Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = temperate mesophotic ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6996 KiB  
Article
Morphological and Molecular Identification of Ulva spp. (Ulvophyceae; Chlorophyta) from Algarrobo Bay, Chile: Understanding the Composition of Green Tides
by Javiera Mutizabal-Aros, María Eliana Ramírez, Pilar A. Haye, Andrés Meynard, Benjamín Pinilla-Rojas, Alejandra Núñez, Nicolás Latorre-Padilla, Francesca V. Search, Fabian J. Tapia, Gonzalo S. Saldías, Sergio A. Navarrete and Loretto Contreras-Porcia
Plants 2024, 13(9), 1258; https://doi.org/10.3390/plants13091258 - 30 Apr 2024
Cited by 8 | Viewed by 5175
Abstract
Green algae blooms of the genus Ulva are occurring globally and are primarily attributed to anthropogenic factors. At Los Tubos beach in Algarrobo Bay along the central Chilean coast, there have been blooms of these algae that persist almost year-round over the past [...] Read more.
Green algae blooms of the genus Ulva are occurring globally and are primarily attributed to anthropogenic factors. At Los Tubos beach in Algarrobo Bay along the central Chilean coast, there have been blooms of these algae that persist almost year-round over the past 20 years, leading to environmental, economic, and social issues that affect the local government and communities. The objective of this study was to characterize the species that form these green tides based on a combination of ecological, morpho-anatomical, and molecular information. For this purpose, seasonal surveys of beached algal fronds were conducted between 2021 and 2022. Subsequently, the sampled algae were analyzed morphologically and phylogenetically using the molecular markers ITS1 and tufA, allowing for the identification of at least five taxa. Of these five taxa, three (U. stenophylloides, U. uncialis, U. australis) have laminar, foliose, and distromatic morphology, while the other two (U. compressa, U. aragoensis) have tubular, filamentous, and monostromatic fronds. Intertidal surveys showed that U. stenophylloides showed the highest relative coverage throughout the seasons and all intertidal levels, followed by U. uncialis. Therefore, we can establish that the green tides on the coast of Algarrobo in Chile are multispecific, with differences in relative abundance during different seasons and across the intertidal zone, opening opportunities for diverse future studies, ranging from ecology to algal biotechnology. Full article
Show Figures

Figure 1

19 pages, 2387 KiB  
Article
The Hidden Diversity of Temperate Mesophotic Ecosystems from Central Chile (Southeastern Pacific Ocean) Assessed through Towed Underwater Videos
by Ana Navarro Campoy, Alejandro Pérez-Matus, Evie A. Wieters, Rodrigo Alarcón-Ireland, Vladimir Garmendia, Ricardo Beldade, Sergio A. Navarrete and Miriam Fernández
Diversity 2023, 15(3), 360; https://doi.org/10.3390/d15030360 - 2 Mar 2023
Cited by 10 | Viewed by 3676
Abstract
The largely unexplored diversity in temperate mesophotic ecosystems (TME, ~30–150 m depth) has attracted much attention over the past years. However, the number of studies and knowledge of TME diversity and ecology remains limited and geographically restricted. The absence of information on how [...] Read more.
The largely unexplored diversity in temperate mesophotic ecosystems (TME, ~30–150 m depth) has attracted much attention over the past years. However, the number of studies and knowledge of TME diversity and ecology remains limited and geographically restricted. The absence of information on how assemblages vary across environmental gradients and with depth for most regions also limits our capacity to delimit conservation areas and devise management plans effectively. This study focuses on TME from central Chile and describes the depth distribution of reef fishes and benthic invertebrates and algae for the first time. Through the analysis of towed underwater video surveys between 4.7–95.5 m in multiple sites, we show that total reef fish density and richness decrease with depth but increase with local topographic complexity. The depth-related density varies among fish species and trophic groups, and it reverses in the case of Sebastes oculatus, which increases in density with depth. Sponges and gorgonians dominate benthic assemblages below 20 m depth, and brachiopods and anemones increase below 40 and 60 m, respectively. Some of these species form animal forests which, to some extent, replace the shallow-water kelp forests as structural habitat providers. Nevertheless, the reef fish and benthic community do not show a clear structure with depth or across studied sites. We highlight the urgency to intensify and expand the quantitative characterization of these communities, through this and other methodologies, to better define ecological patterns and advance towards conservation plans for TME, including the Souteastern Pacific region. Full article
(This article belongs to the Special Issue Biodiversity of Mesophotic Ecosystems)
Show Figures

Figure 1

11 pages, 1901 KiB  
Article
Caulerpa cylindracea Spread on Deep Rhodolith Beds Can Be Influenced by the Morphostructural Composition of the Bed
by Sarah Caronni, Valentina Alice Bracchi, Fabrizio Atzori, Sandra Citterio, Nicoletta Cadoni, Rodolfo Gentili, Chiara Montagnani, Lara Assunta Quaglini and Daniela Basso
Diversity 2023, 15(3), 349; https://doi.org/10.3390/d15030349 - 1 Mar 2023
Cited by 3 | Viewed by 1710
Abstract
The green alga Caulerpa cylindracea Sonder (Chlorophyta; Bryopsidales) is one of the most invasive alien macroalgae in the Mediterranean Sea, where it is also spreading on rhodolith beds, an important biogenic assemblage typical of deep substrates. Despite the importance of rhodoliths, data on [...] Read more.
The green alga Caulerpa cylindracea Sonder (Chlorophyta; Bryopsidales) is one of the most invasive alien macroalgae in the Mediterranean Sea, where it is also spreading on rhodolith beds, an important biogenic assemblage typical of deep substrates. Despite the importance of rhodoliths, data on the competitive interactions with C. cylindracea are still scarce. To deepen the knowledge on the topic, C. cylindracea occurrence on the rhodolith bed of Capo Carbonara Marine Protected Area (Italy) was explored. Quantitative analyses of videoframes obtained from Remote Operated Vehicle records in three different MPA sites, Is Piscadeddus, Santa Caterina, and Serpentara, allow for estimates of both the cover of rhodoliths (considering the main morphotypes) and of C. cylindracea, as well as their competition. All sites showed a well-developed rhodolith bed, although some differences were highlighted in their composition in terms of morphotype, shape, and dimension of rhodoliths, as well as in the C. cylindracea cover. In particular, Santa Caterina appeared to be the site with the highest mean total cover of rhodoliths (68%), and of C. cylindracea (25%). The obtained results suggest that different competitive interactions occur between C. cylindracea and rhodolith beds, in relation to the morphostructural composition of the latter and in response to environmental conditions that affect rhodolith bed composition. Full article
Show Figures

Figure 1

41 pages, 4091 KiB  
Article
Project “Biodiversity MARE Tricase”: A Species Inventory of the Coastal Area of Southeastern Salento (Ionian Sea, Italy)
by Valerio Micaroni, Francesca Strano, Fabio Crocetta, Davide Di Franco, Stefano Piraino, Cinzia Gravili, Fabio Rindi, Marco Bertolino, Gabriele Costa, Joachim Langeneck, Marzia Bo, Federico Betti, Carlo Froglia, Adriana Giangrande, Francesco Tiralongo, Luisa Nicoletti, Pietro Medagli, Stefano Arzeni and Ferdinando Boero
Diversity 2022, 14(11), 904; https://doi.org/10.3390/d14110904 - 26 Oct 2022
Cited by 7 | Viewed by 3733
Abstract
Biodiversity is a broad concept that encompasses the diversity of nature, from the genetic to the habitat scale, and ensures the proper functioning of ecosystems. The Mediterranean Sea, one of the world’s most biodiverse marine basins, faces major threats, such as overexploitation of [...] Read more.
Biodiversity is a broad concept that encompasses the diversity of nature, from the genetic to the habitat scale, and ensures the proper functioning of ecosystems. The Mediterranean Sea, one of the world’s most biodiverse marine basins, faces major threats, such as overexploitation of resources, pollution and climate change. Here we provide the first multi-taxa inventory of marine organisms and coastal terrestrial flora recorded in southeastern Salento (Ionian Sea, Italy), realized during the project “Biodiversity MARE Tricase”, which provided the first baseline of species living in the area. Sampling was carried out by SCUBA and free diving, fishing gears, and citizen science from 0 to 70 m. Overall, 697 taxa were found between March 2016 and October 2017, 94% of which were identified to the species level. Of these, 19 taxa represented new records for the Ionian Sea (36 additional new records had been reported in previous publications on specific groups, namely Porifera and Mollusca Heterobranchia), and two findings represented the easternmost records in the Mediterranean Sea (Helicosalpa virgula and Lampea pancerina). For eight other taxa, our findings represented the only locality in the Ionian Sea, besides the Straits of Messina. In addition to the species list, phenological events (e.g., blooms, presence of reproductive traits and behaviour) were also reported, with a focus on gelatinous plankton. Our results reveal that even for a relatively well-known area, current biodiversity knowledge may still be limited, and targeted investigations are needed to fill the gaps. Further research is needed to understand the distribution and temporal trends of Mediterranean biodiversity and to provide baseline data to identify ongoing and future changes. Full article
(This article belongs to the Special Issue Biodiversity in Mediterranean Sea Ecosystems)
Show Figures

Figure 1

15 pages, 5140 KiB  
Article
Deep Heat: A Comparison of Water Temperature, Anemone Bleaching, Anemonefish Density and Reproduction between Shallow and Mesophotic Reefs
by Anne Haguenauer, Frédéric Zuberer, Gilles Siu, Daphne Cortese, Ricardo Beldade and Suzanne C. Mills
Fishes 2021, 6(3), 37; https://doi.org/10.3390/fishes6030037 - 9 Sep 2021
Cited by 9 | Viewed by 5379
Abstract
French Polynesia is experiencing increasing coral bleaching events in shallow waters triggered by thermal anomalies and marine heatwaves linked to climate change, a trend that is replicated worldwide. As sea surface thermal anomalies are assumed to lessen with depth, mesophotic deep reefs have [...] Read more.
French Polynesia is experiencing increasing coral bleaching events in shallow waters triggered by thermal anomalies and marine heatwaves linked to climate change, a trend that is replicated worldwide. As sea surface thermal anomalies are assumed to lessen with depth, mesophotic deep reefs have been hypothesized to act as refuges from anthropogenic and natural disturbances, the ‘deep reef refugia hypothesis’ (DRRH). However, evidence supporting the DRRH is either inconclusive or conflicting. We address this by investigating four assumptions of the DRRH focusing on the symbiotic association between anemones and anemonefish. First, we compare long-term temperature conditions between shallow (8 m) and mesophotic sites (50 m) on the island of Moorea from 2011–2020. Second, we compare the densities of the orange-fin anemonefish, Amphiprion chrysopterus between shallow and mesophotic (down to 60 m) reefs across three archipelagos in French Polynesia. Finally, we compare the percentage of anemone bleaching, as well as anemonefish reproduction, between shallow and mesophotic reefs. We found that the water column was well mixed in the cooler austral winter months with only a 0.19 °C difference in temperature between depths, but in the warmer summer months mixing was reduced resulting in a 0.71–1.03 °C temperature difference. However, during thermal anomalies, despite a time lag in warm surface waters reaching mesophotic reefs, there was ultimately a 1.0 °C increase in water temperature at both 8 and 50 m, pushing temperatures over bleaching thresholds at both depths. As such, anemone bleaching was observed in mesophotic reefs during these thermal anomalies, but was buffered compared to the percentage of bleaching in shallower waters, which was nearly five times greater. Our large-scale sampling across French Polynesia found orange-fin anemonefish, A. chrysopterus, in mesophotic zones in two high islands and one atoll across two archipelagos, extending its bathymetric limit to 60 m; however, orange-fin anemonefish densities were either similar to, or 25–92 times lower than in shallower zones. Three spawning events were observed at 50 m, which occurred at a similar frequency to spawning on shallower reefs at the same date. Our findings of thermal anomalies and bleaching in mesophotic reefs, coupled with mainly lower densities of anemonefish in mesophotic populations, suggest that mesophotic reefs show only a limited ability to provide refugia from anthropogenic and natural disturbances. Full article
Show Figures

Graphical abstract

4 pages, 205 KiB  
Editorial
Mesophotic Ecosystems: The Link between Shallow and Deep-Sea Habitats
by Gal Eyal and Hudson T. Pinheiro
Diversity 2020, 12(11), 411; https://doi.org/10.3390/d12110411 - 28 Oct 2020
Cited by 21 | Viewed by 3751
Abstract
Mesophotic ecosystems (MEs) are characterized by the presence of light-dependent organisms, found at depths ranging from ~30 to 150 m in temperate, subtropical and tropical regions. These communities occasionally create massive reef structures with diverse but characteristic morphologies, which serve as the framework [...] Read more.
Mesophotic ecosystems (MEs) are characterized by the presence of light-dependent organisms, found at depths ranging from ~30 to 150 m in temperate, subtropical and tropical regions. These communities occasionally create massive reef structures with diverse but characteristic morphologies, which serve as the framework builders of those ecosystems. In many localities, MEs are physically linked with shallow and deep-sea habitats, and while taxa from both environments share this space, a unique and endemic biodiversity is also found. The main MEs studied to date are the mesophotic coral ecosystems (MCEs) and the temperate mesophotic ecosystems (TMEs), which have received increased attention during the last decade. As shallow coral reef ecosystems are among the most threatened habitats on Earth, the potential of MEs to act as refugia and contribute to the resilience of the whole ecosystem has been a subject of scrutiny. New technologies and methods have become more available to study these deeper parts of the reef ecosystems, yielding many new discoveries. However, basic gaps in knowledge remain in our scientific understanding of the global diversity of MEs, limiting our ability to recognize biogeographic patterns and to make educated decisions for the management and conservation of these ecosystems. Full article
(This article belongs to the Special Issue Biodiversity of Mesophotic Ecosystems)
12 pages, 15501 KiB  
Article
Rhodolith Bed Discovered off the South African Coast
by Luther A. Adams, Gavin W. Maneveldt, Andrew Green, Natasha Karenyi, Denham Parker, Toufiek Samaai and Sven Kerwath
Diversity 2020, 12(4), 125; https://doi.org/10.3390/d12040125 - 27 Mar 2020
Cited by 15 | Viewed by 4316
Abstract
Rhodolith beds have not previously been recorded in South Africa. A multidisciplinary research effort used remote sampling tools to survey the historically unexplored continental shelf off the Eastern Cape coast of South Africa. A rhodolith bed, bearing both living and dead non-geniculate coralline [...] Read more.
Rhodolith beds have not previously been recorded in South Africa. A multidisciplinary research effort used remote sampling tools to survey the historically unexplored continental shelf off the Eastern Cape coast of South Africa. A rhodolith bed, bearing both living and dead non-geniculate coralline red algae, was discovered in the 30–65 m depth range off the Kei River mouth in the newly proclaimed Amathole Offshore Marine Protected Area. Some of the rhodolith forming coralline algal specimens were identified as belonging to at least three genera based on their morphology and anatomy, namely, Lithophyllum, Lithothamnion and a non-descript genus. Rhodolith mean mass and diameter were 44.85 g ± 34.22 g and 41.28 mm ± 10.67 mm (N = 13), respectively. Remotely operated vehicle (ROV) imagery revealed a suite of epibenthic red macroalgae associated with the rhodolith bed. Taxonomy, vertical structure and distribution of rhodoliths in South Africa require further investigation. Full article
(This article belongs to the Special Issue Structure and Biodiversity of Rhodolith Seabeds)
Show Figures

Figure 1

Back to TopTop