Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = tectonomagmatism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8512 KB  
Article
Geochronology and Geochemistry of Granitic Gneisses in the Dabie Orogen, Central China: Constraints on the Petrogenesis of Mid-Neoproterozoic Magmatic Rocks in the Northern Yangtze Block
by Qiao Bai, Yongsheng Wang, Liquan Ma, Xu Zhang and Shuai Zhang
Minerals 2025, 15(12), 1323; https://doi.org/10.3390/min15121323 - 17 Dec 2025
Viewed by 200
Abstract
Mid-Neoproterozoic magmatism provides important constraints for revealing the break-up history of the Rodinia supercontinent. Large-sized mid-Neoproterozoic magmatic rocks are distributed within the Dabie Orogen located on the northern Yangtze Block. This study performed zircon LA-ICP-MS geochronology, whole-rock major and trace elements, and zircon [...] Read more.
Mid-Neoproterozoic magmatism provides important constraints for revealing the break-up history of the Rodinia supercontinent. Large-sized mid-Neoproterozoic magmatic rocks are distributed within the Dabie Orogen located on the northern Yangtze Block. This study performed zircon LA-ICP-MS geochronology, whole-rock major and trace elements, and zircon Lu-Hf isotope analyses on orthogneisses with a mid-Neoproterozoic protolith age of the northern Dabie Orogen. The analysis results show that the intrusion times of mid-Neoproterozoic granitoids and mafic rocks are all ~750 Ma, with εHf(t) values ranging from −6.60 to −2.57 and a two-stage Hf model age of ~1.8 Ga. They are characterized by light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion. In the primitive mantle-normalized trace element diagram, these rocks are enriched in La, Ce, Th, K, Zr, Nd, and Sm and depleted in Nb, Ta, P, Ti, and Sr, with negative Eu anomaly or no significant Eu anomaly. Based on the discrimination diagrams, most of the samples are plotted into the A-type granite field, and which was formed in a post-orogenic extension setting. Comprehensive analysis shows that these mid-Neoproterozoic magmatic rocks were produced by melting of juvenile crust of the Paleoproterozoic and late Mesoproterozoic, having a heterogeneous distribution of δ18O, indicating that these rocks were developed mainly through high-temperature meteoric-hydrothermal alteration during syn-rift magmatic activity. Full article
Show Figures

Figure 1

21 pages, 3340 KB  
Article
Zircon U-Pb-Hf Isotopes, Whole-Rock Geochemistry and Sr-Nd Isotopes of Early Neoproterozoic Intrusion in the Erguna Block, NE China: Petrogenesis and Tectonic Implications
by Zhanlong Li, Ji Feng, Tianyu Zhao, Yang Liu, Rui Wang, Yanan Zhang and Fuling Fan
Minerals 2025, 15(12), 1245; https://doi.org/10.3390/min15121245 - 25 Nov 2025
Viewed by 290
Abstract
The early crustal evolution of microcontinental fragments in the Central Asian Orogenic Belt remains poorly constrained. Among these fragments, the Erguna Block records extensive Neoproterozoic magmatism that provides key constraints on its tectono-magmatic development in relation to the Rodinia supercontinent cycle. To furthering [...] Read more.
The early crustal evolution of microcontinental fragments in the Central Asian Orogenic Belt remains poorly constrained. Among these fragments, the Erguna Block records extensive Neoproterozoic magmatism that provides key constraints on its tectono-magmatic development in relation to the Rodinia supercontinent cycle. To furthering constrain the Neoproterozoic magmatic evolution of the Erguna Block, an integrated investigation combining petrography, zircon U-Pb and Lu-Hf isotopic analyses, whole-rock geochemistry, and Sr-Nd isotope data was carried out on the newly recognized Fengshuishan intrusion in northern Alongshan. Zircon U-Pb ages of 810 ± 5 Ma and 807 ± 4 Ma were obtained from granitic samples, while the dioritic sample gave an age of 773 ± 2 Ma, representing a major Neoproterozoic magmatic episode. The 810–807 Ma granites show positive zircon εHf(t) (+0.09 to +12.1) and whole-rock εNd(t) (+0.50 to +1.77), suggesting derivation mainly from partial melting of Mesoproterozoic juvenile crust with minor contribution from mantle-derived materials. In contrast, ca. 773 Ma gabbroic diorite exhibits εHf(t) values of −1.23 to +4.3 and an εNd(t) value of +1.33, implying a contribution from an enriched mantle source. These Fengshuishan igneous rocks show A-type geochemical signatures, enriched in Rb, Th, and Pb but depleted in Ba, Sr, and Eu. Integrating these data with regional geological evidence, we infer that the Fengshuishan intrusion formed in an intraplate extensional regime, recording an important phase of crust–mantle interaction during the Neoproterozoic. These results expand the record of Neoproterozoic igneous rocks in the Erguna Block and offer new constraints on its role within the Rodinia supercontinent. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 17438 KB  
Article
The Relationship Between Tectono-Magmatism and Gold (Polymetallic) Deposits in the Northeastern Hunan Province, Jiangnan Orogen: Insight from Three-Dimensional Electrical Structures
by Chenggong Liu, Sheng Jin, Gaoyi Zhao, Chengliang Xie, Jian’en Jing, Yue Sheng, Hao Dong, Letian Zhang, Yaotian Yin and Wenbo Wei
Minerals 2025, 15(12), 1244; https://doi.org/10.3390/min15121244 - 25 Nov 2025
Viewed by 342
Abstract
The Northeastern Hunan Province (NEH), situated within the Central Jiangnan Orogen, hosts abundant Au-polymetallic deposits. However, the coupling mechanism between the deep tectono-magmatism and Au-polymetallic mineralization remains poorly understood. In this study, a three-dimensional (3D) resistivity model derived from 59 magnetotelluric (MT) stations [...] Read more.
The Northeastern Hunan Province (NEH), situated within the Central Jiangnan Orogen, hosts abundant Au-polymetallic deposits. However, the coupling mechanism between the deep tectono-magmatism and Au-polymetallic mineralization remains poorly understood. In this study, a three-dimensional (3D) resistivity model derived from 59 magnetotelluric (MT) stations is presented to investigate the lithospheric architecture and its relationship to Au-polymetallic mineralization. The model reveals three prominent mid-to-lower crustal conductors (3–30 Ω·m) at 15–35 km depth beneath Au-polymetallic deposits along NE faults. These anomalies are interpreted as source zones and pathways for magmatic-hydrothermal fluids during the Late Mesozoic tectono-magmatism, likely formed by the enrichment of graphite films and sulfides along faults, which thus account for the observed conductive features. Moreover, the model reveals a thinning electrical lithosphere–asthenosphere boundary (eLAB) at ~80 km depth beneath the Southeastern NEH, attributed to lithospheric delamination triggered by the rollback of the Paleo-Pacific plate. This delamination facilitated the upwelling and lateral migration of asthenospheric materials, which promoted intense extension and crust–mantle interaction. Consequently, metallic elements were extensively extracted from the crust and concentrated into large-scale Au-polymetallic deposits in the NEH. Integrating with previous geochemical study, a deep-seated magmatic underplating and MASH model is proposed as key drivers of Au-polymetallic enrichment in the NEH, effectively linking deep tectono-magmatism with shallow mineralization. From a rheological perspective, three low-viscosity zones within the mid-to-lower crust likely acted as both vertical conduits and deep sources for metallogenic fluids, providing favorable pathways for their migration and accumulation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

19 pages, 13161 KB  
Article
Zircon U–Pb Ages and Geochemistry of Diaoluoshan Granite, Hainan Island: Implications for Late Cretaceous Tectonics in South China
by Chao Wang, Dingyong Liang, Changxin Wei, Mulong Chen, Zailong Hu and Changyan Lv
Minerals 2025, 15(12), 1242; https://doi.org/10.3390/min15121242 - 24 Nov 2025
Viewed by 475
Abstract
Hainan Island has experienced a superposition of multiple phases of tectonic movements and magmatic activities, leading to numerous controversies regarding the genesis, spatiotemporal distribution, and tectonic setting of its Yanshanian granites. Accurately determining the characteristics of magmatic rocks during this period is crucial [...] Read more.
Hainan Island has experienced a superposition of multiple phases of tectonic movements and magmatic activities, leading to numerous controversies regarding the genesis, spatiotemporal distribution, and tectonic setting of its Yanshanian granites. Accurately determining the characteristics of magmatic rocks during this period is crucial for clarifying the regional tectonic evolution. This study focuses on Diaoluoshan granite in the southeastern part of Hainan Island. Through petrological, mineralogical, zircon U-Pb geochronological, and geochemical analyses, it aims to identify the genetic type, formation age, and magma source properties of this pluton, thereby revealing the Late Yanshanian tectonic setting of Hainan Island. The results show that the zircon U-Pb dating of Diaoluoshan granite yields an age of 102.5 ± 2.8Ma, indicating its formation in the late Early Cretaceous. This granite is a high-K calc-alkaline I-type granite, with silica (SiO2) content ranging from 63.9% to 77.3%. The pluton exhibits significant negative anomalies of Ta, Nb, P, and Ti, as well as relatively obvious positive anomalies of Rb, Th, U, and K. The biotite in the granite has a magnesium oxide (MgO) content ranging from 12.84% to 13.13%, showing characteristics of crust–mantle material mixing. The magma of this pluton was derived from the partial melting of the lower continental crust mixed with the uprising and underplating mantle mafic magmas, driven by the subduction of the Paleo-Pacific Plate and its slab rollback. This study confirms that during the Late Yanshanian, Hainan Island was in an extensional rift environment driven by the subduction of the Paleo-Pacific Plate and its slab rollback, but without a well-developed volcanic front. It provides key geological evidence for the study of Yanshanian tectono-magmatic evolution in South China. Full article
Show Figures

Figure 1

19 pages, 6850 KB  
Article
Geochronology and Geochemistry of the Galale Cu–Au Deposit in the Western Segment of the Bangong–Nujiang Suture Zone: Implications for Molybdenum Potential
by Chang Liu, Zhusen Yang, Xiaoyan Zhao and Jingtao Mao
Minerals 2025, 15(9), 975; https://doi.org/10.3390/min15090975 - 15 Sep 2025
Viewed by 539
Abstract
The Galale Cu–Au deposit lies on the northern margin of the western Gangdese metallogenic belt, near the western edge of the Gangdese arc within the Bangong–Nujiang suture zone. Unlike the well-studied Miocene Cu belt in southern Gangdese, this region remains insufficiently investigated, particularly [...] Read more.
The Galale Cu–Au deposit lies on the northern margin of the western Gangdese metallogenic belt, near the western edge of the Gangdese arc within the Bangong–Nujiang suture zone. Unlike the well-studied Miocene Cu belt in southern Gangdese, this region remains insufficiently investigated, particularly in terms of geochemical characterization, leading to an ambiguous metallogenic model and a debated tectonic setting—specifically, the unresolved issue of subduction polarity across the Bangong–Nujiang suture. This tectonic ambiguity has important implications for understanding magma sources, metal transport pathways, and, consequently, for guiding mineral exploration strategies in the area. To address this, we conducted zircon U–Pb dating on the ore-related quartz diorite and granodiorite, yielding crystallization ages of 84.05 ± 0.34 Ma and 77.20 ± 0.69 Ma, respectively. Integrated with previous data, these results constrain mineralization to 83–89 Ma, which includes both skarn-type Cu–polymetallic and porphyry-type Cu mineralization. Regional comparisons support a tectonic model involving slab rollback and southward subduction of the Bangong–Nujiang oceanic lithosphere. Geochemical analyses of quartz diorite, granodiorite, and monzonitic granite show high-K calc-alkaline, peraluminous I-type affinities, with enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs. Notably, the monzonitic granite is marked by high SiO2, Sr/Y, and Rb/Sr ratios, low Zr/Hf, strong LREE enrichment, weak Eu anomalies, and pronounced Nb–Ta depletion, indicating high oxygen fugacity and favorable conditions for Mo mineralization. The deposit formed through tectono-magmatic processes related to the closure of the Bangong–Nujiang Neo-Tethys Ocean. Subduction and subsequent lithospheric delamination induced partial melting of mantle and crustal sources, generating quartz diorite and granodiorite intrusions. Magmatic fluids interacted with carbonate wall rocks to form skarn assemblages, concentrating ore metals along structures. The mineralization formed within the contact zones between intrusions and surrounding country rocks. Late-stage granite porphyry intrusions (~77 Ma), inferred from major, trace, and rare earth element compositions to have the highest Mo potential, may represent an extension of earlier skarn mineralization in the area (83–89 Ma). This study presents the first comprehensive geochemical dataset for the Galale deposit, refines its metallogenic model, and identifies key geochemical indicators (e.g., Sr, Y, Nb, Rb, Zr, Hf) for Mo exploration. Full article
Show Figures

Figure 1

38 pages, 13807 KB  
Article
A Sediment Provenance Study of Middle Jurassic to Cretaceous Strata in the Eastern Sverdrup Basin: Implications for the Exhumation of the Northeastern Canadian-Greenlandic Shield
by Michael A. Pointon, Helen Smyth, Jenny E. Omma, Andrew C. Morton, Simon Schneider, Stephen J. Rippington, Berta Lopez-Mir, Quentin G. Crowley, Dirk Frei and Michael J. Flowerdew
Geosciences 2025, 15(8), 313; https://doi.org/10.3390/geosciences15080313 - 12 Aug 2025
Viewed by 2098
Abstract
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study [...] Read more.
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study of Middle Jurassic to Cretaceous sandstones from the eastern Sverdrup Basin was undertaken. Most of the samples analysed were recycled from sedimentary rocks of the Franklinian Basin, with possible additional contributions from the Mesoproterozoic Bylot basins and metasedimentary shield rocks. The amount of high-grade metamorphic detritus in samples from central Ellesmere Island increased from Middle Jurassic times. This is interpreted to reflect exhumation of the area to the southeast/east of the Sverdrup Basin. Exhumation may have its origins in Middle Jurassic extension and uplift along the northwest Sverdrup Basin margin. Rift-flank uplift along the Canadian–West Greenland conjugate margin and lithospheric doming linked with the proximity of the Iceland hotspot and/or the emplacement of the Cretaceous High Arctic Large Igneous Province may have contributed to exhumation subsequently. The southeast-to-northwest thickening of Jurassic to Early Cretaceous strata across the Sverdrup Basin may be a distal effect of exhumation rather than rifting in the Sverdrup or Amerasia basins. Full article
Show Figures

Figure 1

17 pages, 7715 KB  
Article
Petrogenesis and Tectonic Implications of the Early–Middle Ordovician Granodiorites in the Yaogou Area of the North Qilian Orogenic Belt
by Dechao Li, Yang Yang, Yao Xiao, Pengde Liu, Xijun Liu, Gang Chen, Xiao Liu, Rongguo Hu, Hao Tian and Yande Liu
Minerals 2025, 15(6), 551; https://doi.org/10.3390/min15060551 - 22 May 2025
Viewed by 643
Abstract
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. [...] Read more.
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. Zircon U-Pb dating reveals that the Yaogou granodiorites formed during the Early–Middle Ordovician (473–460 Ma). The Yaogou granodiorites have high SiO2 (63.3–71.1 wt.%), high Al2O3 (13.9–15.8 wt.%) contents, and low Zr (96–244 ppm), Nb (2.9–18 ppm), as well as low Ga/Al ratios (10,000 × Ga/Al ratios of 1.7–2.9) and FeOT/MgO ratios (1.9–3.2), and are characterized by elevated concentrations of light rare earth elements and large-ion lithophile elements such as Rb, Th, and U, coupled with significant depletion in heavy rare earth elements and high-field-strength elements including Nb, Ta, and Ti. Additionally, the presence of negative europium anomalies further reflects geochemical signatures typical of I-type granitic rocks. The zircon grains from these rocks display negative εHf(t) values (−14.6 to −10.7), with two-stage Hf model ages (TDM2) from 2129 to 1907 Ma. These characteristics suggest that the magmatic source of the Yaogou granodiorites likely originated from the partial melting of Paleoproterozoic basement-derived crustal materials within a tectonic environment associated with subduction in the North Qilian Ocean. Integrating regional geological data, we suggest that during the Early Paleozoic, the North Qilian Oceanic slab underwent double subduction: initially southward, followed by a northward shift. Due to the deep northward subduction of the Qaidam continental crust and oceanic crust along the southern margin of the Qilian Orogenic Belt, the southward subduction of the North Qilian ocean was obstructed, triggering a reversal in subduction polarity. This reversal likely decelerated the southward subduction and initiated northward subduction, ultimately leading to the formation of the Yaogou granodiorites. These findings enhance our understanding of the complex tectonic processes that shaped the North Qilian Orogenic Belt during the Early Paleozoic, emphasizing the role of subduction dynamics and continental interactions in the region’s geological evolution. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

22 pages, 20086 KB  
Article
Zircon LA-ICP-MS Dating and Geochemical Characteristics of Rhyolites from the Qushi Area, Tengchong Terrane, Yunnan Province
by Xiong Mo, Chen Gong, Yan Shang, Jinglong Wu, Jialin Wu, Ronghui Qi, Xiaofeng Wang, Qi Guan and Xu Kong
Minerals 2025, 15(3), 315; https://doi.org/10.3390/min15030315 - 18 Mar 2025
Cited by 1 | Viewed by 1004
Abstract
The Qushi rhyolites, situated in the eastern sector of the Tengchong terrane, are critical to understanding the Early Cretaceous tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Zircon LA-ICP-MS U-Pb geochronology indicates crystallization ages of 118.3–120.5 Ma, with Ti-in-zircon temperatures of 641–816 °C [...] Read more.
The Qushi rhyolites, situated in the eastern sector of the Tengchong terrane, are critical to understanding the Early Cretaceous tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Zircon LA-ICP-MS U-Pb geochronology indicates crystallization ages of 118.3–120.5 Ma, with Ti-in-zircon temperatures of 641–816 °C (mean = 716 °C), representing the Early Cretaceous magmatic activity in the Tengchong terrane. Inherited zircons within the rhyolites yield a zircon age of ca. 198.5 Ma, with corresponding Ti-in-zircon temperatures of 615–699 °C (mean = 657 °C), implying the potential presence of an Early Jurassic igneous basement beneath the Qushi region. Geochemically, the rhyolites are classified as calc-alkaline and weakly to moderately peraluminous (A/CNK = 1.07–2.86). These rocks display signatures typical of acidic magmas, marked by significant enrichments in light rare earth elements (LREE: La and Ce) and large ion lithophile elements (LILE: Rb, K, Th and U) while simultaneously exhibiting depletions in high-field-strength elements (HFSE: Nb, Ta, Ti, and P) and heavy rare earth elements (HREE). Trace element signatures further reveal marked depletions in Sr (12.4–244.7 ppm) and Ba while displaying enrichments in Zr and Hf. These geochemical features, including the huge range of the Sr content and A/CNK ratios, suggest both I-type and S-type granite affinities. The Early Cretaceous volcanism of the Qushi rhyolites is likely attributed to the combined effects of subduction and the closure of the Meso-Tethyan Ocean (MTO). This volcanic activity is interpreted to result from subduction-related processes associated with the MTO, potentially involving slab rollback, slab break-off, and subsequent asthenospheric upwelling. The formation of these rhyolites may also be linked to the final closure of the MTO, characterized by the Late Cretaceous collision and amalgamation of the Burma and Tengchong terranes. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

21 pages, 16942 KB  
Article
Cadomian Magmatism in the Muteh–Golpaygan Area, Iran: Insights into Crustal Growth and Tectono-Magmatic Evolution
by Farzaneh Shakerardakani, Wenjiao Xiao, Hadi Shafaii Moghadam and Xianhua Li
Minerals 2025, 15(3), 201; https://doi.org/10.3390/min15030201 - 20 Feb 2025
Viewed by 915
Abstract
The Muteh–Golpaygan metamorphic complex, situated within the Sanandaj–Sirjan zone of Iran, represents a pivotal site for investigating the late Neoproterozoic Cadomian orogeny and its implications for crustal evolution along the northern margin of Gondwana. This study integrates geochemical, isotopic, and geochronological data to [...] Read more.
The Muteh–Golpaygan metamorphic complex, situated within the Sanandaj–Sirjan zone of Iran, represents a pivotal site for investigating the late Neoproterozoic Cadomian orogeny and its implications for crustal evolution along the northern margin of Gondwana. This study integrates geochemical, isotopic, and geochronological data to elucidate the petrogenesis, magma sources, and geodynamic significance of granitic (ortho-) gneisses from this region. The granitic gneisses are predominantly peraluminous and calc-alkaline, with A/CNK [molar Al₂O₃/(CaO + Na₂O + K₂O)] values ranging from 1.05 to 1.43. They exhibit enrichment in light rare earth elements (LREEs), flat heavy REE (HREE) patterns, and pronounced negative Eu anomalies, suggesting that the magma was derived from subduction-related melts that interacted with metasedimentary materials in the upper crust. Zircon U-Pb geochronology reveals crystallization ages of ~570–560 Ma, with inherited zircons dating back to the Neoarchean and Paleoproterozoic. Isotopic signatures, including εHf(t) values (−7.2 to +6.2) and δ18O values (+7.07‰ to +9.88‰), indicate a complex interplay between juvenile mantle-derived components and reworked crustal materials. Geodynamically, the magmatic characteristics align with an active continental margin setting driven by the subduction of the Proto-Tethys Ocean. Comparisons with coeval magmatism in the Arabian–Nubian Shield and Anatolia indicate a unified tectonic framework along the northern margin of Gondwana. This study provides critical insights into the tectono-magmatic processes of the Cadomian orogeny, emphasizing the roles of subduction dynamics, crustal recycling, and juvenile contributions in shaping the early continental lithosphere. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 9743 KB  
Article
Machine Learning-Based Tectonic Discrimination Using Basalt Element Geochemical Data: Insights into the Carboniferous–Permian Tectonic Regime of Western Tianshan Orogen
by Hengxu Li, Mengqi Gao, Xiaohui Ji, Zhaochong Zhang, Zhiguo Cheng and M. Santosh
Minerals 2025, 15(2), 122; https://doi.org/10.3390/min15020122 - 26 Jan 2025
Cited by 1 | Viewed by 2113
Abstract
Identifying the tectonic setting of rocks is essential for gaining insights into the geological contexts in which these rocks were formed, aiding in tectonic plate reconstruction and enhancing our comprehensive understanding of the Earth’s history. The application of machine learning algorithms helps identify [...] Read more.
Identifying the tectonic setting of rocks is essential for gaining insights into the geological contexts in which these rocks were formed, aiding in tectonic plate reconstruction and enhancing our comprehensive understanding of the Earth’s history. The application of machine learning algorithms helps identify complex patterns and relationships between big data that may be overlooked by binary or ternary tectonomagmatic discrimination diagrams based on basalt compositions. In this study, three machine learning algorithms, i.e., Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost), were employed to classify the basalts from seven diverse settings, including intraplate basalts, island arc basalts, ocean island basalts, mid-ocean ridge basalts, back-arc basin basalts, oceanic flood basalts, and continental flood basalts. Specifically, for altered and fresh basalt samples, we utilized 22 immobile elements and 35 major and trace elements, respectively, to construct discrimination models. The results indicate that XGBoost demonstrates the best performance in discriminating basalts into seven tectonic settings, achieving accuracies of 85% and 89% for the altered and fresh basalt samples, respectively. A key innovation of our newly developed tectonic discrimination model is the establishment of tailored models for altered and fresh basalts. Moreover, by omitting isotopic features during model construction, the new models offer broader applicability in predicting a wider range of basalt samples in practical scenarios. The classification models were applied to investigate the Carboniferous to Permian evolution in the Western Tianshan Orogen (WTO), revealing that the subduction of Tianshan Ocean ceased at the end of Carboniferous and the WTO evolved into a post-collisional orogenesis during the Permian. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 12521 KB  
Article
Mineral Chemistry and In Situ LA-ICP-MS Titanite U-Pb Geochronology of the Changba-Lijiagou Giant Pb-Zn Deposit, Western Qinling Orogen: Implications for a Distal Skarn Ore Formation
by Ran Wei, Yitian Wang, Qiaoqing Hu, Xielu Liu, Huijin Guo and Wenrong Hu
Minerals 2024, 14(11), 1123; https://doi.org/10.3390/min14111123 - 6 Nov 2024
Cited by 1 | Viewed by 1057
Abstract
The giant Changba-Lijiagou (Ch-L) Pb-Zn deposit is in the northeast part of the Xicheng ore cluster, Western Qinling Orogen. The ore genesis remains controversial; it could be either a sedimentary exhalative genetic type or an epigenetic hydrothermal genetic type. Here, in situ titanite [...] Read more.
The giant Changba-Lijiagou (Ch-L) Pb-Zn deposit is in the northeast part of the Xicheng ore cluster, Western Qinling Orogen. The ore genesis remains controversial; it could be either a sedimentary exhalative genetic type or an epigenetic hydrothermal genetic type. Here, in situ titanite U-Pb dating for the two kinds of titanite is presented, yielding ages of 212.8 ± 3.0 Ma in the mineralized skarn ore and 214.6 ± 5.1 Ma in the host rock. These ages conform to the previously reported magmatic zircon age (229–211 Ma) based on the in situ zircon U-Pb dating of plutons in this district and the time of large-scale magmatic–hydrothermal activities in Western Qinling Orogen (229–209 Ma). Titanites occurring in mineralized skarn and those that are calcite-hosted are similar to hydrothermal-origin titanites in major element characteristics. The Eu anomalies in the two types of titanite record oxidizing conditions during the mineralization process. A mineral assemblage of garnet, pyroxene, riebeckite, biotite, and potash feldspar, replacing the albite, is well-developed in the deposit. The mineralogical and geochronological characteristics indicate that the Ch-L Pb-Zn deposit is a distal skarn deposit and the result of intensive tectonomagmatic processes in the Xicheng ore cluster during the process of the Late Triassic orogeny. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

28 pages, 35997 KB  
Article
Evaluation of Granite Fertility Utilizing Porphyry Indicator Minerals (Zircon, Apatite, and Titanite) and Geochemical Data: A Case Study from an Emerging Metallogenic Province in the Taimyr Peninsula, Siberian High Arctic
by Stepan V. Berzin, Dmitry L. Konopelko, Sergei V. Petrov, Vasiliy F. Proskurnin, Evgeny I. Berzon, Mikhail Yu. Kurapov, Tamara A. Golovina, Natalya Ya. Chernenko, Vasiliy S. Chervyakovskiy, Roman S. Palamarchuk and Elena M. Andreeva
Minerals 2024, 14(11), 1065; https://doi.org/10.3390/min14111065 - 23 Oct 2024
Cited by 2 | Viewed by 2466
Abstract
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic [...] Read more.
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic potential of the poorly outcropped northeastern part of Taimyr, samples from seven granitoid intrusions were investigated in this study aimed to evaluate the granite fertility based on petrography, geochemistry, and composition of porphyry indicator minerals (zircon, apatite, and titanite). The studied intrusions represent small to moderate-sized bodies (40–800 km2) composed of biotite (±amphibole) quartz monzonites, granodiorites, granites, and biotite leucogranites that formed in the course of late Paleozoic-early Mesozoic tectono-magmatic events at the Siberian margins. The late Carboniferous Tessemsky massif represents suprasubduction granitoid series, while the Pekinskiy, Shirokinskiy, Dorozhinskiy, Kristifensenskiy, and Yuzhno-Lodochnikovskiy massifs are correlated with the early Triassic Siberian Traps LIP. The rocks of intrusions comprise a relatively uniform geochemically, predominantly magnesian, slightly peraluminous, calc-alkaline high-K amphibole-bearing I-type granitoid series with adakitic affinity, where Triassic plume-related granitoids inherit geochemical signatures of Carboniferous supra-subduction granitoids, and all rock types are marked by enrichment in LILE and negative Ta, Nb, and Ti anomalies. It is suggested that the adakitic geochemical characteristics of the Taimyr granites are a result of derivation from a relatively homogeneous mafic lower crustal source that formed at the stage of Carboniferous continental subduction and continued to produce granitic melts in the course of the early Mesozoic magmatic evolution. Whole rock geochemistry and composition of porphyry mineral indicators (zircon, apatite, and titanite) indicate that the Taimyr granites crystallized from oxidized water-saturated magmas at moderate temperatures, with the majority of samples showing characteristics typical for porphyry-fertile granites worldwide (fO2 = ΔFMQ +1 to +3 with zircon Eu/Eu* > 0.4 and apatite SO3 > 0.2 wt.%). Data from Dorozhinskiy, Kristifensenskiy, Pekinskiy, and Tessemskiy intrusions fully match geochemical criteria for porphyry-fertile granitoids, and these massifs are considered the most prospective for Cu-Mo mineralization. Granites from Shirokinskiy and Yuzhno-Lodochnikovskiy intrusions only partially match compositional constraints for fertile melts and can be considered as second-tier exploration targets. Finally, available data for the Simsovsky massif preclude its classification as a porphyry-fertile body. These conclusions are in line with previously developed exploration criteria for the northeastern Taimyr, showing that geochemical indicators of granite-fertility can be used on a regional scale in parallel with other exploration methods. Full article
Show Figures

Figure 1

14 pages, 18937 KB  
Article
A Failed Rift in the Eastern Adventure Plateau (Sicilian Channel, Central Mediterranean)
by Dario Civile, Giacomo Mangano, Aaron Micallef, Emanuele Lodolo and Luca Baradello
J. Mar. Sci. Eng. 2024, 12(7), 1142; https://doi.org/10.3390/jmse12071142 - 7 Jul 2024
Cited by 3 | Viewed by 2188
Abstract
Widespread volcanism has been known in the Sicilian Channel for a long time, even if some submarine volcanoes have only recently been discovered. Most of this volcanism formed along the NNE-trending transfer zone known as the Capo Granitola–Sciacca Fault Zone, while others, such [...] Read more.
Widespread volcanism has been known in the Sicilian Channel for a long time, even if some submarine volcanoes have only recently been discovered. Most of this volcanism formed along the NNE-trending transfer zone known as the Capo Granitola–Sciacca Fault Zone, while others, such as the islands of Pantelleria and Linosa, are associated with the continental rift zone that has developed since the early Pliocene in the central part of the Sicilian Channel through the formation of three deep tectonic troughs (Pantelleria, Linosa and Malta). However, the origin of a group of five volcanoes (here called “Tetide volcanic cluster”) that form a NW-SE alignment on the eastern edge of the Adventure Plateau is not yet known. In this work, we hypothesize that this volcanic alignment may represent the remnants of a failed rift attempt that was unable to generate another tectonic trough in the Sicilian Channel. Based on seismic sections and gravimetric data, three phases in the formation of this volcanic alignment can be identified: (i) a major magmatic intrusion in the early Pliocene associated with a NW-SE normal fault that formed during the opening of the Pantelleria graben, leading to the uplift and deformation of the host sedimentary rocks; (ii) a late Pliocene-Quaternary tectono-magmatic quiescent phase; and (iii) a renewed magma intrusion through fissures or cracks that led to the formation of the volcanoes in the late Quaternary. This process was not able to cause significant extension and only limited volcanism, which is why the “Tetide volcanic cluster“ is interpreted as the morphological expression of a failed rift. Full article
Show Figures

Figure 1

29 pages, 10190 KB  
Article
Genesis of the Dongtangzi Zn-Pb Deposit of the Fengxian–Taibai Ore Cluster in West Qinling, China: Constraints from Rb-Sr and Sm-Nd Geochronology, and In Situ S-Pb Isotopes
by Qiaoqing Hu, Yitian Wang, Shaocong Chen, Ran Wei, Xielu Liu, Junchen Liu, Ruiting Wang, Weihong Gao, Changan Wang, Minjie Tang and Wentang Wu
Minerals 2024, 14(3), 297; https://doi.org/10.3390/min14030297 - 12 Mar 2024
Cited by 4 | Viewed by 1737
Abstract
The large Dongtangzi Zn-Pb deposit is located in the southwest of the Fengxian–Taibai (abbreviated as Fengtai) ore cluster in the west Qinling orogen. The origin of the deposit is controversial, positing diverse genesis mechanisms such as sedimentary-exhalative (SEDEX), sedimentary-reformed, and epigenetic-hydrothermal types. This [...] Read more.
The large Dongtangzi Zn-Pb deposit is located in the southwest of the Fengxian–Taibai (abbreviated as Fengtai) ore cluster in the west Qinling orogen. The origin of the deposit is controversial, positing diverse genesis mechanisms such as sedimentary-exhalative (SEDEX), sedimentary-reformed, and epigenetic-hydrothermal types. This study combines systematic ore geology observations with high-precision Rb-Sr and Sm-Nd ages of 211 Ma and in situ S-Pb isotopes to constrain the timing and origin of mineralization. In situ S-Pb isotopic studies show that the sulfide ores display a narrow range of δ34S values from 1.1‰ to 10.2‰, with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.07 to 18.27, 15.64 to 15.66, and 38.22 to 38.76, respectively. On the other hand, pyrites of the sedimentary period and the granite porphyry dike have δ34S values ranging from 15.8 to 21.4‰ and from 2.1 to 4.3‰ (with 206Pb/204Pb ratios of 18.09 to 18.10, 207Pb/204Pb ratios of 15.59 to 15.61, and 208Pb/204Pb ratios of 38.17 to 38.24), respectively. The above-mentioned S-Pb isotopic compositions indicate that the metallic materials involved in ore formation originated from a mixture of Triassic magmatic hydrothermal fluid and metamorphic basement. By integrating the regional geology, mineralization ages, and S-Pb isotopic studies, we propose that the Dongtangzi Zn-Pb deposit is the product of epigenetic hydrothermal fluid processes, driven by Late Triassic regional tectono-magmatic processes. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

30 pages, 7994 KB  
Review
Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy)
by Stefano Naitza, Leonardo Casini, Fabrizio Cocco, Matteo Luca Deidda, Antonio Funedda, Alfredo Loi, Giacomo Oggiano and Francesco Secchi
Minerals 2024, 14(1), 65; https://doi.org/10.3390/min14010065 - 4 Jan 2024
Cited by 3 | Viewed by 3748
Abstract
Since the early Paleozoic, numerous metallogenic events produced in the Sardinian massif a singular concentration of mineral deposits of various kinds. Among them, the Variscan metallogenic peak represents a late Paleozoic phase of diffuse ore formation linked to the tectonomagmatic evolution of the [...] Read more.
Since the early Paleozoic, numerous metallogenic events produced in the Sardinian massif a singular concentration of mineral deposits of various kinds. Among them, the Variscan metallogenic peak represents a late Paleozoic phase of diffuse ore formation linked to the tectonomagmatic evolution of the Variscan chain. Two main classes of ores may primarily be attributed to this peak: (1) mesothermal orogenic-type As-Au ± W ± Sb ores, only found in E Sardinia, and (2) intrusion-related Sn-W-Mo-F and base metals-bearing ores found in the whole Sardinian Batholith, but mainly occurring in central–south Sardinia. Both deposit classes formed diachronously during the Variscan post-compressional extension. The orogenic-type ores are related to regional-scale flows of mineralizing fluids, and the intrusion-related ores occur around fertile intrusions of different granite suites. Metallogenic reconstructions suggest almost entirely crustal processes of mineralization without a significant contribution from the mantle. We summarized these processes with a holistic approach and conceptualized the Sardinian Variscan Mineral System (SVMS), a crustal-scale physical system of ore mineralization in the Sardinian basement. The SVMS required suitable metal sources in the crust and diffuse crustal reworking triggered by heat that allowed (a) the redistribution of the original metal budget of the crust in magmas by partial melting and (b) the production of metal-bearing fluids by metamorphic dehydration. Heat transfer in the Sardinian Variscan crust involved shear heating in lithospheric shear zones and the role of mantle uplift as a thermal engine in an extensional tectonic setting. Lithospheric shear zones acted as effective pathways in focusing fluid flow through a large-scale plumbing system into regional-scale structural traps for ores. Pre-Variscan metal sources of metallogenic relevance may have been (1) the magmatic arc and magmatic arc-derived materials of Ordovician age, extensively documented in E Sardinia crust, and (2) an inferred Precambrian crystalline basement lying under the Phanerozoic crustal section, whose presence has been assumed from geophysical data and from petrological and geochemical characteristics of granite suites. At shallower crustal levels, important contributions of metals may have come from pre-Variscan ore sources, such as the Pb-Zn MVT Cambrian ores of SW Sardinia or the REE-bearing Upper Ordovician paleoplacers of E Sardinia. Full article
Show Figures

Figure 1

Back to TopTop