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Abstract: Mesophotic ecosystems (MEs) are characterized by the presence of light-dependent
organisms, found at depths ranging from ~30 to 150 m in temperate, subtropical and tropical
regions. These communities occasionally create massive reef structures with diverse but characteristic
morphologies, which serve as the framework builders of those ecosystems. In many localities, MEs are
physically linked with shallow and deep-sea habitats, and while taxa from both environments share
this space, a unique and endemic biodiversity is also found. The main MEs studied to date are the
mesophotic coral ecosystems (MCEs) and the temperate mesophotic ecosystems (TMEs), which have
received increased attention during the last decade. As shallow coral reef ecosystems are among
the most threatened habitats on Earth, the potential of MEs to act as refugia and contribute to the
resilience of the whole ecosystem has been a subject of scrutiny. New technologies and methods
have become more available to study these deeper parts of the reef ecosystems, yielding many new
discoveries. However, basic gaps in knowledge remain in our scientific understanding of the global
diversity of MEs, limiting our ability to recognize biogeographic patterns and to make educated
decisions for the management and conservation of these ecosystems.
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1. Introduction

Shallow marine habitats occupying photic-zone areas over a large latitudinal gradient, from tropical
to temperate waters, are part of the most productive and diverse ecosystems. For example, tropical coral
reefs are among the most diverse habitats on the globe [1,2], demonstrating high efficiency in
the retention and recycling of carbon and nutrients, which contribute to the productivity of the
ecosystem [3,4]. Compared to shallow habitats, mesophotic coral ecosystems (MCEs) and temperate
mesophotic ecosystems (TMEs) have received little research attention [5,6]. Although those mesophotic
ecosystems (MEs) represent approximately 60–80% of the potential reef habitat area worldwide [7,8],
knowledge of their distribution, biodiversity, community composition and ecological processes remains
limited [6,9,10].

The criteria for defining MEs is poorly established and still in question. Scientists usually
follow arbitrary depth ranges without geomorphological or biological rationale. For modern MCEs,
the common definition is based on physical water depth, involving light-dependent coral ecosystems
from 30 to 150 m in tropical and subtropical regions [11]. Subdivisions of upper MCEs and lower MCEs
are also common [12] and although a general global 60 m community break is suggested [13], there have
been a few attempts to define those zones by light levels [14,15]. Recently, scientists have also started
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to use fixed depth ranges to study temperate ecosystems [5], investigating from upper TMEs between
50 and 60 m to lower TMEs at 100–150 m [16,17]. A few ecological and biological studies have also
tried to explain the boundaries between shallow and mesophotic reefs by using light-dependent coral
assemblages and light levels to define the zonation along the depth gradient [13–15,18].

Geologists usually use the mesophotic definition to characterize assemblages of fossil platy corals,
where estimates of surface photosynthetic active radiation (PAR) between 1% and 20% are found [19–22].
Furthermore, in some cases, further zoning is used to define the depth gradient, including “euphotic”
(20–100%; good light and, in open seas, commonly with high wave energy), “mesophotic” (5–20% PAR;
sufficient light for coral growth, commonly below normal wave base), “oligophotic” (1–5%; sufficient
light for coralline red algal growth), “disphotic” (0–1%; absence of sufficient light for photosynthesis)
and “aphotic” (absence of light) zones [20–23].

Biodiversity studies conducted to date have revealed diverse coral and fish communities in
MCEs [12,24,25]. The highest diversity levels have been reported for regions such as the Coral
Triangle [26,27] and the Hawaiian Archipelago [28]. Unique communities have been reported [29],
and the discovery rate for new fish species is currently around 2.0 species per hour in unexplored
lower MCEs of the Pacific and Atlantic Oceans [26]. However, there is a strong geographic bias for
MCE research, and the locations of existing MCE habitats are not related to the locations where most
research has been conducted to date [8].

Moreover, despite a widely reported trend of a decrease in species richness along the depth
gradient [12,30–33], recent contributions have suggested that extensive fish species turnover (species
replacement), instead of purely nestedness (species loss), characterize this spatial gradient from
shallow to mesophotic depths [26,29]. Historically, however, MCEs have been considered more stable
ecosystems compared to shallow reefs [34–37], and, due to the attenuation of climate change stressors
(tropical storms and rising sea temperature) with depth, they were suggested to provide refuge for
shallow water species —a concept known as the “Deep Reef Refuge Hypothesis” (DRRH) [38–40].

Concluding, although the number of publications on the biodiversity and community structure of
MEs compared to that on any other theme of mesophotic research is high [5,41], there is an urgent
need to increase the scientific knowledge on the diversity of fish, corals and other associated taxa in
mesophotic ecosystems, and how they relate to shallow and deep-sea ecosystems. This Special Issue
aims to promote scientific knowledge on the diversity of MEs, a step to a better understanding of
biogeographic patterns, and also to make educated decisions for the management and conservation of
these ecosystems.
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