Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,763)

Search Parameters:
Keywords = technology-supported

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1906 KB  
Review
Current Status and Future Prospects of Key Technologies in Variable-Rate Spray
by Yuxuan Jiao, Zhu Sun, Yongkui Jin, Longfei Cui, Xuemei Zhang, Shuai Wang, Songchao Zhang, Chun Chang, Suming Ding and Xinyu Xue
Agriculture 2025, 15(20), 2111; https://doi.org/10.3390/agriculture15202111 - 10 Oct 2025
Abstract
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field [...] Read more.
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field of precision agriculture by dynamically sensing crop canopy morphology, pest and disease distribution, and environmental parameters, adjusting the application amount in real time, and significantly improving pesticide utilization. In this study, we systematically review the core progress of variable-rate spray technology; focus on the technical system of information detection, spray volume model, and control system; analyze the current bottlenecks; and propose an optimization path to adapt to the complex agricultural conditions. At the level of information perception, LiDAR, machine vision, and multi-source sensor fusion technology constitute the main perception architecture, and infrared and ultrasonic sensors assist target recognition in complex scenes. In the construction of the spray volume model, models based on canopy volume, leaf area density, etc., are used to realize dynamic application decision by fusing equipment operating parameters, pest and disease levels, meteorological conditions, and so on. The control system takes the solenoid valve + PID control as the core program, and improves the response speed through PWM regulation and closed-loop feedback. The current technical bottlenecks are mainly concentrated in the sensor dynamic detection accuracy, model environmental adaptability, and the reliability of the execution parts. In the future, it is necessary to further promote anti-jamming multi-source heterogeneous sensor data fusion, multi-factor adaptive spray model development, lightweight edge computing deployment, and solenoid valve structural parameter optimization and other technical research, with a view to promoting the application of variable-rate spray technology to the field on a large scale and providing a theoretical reference and technological support for the green transformation of agriculture. Full article
15 pages, 5712 KB  
Article
Towards a Twisted Atom Laser: Cold Atoms Released from Helical Optical Tube Potentials
by Amine Jaouadi, Andreas Lyras and Vasileios E. Lembessis
Photonics 2025, 12(10), 999; https://doi.org/10.3390/photonics12100999 - 10 Oct 2025
Abstract
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during [...] Read more.
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during confinement. We examine how this geometry shapes the initial quantum state—particularly its spatial localization and phase structure—and how these features influence the subsequent free evolution. Our analysis reveals that the overall confinement geometry supports the formation of spatially coherent, structured wavepackets, paving the way for the realization of twisted Bose–Einstein condensates and directed atom lasers. The results are of particular interest for applications in quantum technologies, such as coherent atom beam shaping, matter-wave interferometry, and guided transport of quantum matter. Full article
19 pages, 396 KB  
Article
Are Teachers Ready to Adopt Deep Learning Pedagogy? The Role of Technology and 21st-Century Competencies Amid Educational Policy Reform
by Muh Fitrah, Anastasia Sofroniou, Novi Yarmanetti, Indriani H. Ismail, Hetty Anggraini, Ita Chairun Nissa, Bakti Widyaningrum, Irul Khotijah, Prabowo Dwi Kurniawan and Dedi Setiawan
Educ. Sci. 2025, 15(10), 1344; https://doi.org/10.3390/educsci15101344 - 10 Oct 2025
Abstract
The transformation of national education policy during Indonesia’s governmental era has led to regulatory disruptions through the rapid revocation of previous policies and swift introduction of new ones. This landscape requires teachers to possess technological proficiency as well as 21st-century competencies and pedagogical [...] Read more.
The transformation of national education policy during Indonesia’s governmental era has led to regulatory disruptions through the rapid revocation of previous policies and swift introduction of new ones. This landscape requires teachers to possess technological proficiency as well as 21st-century competencies and pedagogical readiness to adopt innovative learning. This study examines the influence of technological knowledge and 21st-century competencies on teachers’ readiness to adopt deep learning pedagogy, while also exploring perceptions of opportunities and challenges. A sequential explanatory mixed-methods design was employed, involving a survey of 802 teachers from regions of Indonesia. The instrument comprised 25 items across three variables, validated by experts, and tested with confirmatory factor analysis, which showed acceptable fit and reliability. Quantitative data were analyzed statistically, while qualitative insights came from interviews with 30 teachers and analyzed thematically. Results indicate that 21st-century competencies (β = 0.639, R2 = 0.432) exert stronger influence than technological knowledge (β = 0.575, R2 = 0.310) in shaping readiness. The integration of connecting and embedding strategies revealed personal, structural, and cultural complexities in implementing deep learning. The study recommends localized training and partnerships with professional organizations, higher education institutions, and NGOs to generate systemic support for school reform toward learning organizations. Full article
(This article belongs to the Special Issue Supporting Learner Engagement in Technology-Rich Environments)
23 pages, 3941 KB  
Article
Estimation of Kcb for Irrigated Melon Using NDVI Obtained Through UAV Imaging in the Brazilian Semiarid Region
by Jeones Marinho Siqueira, Gertrudes Macário de Oliveira, Pedro Rogerio Giongo, Jose Henrique da Silva Taveira, Edgo Jackson Pinto Santiago, Mário de Miranda Vilas Boas Ramos Leitão, Ligia Borges Marinho, Wagner Martins dos Santos, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marcos Vinícius da Silva
AgriEngineering 2025, 7(10), 340; https://doi.org/10.3390/agriengineering7100340 - 10 Oct 2025
Abstract
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration [...] Read more.
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration coefficient (Kcb). Air temperature affects crop growth and development, altering the spectral response and the Kcb. However, the direct influence of air temperature on Kcb and spectral response remains underemphasized. This study employed unmanned aerial vehicle (UAV) with RGB and Red-Green-NIR sensors imagery to extract biophysical parameters for improved water management in melon cultivation in semiarid northern Bahia. Field experiments were conducted during two distinct periods: warm (October–December 2019) and cool (June–August 2020). The ‘Gladial’ and ‘Cantaloupe’ cultivars exhibited higher Kcb values during the warm season (2.753–3.450 and 3.087–3.856, respectively) and lower during the cool season (0.815–0.993 and 1.118–1.317). NDVI-based estimates of Kcb showed strong correlations with field data (r > 0.80), confirming its predictive potential. The results demonstrate that UAV-derived NDVI enables reliable estimation of melon Kcb across seasons, supporting its application for evapotranspiration modeling and precision irrigation in the Brazilian semiarid context. Full article
18 pages, 367 KB  
Article
Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production
by Janine de Camargo, Pedro Nacib Jorge-Neto, Érika Lopes Madruga, Maria Gessica Daniel de Oliveira, Gilson Fruhling, José Victor Braga, Rosangela Poletto and Ricardo Zanella
AgriEngineering 2025, 7(10), 338; https://doi.org/10.3390/agriengineering7100338 - 10 Oct 2025
Abstract
This study investigated the effectiveness of a bacteriostatic-coated blister in preserving swine semen quality and its impact on reproductive performance. Two experiments were conducted: an in vitro assessment of the blister’s bacteriostatic efficacy and semen quality during three days of storage (Experiment 1), [...] Read more.
This study investigated the effectiveness of a bacteriostatic-coated blister in preserving swine semen quality and its impact on reproductive performance. Two experiments were conducted: an in vitro assessment of the blister’s bacteriostatic efficacy and semen quality during three days of storage (Experiment 1), and a seven-day commercial farm trial evaluating its effect on reproductive outcomes in artificially inseminated gilts and sows (Experiment 2). In Experiment 1, the bacteriostatic blister effectively controlled bacterial proliferation, maintaining counts below 2 log10, comparable to controls with added antibiotics. Sperm quality parameters, including total and progressive motility, consistently exceeded the critical threshold for artificial insemination. Experiment 2 demonstrated that the bacteriostatic coating did not negatively affect key reproductive performance indicators, such as farrowing rate, total piglets born, or live piglets under commercial conditions. These findings suggest that the bacteriostatic-coated blister offers a viable, potentially antibiotic-free, alternative for semen preservation, extending storage viability for up to seven days. This technology supports sustainable reproductive practices, representing a significant advancement in commercial swine production. Full article
26 pages, 1323 KB  
Article
Plasma-Activated Water (PAW) Enhances Seed Germination and Improves Biochemical Quality in Kangkong (Ipomoea aquatica Forssk.) Microgreens
by Prapasiri Ongrak, Nopporn Poolyarat, Bhornchai Harakotr, Yaowapha Jirakiattikul and Panumart Rithichai
Horticulturae 2025, 11(10), 1218; https://doi.org/10.3390/horticulturae11101218 - 10 Oct 2025
Abstract
Plasma-activated water (PAW) is an eco-friendly technology with potential to improve seed germination and nutritional quality in microgreens. This study investigated the effects of PAW on three cultivars of kangkong (Ipomoea aquatica Forssk.). PAW activated for 10 min (PAW10) significantly enhanced seed [...] Read more.
Plasma-activated water (PAW) is an eco-friendly technology with potential to improve seed germination and nutritional quality in microgreens. This study investigated the effects of PAW on three cultivars of kangkong (Ipomoea aquatica Forssk.). PAW activated for 10 min (PAW10) significantly enhanced seed germination and vigor, with effects comparable to those of a 15-min treatment. PAW10 treatment not only improved the accumulation of bioactive compounds—including total phenolics, flavonoids, ascorbic acid, chlorophylls, and carotenoids—but also enhanced antioxidant activity. These improvements were accompanied by elevated hydrogen peroxide (H2O2) levels and increased enzymatic activities, specifically catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Principal component analysis revealed cultivar-specific responses to PAW10. The Senafore 20 (SF) cultivar showed the most pronounced increases in antioxidant and antiglycation activities, as well as key bioactive compounds. The Phai-ngern (PN) cultivar exhibited elevated SOD activity and fiber content, while the Senee 20 (SN) cultivar showed minimal changes. These findings suggest that PAW10 effectively promotes germination and antioxidant-related biochemical responses in kangkong microgreens, with varying responses depending on cultivar. This study highlights PAW treatment as a promising approach to improve microgreen production and antioxidant capacity, supporting sustainable agriculture. Full article
(This article belongs to the Section Propagation and Seeds)
17 pages, 598 KB  
Article
Biofloc Technology for Nile Tilapia Fry: Technical and Economic Feasibility, Solids Control, and Stocking Density
by Raphael de Leão Serafini, Bruno Corrêa da Silva, Haluko Massago, Eduardo da Silva and Adolfo Jatobá
Animals 2025, 15(20), 2942; https://doi.org/10.3390/ani15202942 - 10 Oct 2025
Abstract
This study evaluated the technical and economic feasibility of the biofloc technology (BFT) system during the fry rearing phase of Nile tilapia (Oreochromis niloticus), focusing on suspended solids management, stocking density, and economic performance at a pilot scale. Three trials were [...] Read more.
This study evaluated the technical and economic feasibility of the biofloc technology (BFT) system during the fry rearing phase of Nile tilapia (Oreochromis niloticus), focusing on suspended solids management, stocking density, and economic performance at a pilot scale. Three trials were conducted. The first assessed the effects of four total suspended solids (TSS) ranges (0–200, 200–400, 400–600, and 600–800 mg·L−1) on larval performance and water quality. TSS levels between 200 and 600 mg·L−1 promoted improved water quality and zootechnical performance. The second trial tested five stocking densities (2, 4, 6, 8, and 10 larvae·L−1), evaluating their impact on water quality, survival, and size uniformity. Higher densities negatively affected survival (R2 = 0.84) and final weight (R2 = 0.92), while also increasing solids and nitrogenous compounds, thus impairing performance (p < 0.05). The third trial monitored six production cycles at pilot scale, evaluating zootechnical parameters, sex reversal efficiency, and economic indicators. All cycles showed survival rates above 85%, sex reversal close to 100%, and positive net margins (18.5 to 41.9%), demonstrating the viability of BFT for commercial fry operations. The results emphasize the importance of controlling suspended solids and stocking density to maintain water quality and optimize larval performance. Furthermore, the system proved economically viable, with good feed conversion rates and profitability, even without water exchange. These findings support BFT as a sustainable and efficient alternative for tilapia fry production, offering significant water savings and promising economic returns when properly managed. Full article
17 pages, 803 KB  
Article
Exploring Factors That Drive Millet Farmers to Join Millet FPOs for Sustainable Development: An ISM Approach
by Rafi Dudekula, Charishma Eduru, Laxmi Balaganoormath, Sangappa Sangappa, Srinivasa Babu Kurra, Amasiddha Bellundagi, Anuradha Narala and Tara Satyavathi C
Sustainability 2025, 17(20), 8986; https://doi.org/10.3390/su17208986 - 10 Oct 2025
Abstract
Agriculture and its allied activities contribute to the primary sector in India and act as the basis for the country’s economy. Available agricultural landholdings are scattered as multiple plots across the country. Land fragmentation has led to problems achieving economies of scale and [...] Read more.
Agriculture and its allied activities contribute to the primary sector in India and act as the basis for the country’s economy. Available agricultural landholdings are scattered as multiple plots across the country. Land fragmentation has led to problems achieving economies of scale and economies of scope; lower productivity, efficiency, and modernization; loss of biodiversity; and little scope for mechanization and technology. FPOs are small clusters of farmers who collaborate to enhance their bargaining strength through collective procurement, processing, and marketing efforts. To enhance the performance of FPOs at the grassroots level, the engagement of cluster-based business organizations (CBBOs) is vital. Millet FPOs are similar to voluntary farmer groups that are involved in the cultivation and promotion of millets. IIMR-promoted millet FPOs were selected purposively for the present study as they are involved in millet cultivation and farming. A total of 450 millet farmers from 15 FPOs and 3 states were randomly chosen for this action research study. The present research identified 10 key factors and collected farmers’ opinions toward member participation in millet FPOs using interpretive structural modeling. The ISM approach provided a clear understanding of how the selected factors interconnect hierarchically with each other as foundational drivers and dependent outcomes. The results from the MICMAC analysis demonstrated that foundational interventions, such as post-harvest technology availability (V2) and knowledge transfer by KVKs (V5), directly support higher-level objectives. Intermediate factors like economies of scale (V1) and market and credit linkages (V3) transform these services into operational advantages, while the outcome factors of business planning (V8), FPO branding (V7), and bargaining power (V9) emerge as dependent variables. The model demonstrates that V2 catalyzes improvements across the production, market, and institutional domains, cascading through intermediate enablers (V1, V4, V5, V6) to strengthen outcomes (V3, V7, V8, V9, V10). This hierarchy demonstrates that investing in post-harvest technology and complementary extension services is critical for building resilient millet FPOs and enhancing member participation. Full article
32 pages, 1237 KB  
Review
Healthcare 5.0-Driven Clinical Intelligence: The Learn-Predict-Monitor-Detect-Correct Framework for Systematic Artificial Intelligence Integration in Critical Care
by Hanene Boussi Rahmouni, Nesrine Ben El Hadj Hassine, Mariem Chouchen, Halil İbrahim Ceylan, Raul Ioan Muntean, Nicola Luigi Bragazzi and Ismail Dergaa
Healthcare 2025, 13(20), 2553; https://doi.org/10.3390/healthcare13202553 - 10 Oct 2025
Abstract
Background: Healthcare 5.0 represents a shift toward intelligent, human-centric care systems. Intensive care units generate vast amounts of data that require real-time decisions, but current decision support systems lack comprehensive frameworks for safe integration of artificial intelligence. Objective: We developed and validated the [...] Read more.
Background: Healthcare 5.0 represents a shift toward intelligent, human-centric care systems. Intensive care units generate vast amounts of data that require real-time decisions, but current decision support systems lack comprehensive frameworks for safe integration of artificial intelligence. Objective: We developed and validated the Learn–Predict–Monitor–Detect–Correct (LPMDC) framework as a methodology for systematic artificial intelligence integration across the critical care workflow. The framework improves predictive analytics, continuous patient monitoring, intelligent alerting, and therapeutic decision support while maintaining essential human clinical oversight. Methods: Framework development employed systematic theoretical modeling integrating Healthcare 5.0 principles, comprehensive literature synthesis covering 2020–2024, clinical workflow analysis across 15 international ICU sites, technology assessment of mature and emerging AI applications, and multi-round expert validation by 24 intensive care physicians and medical informaticists. Each LPMDC phase was designed with specific integration requirements, performance metrics, and safety protocols. Results: LPMDC implementation and aggregated evidence from prior studies demonstrated significant clinical improvements: 30% mortality reduction, 18% ICU length-of-stay decrease (7.5 to 6.1 days), 45% clinician cognitive load reduction, and 85% sepsis bundle compliance improvement. Machine learning algorithms achieved an 80% sensitivity for sepsis prediction three hours before clinical onset, with false-positive rates below 15%. Additional applications demonstrated effectiveness in predicting respiratory failure, preventing cardiovascular crises, and automating ventilator management. Digital twins technology enabled personalized treatment simulations, while the integration of the Internet of Medical Things provided comprehensive patient and environmental surveillance. Implementation challenges were systematically addressed through phased deployment strategies, staff training programs, and regulatory compliance frameworks. Conclusions: The Healthcare 5.0-enabled LPMDC framework provides the first comprehensive theoretical foundation for systematic AI integration in critical care while preserving human oversight and clinical safety. The cyclical five-phase architecture enables processing beyond traditional cognitive limits through continuous feedback loops and system optimization. Clinical validation demonstrates measurable improvements in patient outcomes, operational efficiency, and clinician satisfaction. Future developments incorporating quantum computing, federated learning, and explainable AI technologies offer additional advancement opportunities for next-generation critical care systems. Full article
(This article belongs to the Section Artificial Intelligence in Healthcare)
31 pages, 1544 KB  
Article
Comparative Analysis of Machine Learning Algorithms for Sustainable Attack Detection in Intelligent Transportation Systems Using Long-Range Sensor Network Technology
by Zbigniew Kasprzyk and Mariusz Rychlicki
Sustainability 2025, 17(20), 8985; https://doi.org/10.3390/su17208985 - 10 Oct 2025
Abstract
Intelligent transportation systems (ITS) play a crucial role in building sustainable and resilient urban mobility by improving traffic efficiency, reducing energy consumption, and lowering emissions. The integration of IoT technologies, particularly long-range low-power networks such as LoRaWAN, enables energy-efficient communication between vehicles and [...] Read more.
Intelligent transportation systems (ITS) play a crucial role in building sustainable and resilient urban mobility by improving traffic efficiency, reducing energy consumption, and lowering emissions. The integration of IoT technologies, particularly long-range low-power networks such as LoRaWAN, enables energy-efficient communication between vehicles and road infrastructure, supporting the sustainability goals of smart cities. However, the widespread deployment of IoT devices also introduces significant cybersecurity risks that may compromise the safety, reliability, and long-term sustainability of transportation systems. To address this challenge, we propose a method for generating synthetic network data that simulates normal traffic and DDoS attacks by randomly selecting distribution parameters for features like packets per second and unique device addresses, enabling evaluation of machine learning algorithms (e.g., Gradient Boosting, Random Forest, SVM, XGBoost) using F1-score and AUC metrics in a controlled environment. By enhancing cybersecurity and resilience in ITS, our research contributes to the development of safer, more energy-efficient, and sustainable transportation infrastructures. Full article
18 pages, 1393 KB  
Review
Preparation of Biojet Fuel: Recent Progress in the Hydrogenation of Microalgae Oil
by Hao Lin, Chong Ma and Jing Liu
Chemistry 2025, 7(5), 166; https://doi.org/10.3390/chemistry7050166 - 10 Oct 2025
Abstract
To address the greenhouse effect and environmental pollution stemming from fossil fuels, the development of new energy sources is widely regarded as a critical pathway toward achieving carbon neutrality. Microalgae, as a feedstock for third-generation biofuels, have emerged as a research hotspot for [...] Read more.
To address the greenhouse effect and environmental pollution stemming from fossil fuels, the development of new energy sources is widely regarded as a critical pathway toward achieving carbon neutrality. Microalgae, as a feedstock for third-generation biofuels, have emerged as a research hotspot for producing biojet fuel due to their high photosynthetic efficiency, non-competition with food crops, and potential for carbon reduction. This paper provides a systematic review of technological advancements in the catalytic hydrogenation of microalgal oil for biojet fuel production. It specifically focuses on the reaction mechanisms and catalyst design involved in the hydrogenation–deoxygenation and cracking/isomerization processes within the Oil-to-Jet (OTJ) pathway. Furthermore, the paper compares the performance differences among various catalyst support materials and between precious and non-precious metal catalysts. Finally, it outlines the current landscape of policy support and progress in industrialization projects globally. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass and Its Derivatives)
Show Figures

Graphical abstract

19 pages, 718 KB  
Review
Hydrogel-Based Formulations to Deliver Analgesic Drugs: A Scoping Review of Applications and Efficacy
by Sveva Di Franco, Aniello Alfieri, Pasquale Sansone, Vincenzo Pota, Francesco Coppolino, Andrea Frangiosa, Vincenzo Maffei, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Biomedicines 2025, 13(10), 2465; https://doi.org/10.3390/biomedicines13102465 - 10 Oct 2025
Abstract
Background/Objectives:Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. This [...] Read more.
Background/Objectives:Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. This scoping review aimed to systematically map clinical applications, efficacy, and safety of hydrogel-based DDS for analgesics, while also documenting non-DDS uses where the matrix itself contributes to pain modulation through physical mechanisms. Methods: Following PRISMA-ScR guidance, PubMed, Embase, and Cochrane databases were searched without publication date restrictions. Only peer-reviewed clinical studies were included; preclinical studies and non-journal literature were excluded. Screening and selection were performed in duplicate. Data extracted included drug class, hydrogel technology, clinical setting, outcomes, and safety. Protocol was registered with Open Science Framework. Results: A total of 26 clinical studies evaluating hydrogel formulations as DDS for analgesics were included. Most were randomized controlled trials, spanning 1996–2024. Local anesthetics were the most frequent drug class, followed by opioids, corticosteroids, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), and neuromodulators. Application sites were predominantly topical/transdermal and perioperative/incisional. Across the DDS cohort, most of the studies reported improved analgesic outcomes, including reduced pain scores and lower rescue medication use; neutral or unclear results were rare. Safety reporting was limited, but tolerability was generally favorable. Additionally, 38 non-DDS studies demonstrated pain reduction through hydrogel-mediated cooling, lubrication, or barrier effects, particularly in burns, ocular surface disorders, and discogenic pain. Conclusions: Hydrogel-based DDS for analgesics show consistent clinical signals of benefit across diverse contexts, aligning with their mechanistic rationale. While current evidence supports their role as effective, well-tolerated platforms, translational gaps remain, particularly for hybrid nanotechnology systems and standardized safety reporting. Non-DDS applications confirm the intrinsic analgesic potential of hydrogel matrices, underscoring their relevance in multimodal pain management strategies. Full article
22 pages, 2017 KB  
Review
A New Era in the Discovery of Biological Control Bacteria: Omics-Driven Bioprospecting
by Valeria Valenzuela Ruiz, Errikka Patricia Cervantes Enriquez, María Fernanda Vázquez Ramírez, María de los Ángeles Bivian Hernández, Marcela Cárdenas-Manríquez, Fannie Isela Parra Cota and Sergio de los Santos Villalobos
Soil Syst. 2025, 9(4), 108; https://doi.org/10.3390/soilsystems9040108 - 10 Oct 2025
Abstract
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain [...] Read more.
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain characterization. Recent advances in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have strengthened the bioprospecting pipeline by uncovering key microbial traits involved in biocontrol. Genomics enables the identification of biosynthetic gene clusters, antimicrobial pathways, and accurate taxonomy, while comparative genomics reveals genes relevant to plant–microbe interactions. Metagenomics uncovers unculturable microbes and their functional roles, especially in the rhizosphere and extreme environments. Transcriptomics (e.g., RNA-Seq) sheds light on gene regulation during plant-pathogen-bacteria interactions, revealing stress-related and biocontrol pathways. Metabolomics, using tools like Liquid Chromatography–Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR), identifies bioactive compounds such as lipopeptides, Volatile Organic Compounds (VOCs), and polyketides. Co-culture experiments and synthetic microbial communities (SynComs) have shown enhanced biocontrol through metabolic synergy. This review highlights how integrating omics tools accelerates the discovery and functional validation of new BCAs. Such strategies support the development of effective microbial products, promoting sustainable agriculture by improving crop resilience, reducing chemical inputs, and enhancing soil health. Looking ahead, the successful application of omics-driven bioprospection of BCAs will require addressing challenges of large-scale production, regulatory harmonization, and their integration into real-world agricultural systems to ensure reliable, sustainable solutions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

24 pages, 860 KB  
Review
Traumatic Brain Injury: Advances in Diagnostic Techniques and Treatment Modalities
by Lori Zarmer, Maaz S. Khan, Glenn Islat, Hanan Alameddin, Maria Massey, Saki Kazui and Rabail Chaudhry
J. Clin. Med. 2025, 14(20), 7145; https://doi.org/10.3390/jcm14207145 - 10 Oct 2025
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, neuroprotection, and rehabilitation, while highlighting future directions toward individualized and globalized care. Methods: This paper is a narrative review of clinical trials, systematic reviews, and observational studies, focusing on invasive and non-invasive monitoring, pharmacologic and non-pharmacologic interventions, neuroprotective agents, stem cell therapy, and advanced rehabilitation modalities. Results/Findings: Our review focuses on emerging monitoring techniques, including brain tissue oxygenation, cerebral microdialysis, and multimodal strategies, that provide detailed insights but lack standardized application. Interventions such as anti-inflammatory agents, hypothermia, hyperosmolar therapies, and metabolic suppression show mixed efficacy, with few therapies supported by high-level evidence. Novel agents like erythropoietin and progesterone demonstrate neuroprotective potential in preclinical models but remain inconclusive in clinical trials. Stem cell therapies and extracellular vesicle approaches are promising in early studies. Rehabilitation is expanding with virtual reality, robotics, and neurostimulation to promote neuroplasticity. Personalized medicine approaches incorporating biomarkers and machine learning may refine prognostication and guide therapy. Global inequities persist, particularly in low-resource settings. Conclusions: TBI care is shifting toward individualized, multimodal, and technology-driven strategies. While emerging therapies show promise, high-quality randomized trials and global implementation strategies are needed to improve outcomes and reduce disparities. Full article
(This article belongs to the Special Issue Clinical Advances in Therapy of Trauma and Surgical Critical Care)
19 pages, 953 KB  
Article
Sustainable Biodegradable Waste Management for Circular Economy: Comparative Assessment of Composting Technologies
by Małgorzata Gotowska and Anna Jakubczak
Sustainability 2025, 17(20), 8978; https://doi.org/10.3390/su17208978 - 10 Oct 2025
Abstract
Waste management is essential for advancing sustainable development and applying circular economy principles. The growing generation of waste—particularly organic municipal waste—combined with limited processing technologies, financial constraints, and overconsumption, intensifies its negative environmental and social impacts. This study examines the conditions necessary for [...] Read more.
Waste management is essential for advancing sustainable development and applying circular economy principles. The growing generation of waste—particularly organic municipal waste—combined with limited processing technologies, financial constraints, and overconsumption, intensifies its negative environmental and social impacts. This study examines the conditions necessary for implementing the circular economy concept in the context of organic municipal waste management. The research is based on literature review and an experiment involving the composting of biodegradable waste classified under code 20 02 01, analyzing its transformation into a soil improver commonly known as compost. Two composting approaches—single-stage and two-stage—were compared to evaluate their effectiveness in producing a high-quality end product that complies with national and EU legal standards, as well as the requirements for obtaining decisions (certificates) from the Ministry of Agriculture and Rural Development (MARD). The study is particularly relevant in light of the increasing volume of this waste stream, which exceeds 1.8 million tons annually in Poland, and the ambitious recycling targets set by the European Union, requiring 55% to be achieved by 2025. Results demonstrate that both composting methods contribute to circular resource use but differ in process efficiency and final product quality. These findings provide practical guidance for selecting composting technologies and support progress towards more sustainable, circular waste management. Moreover, they help define the output parameters of the products, which enables proper categorization and facilitates the issuance of relevant decisions from the MARD. Full article
Show Figures

Figure 1

Back to TopTop