducing the pulse width from 5 ms to 2 ms increases the penetration distance by approximately 30% and reduces the mean droplet diameter by about 20%. Full article
19 pages, 3167 KB  
Article
A Novel Synergistic System for Geothermal Energy Extraction and Coal Seam Cooling in Deep Coal Mine Aquifers: A Numerical Simulation Study
by Yuliang Sun, Hongtao An and Xuehua Li
Appl. Sci. 2026, 16(2), 866; https://doi.org/10.3390/app16020866 - 14 Jan 2026
Abstract
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed [...] Read more.
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed at achieving integrated geothermal exploitation and mine thermal hazard control. Based on a high-temperature mine in the Yuanyanghu Mining Area of Ningxia, a dual-stage, single-branch three-dimensional numerical model was established to simulate the effects of water injection pressure, water injection temperature, and level spacing on the system’s cooling performance and geothermal energy extraction efficiency. The results indicate that increasing injection pressure enhances early-stage geothermal energy extraction capacity and coal seam cooling rate, but the heat extraction power declines over long-term operation as the produced water temperature approaches the injection temperature. Lowering injection temperature significantly improves water–rock heat exchange efficiency, accelerates coal seam cooling, and increases geothermal energy extraction. Increasing level spacing helps improve geothermal energy extraction power but weakens the direct cooling effect on the coal seam. Considering the influence patterns of each parameter, the optimal combination was determined as water injection pressure of 10 MPa, water injection temperature of 10 °C, and level spacing of 80 m, which delivers the best overall performance by enabling rapid coal seam cooling and sustained geothermal energy extraction, with a cumulative geothermal output reaching 129.45 MW after 10 years of operation. This study provides a theoretical basis and technical reference for the integrated management of thermal hazards and geothermal resource development in deep coal mines. Full article
Show Figures

Figure 1

21 pages, 555 KB  
Article
Comparative Effectiveness of Kaolinite, Basal Powder, and Zeolite in Mitigating Heat Stress and Increasing Yield of Almond Trees (Prunus dulcis) Under Mediterranean Climate
by Antonio Dattola, Gregorio Gullo and Rocco Zappia
Agriculture 2026, 16(2), 220; https://doi.org/10.3390/agriculture16020220 - 14 Jan 2026
Abstract
Heat and high-irradiance stress increasingly threaten almond production in Mediterranean environments, where rising temperatures and prolonged summer droughts impair photosynthetic performance and yield. This study evaluated the effectiveness of three mineral-based shielding materials: kaolin, basalt powder, and zeolite. We hypothesized that the foliar [...] Read more.
Heat and high-irradiance stress increasingly threaten almond production in Mediterranean environments, where rising temperatures and prolonged summer droughts impair photosynthetic performance and yield. This study evaluated the effectiveness of three mineral-based shielding materials: kaolin, basalt powder, and zeolite. We hypothesized that the foliar application of reflective mineral materials would reduce leaf temperature, enhance photosynthetic efficiency, and improve yield without altering nut nutraceutical quality. A two-year field experiment (2024–2025) was conducted using a randomized block design with four materials (untreated control, kaolin, basalt powder, and zeolite). Physiological traits (gas exchange, chlorophyll fluorescence, leaf temperature, and SPAD index), morpho-biometric and biochemical parameters, and yield components were assessed. Kaolin and basalt powder significantly lowered leaf temperature (−1.6 to −1.8 °C), increased stomatal conductance and net photosynthesis, and improved photochemical efficiency (Fv′/Fm′) and electron transport rates. These treatments also enhanced drupe weight, kernel dry matter, and productive yield (up to +32% compared with the control). Zeolite produced positive but less prominent effects. No significant differences were detected in fatty acid profile, total polyphenols, or antioxidant capacity, indicating that the materials did not affect almond nutraceutical quality. Principal component analysis confirmed the strong association between kaolin and basalt powder and improved eco-physiological performance. Overall, mineral shielding materials, particularly kaolin and basalt powder, represent a promising, sustainable strategy for enhancing almond orchard resilience under Mediterranean climate change scenarios. Full article
(This article belongs to the Section Crop Production)
21 pages, 4697 KB  
Article
High-Throughput, Quantitative Detection of Pseudoperonospora cubensis Sporangia in Cucumber by Flow Cytometry: A Tool for Early Disease Diagnosis
by Baoyu Hao, Siming Chen, Weiwen Qiu, Kaige Liu, Antonio Cerveró Domenech, Juan Antonio Benavente Fernandez, Jian Shen, Ming Li and Xinting Yang
Agronomy 2026, 16(2), 205; https://doi.org/10.3390/agronomy16020205 - 14 Jan 2026
Abstract
Cucumber downy mildew, caused by the obligate parasitic oomycete Pseudoperonospora cubensis [(Berkeley & M. A. Curtis) Rostovzev], is a major threat to global cucumber production. Effective disease management relies on rapid and accurate pathogen detection. However, due to the specialized parasitic nature of [...] Read more.
Cucumber downy mildew, caused by the obligate parasitic oomycete Pseudoperonospora cubensis [(Berkeley & M. A. Curtis) Rostovzev], is a major threat to global cucumber production. Effective disease management relies on rapid and accurate pathogen detection. However, due to the specialized parasitic nature of P. cubensis, conventional methods are often laborious, low-throughput and inadequate, necessitating the development of a new approach for high-throughput sporangia counting. To address this limitation, we developed a rapid, high-throughput flow cytometry (FCM) assay for the direct quantification of P. cubensis sporangia. The optimal staining protocol involved adding 30 µL of 1000× diluted SYBR Green I to 500 µL of sporangial suspension and incubating at room temperature for 20 min. The flow cytometry parameters were set to a high sample loading speed with a 30-s acquisition time. Instrumental settings included an FL1 (green fluorescence) threshold of 8 × 104 and an SSC (side scatter) threshold of 3 × 105, with low gain. Validation against hemocytometer counts revealed a strong positive correlation (r = 0.8352). The assay demonstrated high reproducibility, with relative standard deviations (RSDs) ranging from 1.96–9.84%, and a detection limit of 1–10 sporangia/µL. Operator-dependent variability ranged from 8.85% to 18.79%. These results confirm that the established flow cytometry assay is a reliable and efficient tool for P. cubensis quantification, offering considerable potential for improving cucumber downy mildew monitoring and control strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

44 pages, 5086 KB  
Article
Exploring Floor-Sitting as Adaptive Behavior in Tropical Apartment Residents: Regional and Indoor Climatic Influences in Indonesia
by Collinthia Erwindi, Kyohei Kondo, Takashi Asawa, Sri Nastiti N. Ekasiwi and Tetsu Kubota
Sustainability 2026, 18(2), 865; https://doi.org/10.3390/su18020865 - 14 Jan 2026
Abstract
In the tropical climates of Southeast Asia, the growing reliance on air conditioning (AC) for space cooling not only increases household energy consumption but may also diminish the role of culturally rooted adaptive behaviors such as floor-sitting. This study aims to explore the [...] Read more.
In the tropical climates of Southeast Asia, the growing reliance on air conditioning (AC) for space cooling not only increases household energy consumption but may also diminish the role of culturally rooted adaptive behaviors such as floor-sitting. This study aims to explore the interaction between climatic factors, including regional and indoor climates, and thermally adaptive behaviors in Indonesian apartments, with a focus on floor-sitting. First, a large-scale questionnaire was conducted to analyze these interactions among different regional climates. Second, in-depth indoor climate measurements and a point-in-time questionnaire were conducted among the residents in the hotter regions. In the hotter regions like Jabodetabek (Jakarta metropolitan area) and Surabaya, floor-sitting was primarily conducted without using AC, often alongside fans in low-rise housing. In the cooler region of Bandung, floor-sitting was a common adaptive behavior with window openings in both high-rise and low-rise buildings. The in-depth measurement showed that low-rise buildings using higher thermal mass materials maintained stable indoor conditions for both air and floor temperatures even in the hotter region. The respondents could obtain coolness and remain thermally comfortable through a floor-sitting posture without using AC, especially when air and floor temperatures were both less than 31 °C. These results demonstrated that floor-sitting is a vital behavior that adapts to regional and indoor climatic conditions in the tropics while achieving thermal comfort and relying less on AC devices. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
17 pages, 2089 KB  
Article
Characterization and Expression of Two Cytoplasmic Phosphoenolpyruvate Carboxykinase Genes Associated with Larval Diapause and Temperature Stress in the Wheat Blossom Midge, Sitodiplosis mosellana
by Qitong Huang, Yuxia Nie, Xiaobin Liu, Qian Ma, Wenqian Tang and Weining Cheng
Biology 2026, 15(2), 147; https://doi.org/10.3390/biology15020147 - 14 Jan 2026
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, is associated with adaptation to environmental stress. However, its potential role in diapause is not known. Here, two cytoplasmic genes encoding PEPCK (SmPEPCK1-1 and SmPEPCK1-2) in Sitodiplosis mosellana, a significant wheat pest undergoing [...] Read more.
Phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, is associated with adaptation to environmental stress. However, its potential role in diapause is not known. Here, two cytoplasmic genes encoding PEPCK (SmPEPCK1-1 and SmPEPCK1-2) in Sitodiplosis mosellana, a significant wheat pest undergoing obligatory larval diapause during the third instar, were cloned, and their expression patterns during diapause and thermal stress were assessed, together with the effects of SmPEPCK1-2 knockdown on larval development. Both SmPEPCK1-1 and SmPEPCK1-2 were evolutionarily conserved and contained canonical functional domains and motifs. Their expression was induced by diapause, and was found to be tissue-specific, with the highest levels observed in the fat bodies of diapausing larvae. Furthermore, exposure to heat stress in oversummering larvae or cold stress in overwintering larvae enhanced the expression of both genes within specific temperature ranges (35–40 °C and −10–0 °C, respectively). RNA interference-mediated knockdown of SmPEPCK1-2 did not affect cocoon-breaking rates and timing but significantly prolonged the duration of larval development from cocoon-breaking to pupation. These findings indicate that both SmPEPCK genes are closely involved in tolerance to diapause-related stress, with SmPEPCK1-2 also contributing to the regulation of larval development. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

11 pages, 2865 KB  
Article
Study on Synthetic-Based Drilling Fluids for Protecting High-Porosity and High-Permeability Reservoirs
by Jianbo Su, Li Chen, Xianyu Liu, Cai Chen, Zilong Wang, Weifeng Yang, Yinuo Wang, Weian Huang and Lin Jiang
Energies 2026, 19(2), 412; https://doi.org/10.3390/en19020412 - 14 Jan 2026
Abstract
The Wenchang Oilfield’s high-porosity and high-permeability reservoirs are planned to be developed using synthetic-based drilling fluids. However, the induced reservoir damage problems caused by existing synthetic-based drilling fluids in high-porosity and high-permeability reservoirs are still unclear. Currently, through the analysis of reservoir core [...] Read more.
The Wenchang Oilfield’s high-porosity and high-permeability reservoirs are planned to be developed using synthetic-based drilling fluids. However, the induced reservoir damage problems caused by existing synthetic-based drilling fluids in high-porosity and high-permeability reservoirs are still unclear. Currently, through the analysis of reservoir core porosity and permeability characteristics, physical and chemical property analysis, reservoir sensitivity evaluation, and solid-phase and filtrate invasion experiments, the mechanism of reservoir damage is systematically explored, and a synthetic-based drilling fluid specifically for high-porosity and high-permeability reservoirs is developed to reduce reservoir damage. The results show that the average pore radius of this reservoir is 29.4 μm, with well-developed pores and strong permeability; the mineral composition is mainly quartz (with an average content of 55.6%), and the clay mineral content is 21.5%. It has water-sensitive, salt-sensitive, and stress-sensitive damage characteristics. Filter fluid invasion and solid-phase blockage are the core factors causing reservoir damage. Based on its damage mechanism, through the optimization of the plug-forming agent formula and the selection of a sealing agent, a low-harm synthetic-based drilling fluid (hereinafter referred to as KS-9) was developed. Performance evaluation shows that the KS-9 drilling fluid maintains stable rheology after 110 °C/16 h thermal rolling, with an upper temperature limit of 150 °C, and can resist 10% NaCl, 1% CaCl2, and 8% inferior soil pollution; in the core contamination experiment, its static permeability recovery value exceeds 88%, and it has good reservoir protection performance, which can provide technical support for the safe drilling and completion of high-porosity and high-permeability reservoirs in the Wenchang Oilfield. Full article
Back to TopTop