Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,102)

Search Parameters:
Keywords = technology innovation evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5263 KiB  
Article
A System Dynamics-Based Hybrid Digital Twin Model for Driving Green Manufacturing
by Sucheng Fan, Huagang Tong and Song Wang
Systems 2025, 13(8), 651; https://doi.org/10.3390/systems13080651 (registering DOI) - 1 Aug 2025
Abstract
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of [...] Read more.
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of soft systems, including human behavior, decision-making, and operational strategies. To address this limitation, the present study introduces an innovative hybrid digital twin model that integrates both physical and soft systems to support green manufacturing initiatives comprehensively. The primary contributions of this work are threefold. First, a novel hybrid architecture is developed by coupling real-time physical data with virtual soft system components that simulate factory operations. Second, lean production principles are systematically incorporated into the soft system, thereby facilitating reduced energy consumption and minimizing environmental impact. Third, a parameter-driven programming model is formulated to correlate critical variables with green performance metrics, and a genetic algorithm is utilized to optimize these variables, ultimately enhancing sustainability outcomes. This integrated approach not only expands the applicability of digital twin technology but also offers a data-driven decision-support tool for the advancement of green manufacturing practices. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 (registering DOI) - 1 Aug 2025
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 (registering DOI) - 1 Aug 2025
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

28 pages, 352 KiB  
Article
Algorithm Power and Legal Boundaries: Rights Conflicts and Governance Responses in the Era of Artificial Intelligence
by Jinghui He and Zhenyang Zhang
Laws 2025, 14(4), 54; https://doi.org/10.3390/laws14040054 (registering DOI) - 31 Jul 2025
Abstract
This study explores the challenges and theoretical transformations that the widespread application of AI technology in social governance brings to the protection of citizens’ fundamental rights. By examining typical cases in judicial assistance, technology-enabled law enforcement, and welfare supervision, it explains how AI [...] Read more.
This study explores the challenges and theoretical transformations that the widespread application of AI technology in social governance brings to the protection of citizens’ fundamental rights. By examining typical cases in judicial assistance, technology-enabled law enforcement, and welfare supervision, it explains how AI characteristics such as algorithmic opacity, data bias, and automated decision-making affect fundamental rights including due process, equal protection, and privacy. The article traces the historical evolution of privacy theory from physical space protection to informational self-determination and further to modern data rights, pointing out the inadequacy of traditional rights-protection paradigms in addressing the characteristics of AI technology. Through analyzing AI-governance models in the European Union, the United States, Northeast Asia, and international organizations, it demonstrates diverse governance approaches ranging from systematic risk regulation to decentralized industry regulation. With a special focus on China, the article analyzes the special challenges faced in AI governance and proposes specific recommendations for improving AI-governance paths. The article argues that only within the track of the rule of law, through continuous theoretical innovation, institutional construction, and international cooperation, can AI technology development be ensured to serve human dignity, freedom, and fair justice. Full article
50 pages, 7974 KiB  
Article
Multiple Histories of Russian Occultism and the Unfinished Modernity: Imperial Esoterica Versus Modernizations of Avant-Garde Conceptualism
by Dennis Ioffe
Histories 2025, 5(3), 34; https://doi.org/10.3390/histories5030034 - 29 Jul 2025
Viewed by 526
Abstract
The essay offers an expansive and multi-stratified investigation into the role of esoteric traditions within the development of Russian modernity, reframing occultism not as an eccentric deviation but as a foundational epistemological regime integral to Russia’s aesthetic, philosophical, and political evolution. By analyzing [...] Read more.
The essay offers an expansive and multi-stratified investigation into the role of esoteric traditions within the development of Russian modernity, reframing occultism not as an eccentric deviation but as a foundational epistemological regime integral to Russia’s aesthetic, philosophical, and political evolution. By analyzing the arc from Petrine-era alchemical statecraft to the techno-theurgical aspirations of Russian Cosmism and the esoteric visual regimes of the avant-garde, this essay discloses the deep ontological entanglement between sacral knowledge and modernist radical experimentation. The work foregrounds figures such as Jacob Bruce, Wassily Kandinsky, and Kazimir Malevich, situating them within broader transnational currents of Hermeticism, Theosophy, and Rosicrucianism, while interrogating the role of occult infrastructures in both late-imperial and Soviet paradigms. Drawing on recent theoretical frameworks in the global history of esotericism and modernist studies, the long-read article elucidates the metaphysical substrata animating Russian Symbolism, Abstraction, Malevich’s non-Euclidian Suprematism and Moscow Conceptualism. This study contends that esotericism in Russia—far from marginal—served as a generative matrix for radical aesthetic innovation and ideological reconfiguration. It proposes a reconceptualization of Russian cultural history as a palimpsest of submerged sacral structures, where utopia and apocalypse, magic and technology, converge in a distinctively Russian cosmopoietic horizon. Ultimately, this essay reframes Russian and European occultism as an alternate technology of cognition and a performative semiotic universe shaping not only artistic modernism but also the very grammar of Russian historical imagination. Full article
(This article belongs to the Section Cultural History)
Show Figures

Figure 1

22 pages, 3465 KiB  
Article
Chromosome-Level Genome Announcement of the Monokaryotic Pleurotus ostreatus Strain PC80
by Jie Wu, Wenhua Sun, Jingkang Zheng, Jinling Liu, Xuedi Liang, Qin Liu and Weili Kong
J. Fungi 2025, 11(8), 563; https://doi.org/10.3390/jof11080563 - 29 Jul 2025
Viewed by 189
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In [...] Read more.
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In this study, we conducted a chromosome-level genome assembly of the monokaryotic basidiospore strain PC80. The assembled genome spanned 40.6 Mb and consisted of 15 scaffolds. Ten of these scaffolds contained complete telomere-to-telomere structures. The scaffold N50 value was 3.6 Mb. Genome annotation revealed 634 carbohydrate-active enzyme (CAZyme) family genes. Through collinearity analysis, we further confirmed that the PC80 genome exhibited higher completeness and greater accuracy compared to the currently published genomes of P. ostreatus. At the matA locus of PC80, three hd1 genes and one hd2 gene were identified. At the matB locus, seven pheromone receptor genes and two pheromone precursor genes were detected. Further phylogenetic analysis indicated that three of these pheromone receptor genes are likely to have mating-specific functions. This complete genome assembly could provide a foundation for future genomic and genetic studies, facilitate the identification of key genes related to growth and developmental regulation, and promote technological innovations in P. ostreatus breeding and efficient utilization. Full article
Show Figures

Figure 1

30 pages, 2922 KiB  
Article
Interaction Mechanism and Coupling Strategy of Higher Education and Innovation Capability in China Based on Interprovincial Panel Data from 2010 to 2022
by Shaoshuai Duan and Fang Yin
Sustainability 2025, 17(15), 6797; https://doi.org/10.3390/su17156797 - 25 Jul 2025
Viewed by 428
Abstract
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and [...] Read more.
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and regional innovation capacity using the entropy weight method. These are complemented by kernel density estimation, spatial autocorrelation analysis, Dagum Gini coefficient decomposition, and the Obstacle Degree Model. Together, these tools enable a comprehensive investigation into the spatiotemporal evolution and driving mechanisms of coupling coordination dynamics between the two systems. The results indicate the following: (1) Both higher education and regional innovation capacity indices exhibit steady growth, accompanied by a clear temporal gradient differentiation. (2) The coupling coordination degree shows an overall upward trend, with significant inter-regional disparities, notably “higher in the east and low in the west”. (3) The spatial distribution of the coupling coordination degree reveals positive spatial autocorrelation, with provinces exhibiting similar levels tending to form spatial clusters, most commonly of the low–low or high–high type. (4) The spatial heterogeneity is pronounced, with inter-regional differences driving overall imbalance. (5) Key obstacles hindering regional innovation include inadequate R&D investment, limited trade openness, and weak technological development. In higher education sectors, limitations stem from insufficient social service benefits and efficiency of flow. This study recommends promoting the synchronized advancement of higher education and regional innovation through region-specific development strategies, strengthening institutional infrastructure, and accurately identifying and addressing key barriers. These efforts are essential to fostering high-quality, coordinated regional development. Full article
Show Figures

Figure 1

46 pages, 2814 KiB  
Review
From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Xiandan Du, Ruiqi Fan, Qianxia Li and Youyan Huang
Appl. Sci. 2025, 15(15), 8304; https://doi.org/10.3390/app15158304 - 25 Jul 2025
Viewed by 169
Abstract
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected [...] Read more.
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected 4985 peer-reviewed articles from the Web of Science Core Collection and conducted a comprehensive scientometric analysis using CiteSpace v.6.2.R4, Origin 2022, and Excel. We examined publication trends, country/institutional collaboration networks, keyword co-occurrence clusters, and emerging research fronts. Results reveal an exponential growth in UAV-RS research since 2015, dominated by application-driven studies. Hotspots include vegetation indices, structure from motion modeling, and deep learning integration. However, foundational challenges—such as platform endurance, sensor coordination, and data standardization—remain underexplored. The global collaboration network exhibits a “strong hubs, weak bridges” pattern, limiting transnational knowledge integration. This review highlights the imbalance between surface-level innovation and deep technological maturity and calls for a paradigm shift from fragmented application responses to integrated systems development. Our findings provide strategic insights for researchers, policymakers, and funding agencies to guide the next stage of UAV-RS evolution. Full article
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 283
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

30 pages, 3932 KiB  
Article
Banking on the Metaverse: Systemic Disruption or Techno-Financial Mirage?
by Alina Georgiana Manta and Claudia Gherțescu
Systems 2025, 13(8), 624; https://doi.org/10.3390/systems13080624 - 24 Jul 2025
Viewed by 364
Abstract
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving [...] Read more.
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving intellectual and thematic contours of this interdisciplinary frontier. The co-occurrence analysis of keywords reveals a landscape shaped by seven core thematic clusters, encompassing immersive user environments, digital infrastructure, experiential design, and ethical considerations. Factorial analysis uncovers a marked bifurcation between experience-driven narratives and technology-centric frameworks, with integrative concepts such as technology, information, and consumption serving as conceptual bridges. Network visualizations of authorship patterns point to the emergence of high-density collaboration clusters, particularly centered around influential contributors such as Dwivedi and Ooi, while regional distribution patterns indicate a tri-continental dominance led by Asia, North America, and Western Europe. Temporal analysis identifies a significant surge in academic interest beginning in 2022, aligning with increased institutional and commercial experimentation in virtual financial platforms. Our findings argue that the incorporation of metaverse paradigms into banking is not merely a technological shift but a systemic transformation in progress—one that blurs the boundaries between speculative innovation and tangible implementation. This work contributes foundational insights for future inquiry into digital finance systems, algorithmic governance, trust architecture, and the wider socio-economic consequences of banking in virtualized environments. Whether a genuine leap toward financial evolution or a sophisticated illusion, the metaverse in banking must now be treated as a systemic phenomenon worthy of serious scrutiny. Full article
Show Figures

Figure 1

50 pages, 15545 KiB  
Review
Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting
by T. Pavan Rahul and P. S. Rama Sreekanth
J. Compos. Sci. 2025, 9(8), 386; https://doi.org/10.3390/jcs9080386 - 23 Jul 2025
Viewed by 386
Abstract
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating [...] Read more.
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating advanced triboelectric nanogenerator (TENG) technology with the rapidly evolving field of composite material 3D printing with has resulted in the advancement of three-dimensionally printed TENGs. Triboelectric nanogenerators are an important part of the next generation of portable energy harvesting and sensing devices that may be used for energy harvesting and artificial intelligence tasks. This paper systematically analyzes the continual development of 3D-printed TENGs and the integration of composite materials. The authors thoroughly review the latest material combinations of composite materials and 3D printing techniques for TENGs. Furthermore, this paper showcases the latest applications, such as using a TENG device to generate energy for electrical devices and harvesting energy from human motions, tactile sensors, and self-sustaining sensing gloves. This paper discusses the obstacles in constructing composite-material-based 3D-printed TENGs and the concerns linked to research and methods for improving electrical output performance. The paper finishes with an assessment of the issues associated with the evolution of 3D-printed TENGs, along with innovations and potential future directions in the dynamic realm of composite-material-based 3D-printed TENGs. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 334
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

26 pages, 795 KiB  
Review
New Space Engineering Design: Characterization of Key Drivers
by Daniele Ferrara, Paolo Cicconi, Angelo Minotti, Michele Trovato and Antonio Casimiro Caputo
Appl. Sci. 2025, 15(15), 8138; https://doi.org/10.3390/app15158138 - 22 Jul 2025
Viewed by 272
Abstract
The recent evolution of the space industry, commonly referred to as New Space, has changed the way space missions are conceived, developed, and executed. In contrast to traditional approaches, the current paradigm emphasizes accessibility, commercial competitiveness, and rapid and sustainable innovation. This study [...] Read more.
The recent evolution of the space industry, commonly referred to as New Space, has changed the way space missions are conceived, developed, and executed. In contrast to traditional approaches, the current paradigm emphasizes accessibility, commercial competitiveness, and rapid and sustainable innovation. This study proposes a research methodology for selecting relevant literature to identify the key design drivers and associated enablers that characterize the New Space context from an engineering design perspective. These elements are then organized into three categories: the evolution of traditional drivers, emerging manufacturing and integration practices, and sustainability and technology independence. This categorization highlights their role and relevance, providing a baseline for the development of systems for New Space missions. The results are further contextualized within three major application domains, namely Low Earth Orbit (LEO) small satellite constellations, operations and servicing in space, and space exploration, to illustrate their practical role in engineering space systems. By linking high-level industry trends to concrete design choices, this work aims to support the early design phases of New Space innovative systems and promote a more integrated approach between strategic objectives and technical development. Full article
Show Figures

Figure 1

Back to TopTop