New Space Engineering Design: Characterization of Key Drivers
Abstract
Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Keywords Definition
2.2. Literature Research
2.3. Document Screening and Selection
2.4. Identification of Key Concepts
- Design drivers: These are fundamental goals (e.g., cost and reliability) and constraints that influence the overall system architecture and development. These factors originate from the external system environment and are not necessarily technical in nature, yet they impact system design throughout its entire lifecycle [17];
- Design enablers: These are design choices and solutions that are implemented in terms of strategies, tools, enabling technologies, or processes that meet one or more drivers. These enablers may originate from engineering domains outside the traditional space sector and are adapted to meet space-specific needs.
2.5. Categorization of Design Drivers and Enablers
- Category A: Evolution of Traditional Design Drivers: This includes elements that were historically present in space missions that have been redefined or adapted in response to the New Space paradigm.
- Category B: Emerging Manufacturing and Integration Practices: This encompasses new industrial needs and technologies that were adopted by New Space companies to better respond to market needs.
- Category C: Sustainability and Technology Independence: This reflects the increased maturity and strategic awareness of the sector, targeting long-term viability and autonomy.
2.6. Contextualization Within Application Domains
- LEO constellations of small satellites;
- In space operations and servicing;
- Space exploration.
3. Results and Discussion
3.1. General Discussion of New Space Design Drivers and Enablers
3.1.1. Category A: Evolution of Traditional Design Drivers
3.1.2. Category B: Emerging Manufacturing and Integration Practices
3.1.3. Category C: Sustainability and Technological Independence
3.2. Discussion per Application Domains
3.2.1. LEO Constellations of Small Satellites
3.2.2. Operations and Servicing in Space
3.2.3. Space Exploration
3.2.4. Further Aspects
3.3. Toward Practical Application in Early Design
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AM | Additive Manufacturing |
COTS | Commercial Off-the-Shelf |
CSA | Canadian Space Agency |
DAS | Debris Assessment Software |
DRAMA | Debris Risk Assessment and Mitigation Analysis |
ECSS | European Cooperation for Space Standardization |
EOL | End of Life |
ESA | European Space Agency |
GEO | Geosynchronous Equatorial Orbit |
IOD | In-Orbit Demonstration |
IOS | In-Orbit Servicing |
ISAM | In-space Servicing, Assembly, and Manufacturing |
ISOS | In-Space Operation and Servicing |
ISRO | Indian Space Research Organization |
ISRU | In Situ Research Utilization |
ITAR | International Traffic in Arms Regulations |
JAXA | Japan Aerospace Exploration Agency |
LCA | Life Cycle Assessment |
LEO | Low Earth Orbit |
MEMS | Micro-Electromechanical Systems |
MEV | Mission Extension Vehicle |
NASA | National Aeronautics and Space Administration |
NETRA | Network for space object TRacking and Analysis |
PMD | Post-Mission Disposal |
R&D | Research and Development |
TRL | Technology Readiness Level |
References
- Peeters, W. Evolution of the Space Economy: Government Space to Commercial Space and New Space. Astropolitics 2021, 19, 206–222. [Google Scholar] [CrossRef]
- Paikowsky, D. What Is New Space? The Changing Ecosystem of Global Space Activity. New Space 2017, 5, 84–88. [Google Scholar] [CrossRef]
- Hay, J.; Guthrie, P.; Mullins, C.; Gresham, E.; Christensen, C. Global Space Industry: Refining the Definition of New Space. In Proceedings of the AIAA SPACE 2009 Conference & Exposition, Pasadena, CA, USA, 14–17 September 2009. [Google Scholar] [CrossRef]
- Golkar, A.; Salado, A. Definition of New Space—Expert Survey Results and Key Technology Trends. IEEE J. Miniatur. Air Space Syst. 2021, 2, 2–9. [Google Scholar] [CrossRef]
- Garzaniti, N.; Golkar, A.; Kotevska, O.; Isaksson, O. Review of Technology Trends in New Space Missions Using a Patent Analytics Approach. Prog. Aerosp. Sci. 2021, 125, 100727. [Google Scholar] [CrossRef]
- Chechile, I. NewSpace Systems Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- California Polytechnic State University. CubeSat Design Specification, Rev. 14.1; California Polytechnic State University: San Luis Obispo, CA, USA, 2022; Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed on 31 May 2025).
- Novaspace. Satellites to be Built and Launched 2024; Novaspace: Paris, France, 2024; Available online: https://nova.space/hub/product/satellites-to-be-built-launched/ (accessed on 28 April 2025).
- Lawrence, A.; Rawls, M.L.; Jah, M.; Boley, A.; Di Vruno, F.; Garrington, S.; Kramer, M.; Lawler, S.; Lowenthal, J.; McDowell, J.; et al. The case for space environmentalism. Nat. Astron. 2022, 6, 428–435. [Google Scholar] [CrossRef]
- ESA Space Debris Mitigation Working Group. ESA Space Debris Mitigation Requirements; ESSB-ST-U-007, Issue 1; European Space Agency: Paris, France, 2023. [Google Scholar]
- NASA. NASA Procedural Requirements for Limiting Orbital Debris and Evaluating the Meteoroid and Orbital Debris Environments; NPR 8715.6E; NASA: Washington, DC, USA, 2024.
- The Aerospace Corporation. 2024 Space Safety Compendium: Collaborating for Sustainable Space Futures; The Aerospace Corporation: El Segundo, CA, USA, 2024; Available online: https://aerospace.org/paper/space-safety-compendium (accessed on 9 March 2025).
- European Space Agency. What is Space 4.0? Available online: https://www.esa.int/About_Us/Ministerial_Council_2016/What_is_space_4.0 (accessed on 15 May 2025).
- Gordon, L.; Herasimenka, S. Powering the New Space Economy with Advanced Solar Technologies. In Proceedings of the International Astronautical Congress, IAC, Baku, Azerbaijan, 2–6 October 2023. [Google Scholar]
- Bai, S.; Wang, Y.; Liu, H.; Sun, X. Spacecraft Fast Fly-Around Formations Design Using the Parallelogram Configuration. Nonlinear Dyn. 2024, 113, 1041–1062. [Google Scholar] [CrossRef]
- Punnala, M.; Punnala, S.; Ojala, A.; Kuusniemi, H. The Space Economy: Review of the Current Status and Future Prospects. In Space Business: Emerging Theory and Practice; Ojala, A., Baber, W.W., Eds.; Springer Nature: Singapore, 2024; pp. 27–54. [Google Scholar] [CrossRef]
- Seabridge, A.; Moir, I. Design and Development of Aircraft Systems, 3rd ed.; Wiley: Hoboken, NJ, USA, 2020; ISBN 978-1-119-61150-9. [Google Scholar]
- ECSS. ECSS-E-HB-11A—Technology Readiness Level (TRL) Guidelines (1 March 2017); European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2017. [Google Scholar]
- Öhrwall Rönnbäck, A.B.; Isaksson, O. Product Development Challenges for Space Sub-System Manufacturers. In Proceedings of the DESIGN 2018 15th International Design Conference, Dubrovnik, Croatia, 21–24 May 2018; pp. 1937–1944. [Google Scholar] [CrossRef]
- Siddique, I.M. Emerging Trends in Small Satellite Technology: Challenges and Opportunities. Eur. J. Adv. Eng. Technol. 2024, 11, 42–48. [Google Scholar] [CrossRef]
- Baber, W.W.; Ojala, A. New Space Era: Characteristics of the New Space Industry Landscape. In Space Business: Emerging Theory and Practice; Ojala, A., Baber, W.W., Eds.; Springer: Singapore, 2024; pp. 3–26. [Google Scholar] [CrossRef]
- Banerjee, A.; Mukherjee, M.; Satpute, S.; Nikolakopoulos, G. Resiliency in Space Autonomy: A Review. Curr. Robot. Rep. 2023, 4, 1–12. [Google Scholar] [CrossRef]
- Fortescue, P.; Swinerd, G.; Stark, J. Spacecraft Systems Engineering, 4th ed.; Wiley: Chichester, UK, 2011; ISBN 978-0-470-75012-4. [Google Scholar]
- Terzi, A.; Nicoli, F. Space Possibilities for Our Grandchildren: Current and Future Economic Uses of Space; Bennett Institute for Public Policy: Cambridge, UK, 2024; Available online: https://www.bennettinstitute.cam.ac.uk/publications/economic-uses-of-space/ (accessed on 22 March 2025).
- Yung, K.-L.; Tang, Y.-M.; Ip, W.-H.; Kuo, W.-T. A Systematic Review of Product Design for Space Instrument Innovation, Reliability, and Manufacturing. Machines 2021, 9, 244. [Google Scholar] [CrossRef]
- Jones, H.W. Going Beyond Reliability to Robustness and Resilience in Space Life Support Systems. In Proceedings of the 50th International Conference on Environmental Systems (ICES 2021), Virtual Conference, 12–15 July 2021; American Institute of Chemical Engineers: New York, NY, USA, 2021. [Google Scholar]
- Owens, A.C.; de Weck, O.L. Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign. In Proceedings of the AIAA SPACE 2016 Conference, Long Beach, CA, USA, 13–16 September 2016; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [Google Scholar]
- Eugeni, M.; Quercia, T.; Bernabei, M.; Boschetto, A.; Costantino, F.; Lampani, L.; Marchetti Spaccamela, A.; Lombardo, A.; Mecella, M.; Querzoni, L.; et al. An Industry 4.0 Approach to Large Scale Production of Satellite Constellations: The Case Study of Composite Sandwich Panel Manufacturing. Acta Astronaut. 2022, 192, 276–290. [Google Scholar] [CrossRef]
- European Space Agency, Space System Life Cycle Assessment (LCA) Guidelines; Handbook ESSB-HB-U-005; ESA: Paris, France, 2016.
- Perez-Marcos, E.; Kurz, L.; Cuntz, M.; Caizzone, S.; Konovaltsev, A.; Meurer, M. ITAR Free Smart Antenna Array for Resilient GNSS in Aviation. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Castellanos-Ardila, J.P.; Gallina, B.; Governatori, G. Compliance-Aware Engineering Process Plans: The Case of Space Software Engineering Processes. Artif. Intell. Law 2021, 29, 587–627. [Google Scholar] [CrossRef]
- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kaltenbaek, R.; Acín, A.; Bacsardi, L.; Bianco, P.; Bouyer, P.; Diamanti, E.; Marquardt, C.; Omar, Y.; Pruneri, V.; Rasel, E.; et al. Quantum Technologies in Space. Exp. Astron. 2021, 51, 1677–1694. [Google Scholar] [CrossRef] [PubMed]
- Krelina, M. Quantum Communication Countermeasures. arXiv 2023. [Google Scholar] [CrossRef]
- Castet, J.-F.; Saleh, J.H. Satellite and satellite subsystems reliability: Statistical data analysis and modeling. Reliab. Eng. Syst. Saf. 2009, 94, 1718–1728. [Google Scholar] [CrossRef]
- Garzaniti, N.; Briatore, S.; Fortin, C.; Golkar, A. Effectiveness of the Scrum Methodology for Agile Development of Space Hardware. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, S.K.; Das, S.; Kumar, S.; Kumar, A. Shape Memory Polymer and Composites for Space Applications: A Review. Polym. Compos. 2025, 1–37. [Google Scholar] [CrossRef]
- Pernigoni, L.; Lafont, U.; Grande, A.M. Self-Healing Materials for Space Applications: Overview of Present Development and Major Limitations. CEAS Space J. 2021, 13, 341–352. [Google Scholar] [CrossRef]
- Shea, H.R. Reliability of MEMS (microsystems) for space applications. In Proceedings of the 8th Round Table on Micro/Nano Technologies for Space, Noordwijk, The Netherlands, 12–14 October 2005; European Space Agency: Noordwijk, The Netherlands, 2005. ESA SP-591. pp. 17–24. [Google Scholar]
- de Rooij, N.F.; Gautsch, S.; Briand, D.; Marxer, C.; Mileti, G.; Noell, W.; Shea, H.; Staufer, U.; van der Schoot, B. MEMS for space. In Proceedings of the 2009 International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2009), Denver, CO, USA, 21–25 June 2009; pp. 17–24. [Google Scholar] [CrossRef]
- Grönland, T.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of components and systems for space using MEMS technology. Acta Astronaut. 2007, 61, 228–233. [Google Scholar] [CrossRef]
- Nosseir, A.E.S.; Cervone, A.; Pasini, A. Modular Impulsive Green Monopropellant Propulsion System (MIMPS-G): For CubeSats in LEO and to the Moon. Aerospace 2021, 8, 169. [Google Scholar] [CrossRef]
- Satsearch. Commercial Off-The-Shelf (COTS) Space Products. Available online: https://satsearch.co/products/search/cots?trl%5B0%5D=7&trl%5B1%5D=8&trl%5B2%5D=9&trl%5B3%5D=Unknown&page=1 (accessed on 14 May 2025).
- ASTRIONICS GmbH. SpaceCOTS™ Project Page. Available online: https://www.astrionics.com/project-page (accessed on 30 May 2025).
- Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H. Engineering Design: A Systematic Approach, 3rd ed.; Springer: London, UK, 2007; pp. 1–617. [Google Scholar] [CrossRef]
- NanoAvionics. The Future of NewSpace: Standardizing Small Satellites. Available online: https://nanoavionics.com/blog/the-future-of-newspace-standardizing-small-satellites/ (accessed on 23 May 2025).
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2112-6. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications, and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Ponis, S.; Aretoulaki, E.; Maroutas, T.N.; Plakas, G.; Dimogiorgi, K. A Systematic Literature Review on Additive Manufacturing in the Context of Circular Economy. Sustainability 2021, 13, 6007. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L. Environmental Sustainability of Large Satellite Constellations in Low Earth Orbit. Acta Astronaut. 2020, 170, 27–36. [Google Scholar] [CrossRef]
- U.S. Government. Orbital Debris Mitigation Standard Practices; NASA Johnson Space Center: Houston, TX, USA, 2019.
- Committee on the Peaceful Uses of Outer Space. IADC Space Debris Mitigation Guidelines. A/AC.105/C.1/2025/CRP.9, 3 February 2025. Available online: https://www.unoosa.org/documents/pdf/copuos/stsc/2025/crp/CRP09E.pdf (accessed on 4 July 2025).
- Liou, J.-C.; Krisko, P. An Update on the Effectiveness of Postmission Disposal in LEO. In Proceedings of the 64th International Astronautical Congress (IAC), Beijing, China, 23–27 September 2013; IAC-13-A6.4.2. pp. 1–4. [Google Scholar]
- Bennett, M.M. Orbital Debris Requires Prevention and Mitigation across the Satellite Life Cycle. Commun. Eng. 2025, 4, 95. [Google Scholar] [CrossRef] [PubMed]
- Lewis, H.G.; Yazadzhiyan, V. Evaluation of Low Earth Orbit Post-Mission Disposal Measures. J. Space Saf. Eng. 2024, 11, 526–531. [Google Scholar] [CrossRef]
- Lagadec, K.; Lévêque, N.; Briot, D. Impact of Controlled and Semi-Controlled Re-Entry Strategies on Spacecraft Design. Executive Summary; ESA Contract No. 4000118423/16/NL/LF.; S&P-TN-ADSS-1000156886; Airbus Defence & Space: Stevenage, UK, 2018; pp. 1–18. [Google Scholar]
- Kang, S.-Y.; Jo, M.-S.; Choi, J.-Y.; Yang, S.S. Cost Effectiveness of Reusable Launch Vehicles Depending on the Payload Capacity. Aerospace 2025, 12, 364. [Google Scholar] [CrossRef]
- Stansbery, E. NASA Orbital Debris Program; NASA Johnson Space Center: Houston, TX, USA, 2013. Available online: https://ntrs.nasa.gov/api/citations/20130010239/downloads/20130010239.pdf (accessed on 24 May 2025).
- Cattani, B.M.; Caiazzo, A.; Innocenti, L.; Lemmens, S. An Overview of Design for Demise Technologies. In Proceedings of the 8th European Conference on Space Debris, Darmstadt, Germany, 20–23 April 2021. [Google Scholar]
- Trisolini, M.; Lewis, H.G.; Colombo, C. Demise and Survivability Criteria for Spacecraft Design Optimization. J. Space Saf. Eng. 2016, 3, 83–93. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 24113:2023—Space Systems—Space Debris Mitigation Requirements, 4th ed.; ISO: Geneva, Switzerland, 2023. [Google Scholar]
- Supan, J. Inside the Rise of 7,000 Starlink Satellites—and Their Inevitable Downfall. Available online: https://www.cnet.com/home/internet/features/inside-the-rise-of-7000-starlink-satellites-and-their-inevitable-downfall/ (accessed on 24 May 2025).
- European Space Agency. Ecodesign. Available online: https://www.esa.int/Space_Safety/Clean_Space/ecodesign (accessed on 17 May 2025).
- Rohr, T. REACH Obsolescence Risk Management for Space Programs. In Proceedings of the ESA REACH Workshop, ESTEC, Noordwijk, The Netherlands, 22 April 2015; Available online: https://indico.esa.int/event/81/attachments/2607/3023/150422_REACH_workshop_TRohr.pdf (accessed on 25 May 2025).
- Ulrich, K.T.; Eppinger, S.D. Product Design and Development, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Gaston, K.J.; Anderson, K.; Shutler, J.D.; Brewin, R.J.W.; Yan, X. Environmental Impacts of Increasing Numbers of Artificial Space Objects. Front. Ecol. Environ. 2023, 21, 289–296. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed.; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006—Environmental Management—Life Cycle Assessment—Requirements and Guidelines, 1st ed.; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- PRé Sustainability. SimaPro—LCA Software. Available online: https://simapro.com/ (accessed on 8 July 2025).
- GreenDelta. openLCA—Life Cycle Assessment Software. Available online: https://www.openlca.org/ (accessed on 8 July 2025).
- Blondel Canepari, L.; Affentranger, L.; Morales Serrano, S.; Tormena, E.; Padilla Gutierrez, E.; Pasini, A.; Valencia Bel, F. Towards Greener Propulsion: Environmental Categorization of Liquid In-Space Propulsion Systems via Life Cycle Analysis. In Proceedings of the Space Propulsion 2024, Glasgow, Scotland, 20–23 May 2024. [Google Scholar]
- Blondel-Canepari, L.; Sarritzu, A.; Pasini, A. A Holistic Approach for Efficient Greener In-Space Propulsion. Acta Astronaut. 2024, 223, 435–447. [Google Scholar] [CrossRef]
- Kokare, S.; Moraes, L.; Fernandes, N.; Innocenti, L.; Lemmens, S. Toward Cleaner Space Explorations: A Comparative Life Cycle Assessment of Spacecraft Propeller Tank Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2024, 133, 369–389. [Google Scholar] [CrossRef]
- Anoohya, J.H.S.D.; Koul, V.; Sant, A.; Westhuizen, D.; Sur, R.; Nakrimi, O.; Romo, J. A Circular Eco-Design Framework for Sustainable Space Objects Design. In Proceedings of the Sustainable Space Logistics & Key Technologies—Global Space Exploration Congress, New Delhi, India, 7–9 May 2025. [Google Scholar]
- Liu, Y.; Wang, C.; Pang, Y.; Wang, Q.; Zhao, Z.; Lin, T.; Wang, Z.; Shen, T.; Liu, S.; Song, J.; et al. Water Extraction from Icy Lunar Regolith by Drilling-Based Thermal Method in a Pilot-Scale Unit. Acta Astronaut. 2023, 202, 386–399. [Google Scholar] [CrossRef]
- Guerrero-Gonzalez, F.J.; Zabel, P. System Analysis of an ISRU Production Plant: Extraction of Metals and Oxygen from Lunar Regolith. Acta Astronaut. 2023, 203, 187–201. [Google Scholar] [CrossRef]
- Muñoz Tejeda, J.; Schwertheim, A.; Knoll, A. Water as an Environmentally Friendly Propellant for a Multi-Functional Spacecraft Architecture. Int. J. Energet. Mater. Chem. Propuls. 2022, 22, 21–33. [Google Scholar] [CrossRef]
- ANYWAVES. ITAR FREE Status: A Major Asset for the Space Industry. Available online: https://anywaves.com/resources/blog/itar-free-space-industry/ (accessed on 8 July 2025).
- Magics Technologies. Magics Introduces the MAG-TDC00002: A High-Precision Time-to-Digital Converter for Space Applications. Available online: https://www.magics.tech/news/magics-introduces-the-mag-tdc00002-a-high-precision-time-to-digital-converter-for-space-applications (accessed on 8 July 2025).
- NASA. NASA Systems Engineering Handbook, NASA/SP-2016-6105 Rev2; National Aeronautics and Space Administration: Washington, DC, USA, 2016.
- European Cooperation for Space Standardization (ECSS). ECSS-M-ST-60C—Cost and Schedule Management, 1st ed.; ECSS: Noordwijk, The Netherlands, 2008; Available online: https://ecss.nl/standard/ecss-m-st-60c-cost-and-schedule-management/ (accessed on 8 July 2025).
- Oliver Wyman. Space Industry Supply Chain Solutions. Available online: https://www.oliverwyman.com/our-expertise/insights/2024/may/space-industry-supply-chain-solutions.html (accessed on 8 July 2025).
- Kestilä, A.; Nordling, K.; Miikkulainen, V.; Kaipio, M.; Tikka, T.; Salmi, M.; Auer, A.; Leskelä, M.; Ritala, M. Towards Space-Grade 3D-Printed, ALD-Coated Small Satellite Propulsion Components for Fluidics. Addit. Manuf. 2018, 22, 31–37. [Google Scholar] [CrossRef]
- PMarketResearch. Space Valves Market. Available online: https://pmarketresearch.com/auto/space-valves-market/ (accessed on 7 July 2025).
- Schubert, K.; Berger, T.; Smith, J.; Lee, A. Unique Challenges of Mission Operations on SunRISE, a Low Earth Orbit Distributed Aperture Radio Interferometer. In Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Doll, B. The Future Satellite Business Is Small Satellite Business. In Smaller Satellites: Bigger Business? Rycroft, M., Crosby, N., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 157–164. [Google Scholar] [CrossRef]
- Jones, H.W. The Recent Large Reduction in Space Launch Cost. In Proceedings of the International Conference on Environmental Systems (ICES), Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Gunter’s Space Page. Orbital Launches of 2025. Available online: https://space.skyrocket.de/doc_chr/lau2025.htm (accessed on 19 May 2025).
- European Space Agency. Rideshare Deal Opens New Path to Space for European Innovation. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Rideshare_deal_opens_new_path_to_space_for_European_innovation (accessed on 10 May 2025).
- SpaceX. Rideshare Program. Available online: https://www.spacex.com/rideshare (accessed on 10 May 2025).
- Space.com. SpaceX Starlink Satellites. Available online: https://www.space.com/spacex-starlink-satellites.html (accessed on 9 May 2025).
- Reznik, S.V.; Reut, D.V.; Shustilova, M.S. Comparison of Geostationary and Low-Orbit “Round Dance” Satellite Communication Systems. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 052045. [Google Scholar] [CrossRef]
- TE Connectivity. COTS Components in LEO Satellites. Available online: https://www.te.com/en/industries/aerospace/insights/cots-components-in-leo-satellites.html (accessed on 4 July 2025).
- Congressional Budget Office. Large Constellations of Low-Altitude Satellites: A Primer; Report No. 58794; Congressional Budget Office: Washington, DC, USA, 2023.
- Daehnick, C.; Klinghoffer, I.; Maritz, B.; Wiseman, B. Large LEO Satellite Constellations: Will It Be Different This Time? McKinsey & Company. Available online: https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/large-leo-satellite-constellations-will-it-be-different-this-time (accessed on 4 July 2025).
- Baccelli, F.; Candel, S.; Perrin, G.; Puget, J.-L. Large Satellite Constellations: Challenges and Impact; Académie des Sciences: Paris, France, 2024. [Google Scholar] [CrossRef]
- Harebottle, A. Satellite Manufacturing in the Era of Mass Production. Available online: https://interactive.satellitetoday.com/via/september-2021/satellite-manufacturing-in-the-era-of-mass-production (accessed on 24 May 2025).
- Badikov, G.A.; Zaytsev, A.V. Economic Model of Costs Required to Create and Operate the Starlink Fast Internet System. AIP Conf. Proc. 2023, 2549, 200002. [Google Scholar] [CrossRef]
- Dsouza, L.F. The Economics of Satellite Constellations: A Comprehensive Overview. Available online: https://medium.com/@lynnfdsouza/the-economics-of-satellite-constellations-a-comprehensive-overview-4091089bb8b0 (accessed on 8 July 2025).
- Mason, J.P.; Begbie, R.G.; Bowen, M.; Caspi, A.; Chamberlin, P.C.; Chandran, A.; Cohen, I.; DeLuca, E.E.; de Wijn, A.G.; Dissauer, K.; et al. Small Platforms, High Return: The Need to Enhance Investment in Small Satellites for Focused Science, Career Development, and Improved Equity. arXiv 2025, arXiv:2306.05481. [Google Scholar] [CrossRef]
- Vela, C.; Porrino, V.; Opromolla, R.; Fasano, G. Coordination and Reactive Control of Multi-Spacecraft Formations for Earth Observation. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- eoPortal. Planet Satellite Missions. Available online: https://www.eoportal.org/satellite-missions/planet (accessed on 4 July 2025).
- Rodriguez-Donaire, S.; Garcia-Almiñana, D.; Garcia-Berenguer, M.; Vila, C. Strategic Similarities between Earth Observation Small Satellite Constellations in Very Low Earth Orbit and Low-Cost Carriers by Means of Strategy Canvas. CEAS Space J. 2022, 14, 767–784. [Google Scholar] [CrossRef]
- Eccles, D.S.; Hastings, S.E.; Juranek, J. Space System High Volume Production. In The Aerospace Corporation Story, 2 September 2020. Available online: https://aerospace.org/story/space-system-high-volume-production (accessed on 8 May 2025).
- CIRA. Laboratorio di Qualifica Spaziale. Available online: https://www.cira.it/it/infrastrutture-di-ricerca/laboratorio-di-qualifica-spaziale (accessed on 9 May 2025).
- European Space Agency. Labs—ESA Technology Development. Available online: https://technology.esa.int/labs (accessed on 9 May 2025).
- European Space Agency. In-Orbit Demonstration. Available online: https://technology.esa.int/page/in-orbit-demonstration (accessed on 19 May 2025).
- Spaceflight Now. Two Commercial Satellites Link Up in Space for First Time. Available online: https://spaceflightnow.com/2020/02/26/two-commercial-satellites-link-up-in-space-for-first-time/ (accessed on 4 July 2025).
- NASA. On-Orbit Satellite Servicing Study: Project Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2010. Available online: https://www.nasa.gov/wp-content/uploads/2023/10/nasa-satellite-servicing-project-report-0511.pdf (accessed on 24 May 2025).
- European Space Agency. ESA Moves Ahead with In-Orbit Servicing Missions. Available online: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_moves_ahead_with_In-Orbit_Servicing_missions2 (accessed on 20 May 2025).
- European Commission. Guidance Document for the EU ISOS Pilot Mission: In-Space Operations & Services 4 Infrastructure (Pre-Release Version); Directorate-General for Defence Industry and Space: Brussels, Belgium, 2025. [Google Scholar]
- Wei, Z.; Shao, Z.; Biegler, L.T. Distributed Control Method for Vehicle Cooperative Rendezvous. J. Guid. Control Dyn. 2025, 48, 1620–1634. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, M.; Jiang, X. Non-Cooperative Spacecraft Proximity Control Considering Target Behavior Uncertainty. Astrodyn 2022, 6, 399–411. [Google Scholar] [CrossRef]
- Astroscale. Astroscale’s ELSA-d Finalizes De-Orbit Operations, Marking Successful Mission Conclusion. Available online: https://astroscale.com/astroscales-elsa-d-finalizes-de-orbit-operations-marking-successful-mission-conclusion/ (accessed on 4 July 2025).
- Hatty, I. Viability of On-Orbit Servicing Spacecraft to Prolong the Operational Life of Satellites. J. Space Saf. Eng. 2022, 9, 263–268. [Google Scholar] [CrossRef]
- Opromolla, R.; Grishko, D.; Auburn, J.; Bevilacqua, R.; Buinhas, L.; Cassady, J.; Jäger, M.; Jankovic, M.; Rodriguez, J.; Perino, M.A.; et al. Future In-Orbit Servicing Operations in the Space Traffic Management Context. Acta Astronaut. 2024, 220, 469–477. [Google Scholar] [CrossRef]
- European Space Agency. ESA Standardising Interfaces for In-Orbit Servicing. Available online: https://blogs.esa.int/cleanspace/2022/11/18/esa-standardising-interfaces-for-in-orbit-servicing/ (accessed on 21 May 2025).
- Capurso, A.; Marzioli, P.; Boscia, M. Questions of Fault Liability: A Case Study Analysis of In-Orbit Collisions with Debris. J. Space Saf. Eng. 2023, 10, 439–446. [Google Scholar] [CrossRef]
- Newman, C.; Dinsley, R.; Ralston, W. Introducing the Law Games: Predicting Legal Liability and Fault in Satellite Operations. Adv. Space Res. 2021, 67, 3785–3792. [Google Scholar] [CrossRef]
- ESA. ESA’s Close Proximity Guidelines: Why Do You Need Close Proximity Guidelines for In-Orbit Servicing Missions? Available online: https://blogs.esa.int/cleanspace/2024/12/17/esas-close-proximity-guidelines-why-do-you-need-close-proximity-guidelines-for-in-orbit-servicing-missions/ (accessed on 4 July 2025).
- Kleinhenz, J.E.; Sanders, G. Evaluation of the NASA Artemis Regions of Interest for ISRU Water Mine Potential. In ASCEND 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Arney, D.; Mulvaney, J.; Williams, C.; Stockdale, C.; Gelin, N.; le Gouellec, P. In-Space Servicing, Assembly, and Manufacturing (ISAM) State of Play—2023 Edition; NASA Langley Research Center: Hampton, VA, USA, 2023.
- Kuang, S.; Singh, N.M.; Wu, Y.; Shen, Y.; Ren, W.; Tu, L.; Yong, K.-T.; Song, P. Role of Microfluidics in Accelerating New Space Missions. Biomicrofluidics 2022, 16, 021503. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Speretta, S.; Gill, E. Autonomous Navigation for Deep Space Small Satellites: Scientific and Technological Advances. Acta Astronaut. 2022, 193, 56–74. [Google Scholar] [CrossRef]
- Space Generation Advisory Council. Space Resource Regulation: From National Approaches to the Need for a General Framework. Available online: https://spacegeneration.org/space-resource-regulation-from-national-approaches-to-the-need-for-a-general-framework (accessed on 8 July 2025).
Design Drivers | Category | Sources |
---|---|---|
Cost reduction | A | [1,4,5,6,16,19,20,21,22,23,24,25] |
Short time-to-market | A | [4,5,6,16,20,23] |
Function-specific performance | A | [1,4,6,16,23,25] |
Reliability | A | [6,19,22,23,25,26] |
Resilience | A | [21,22,26] |
Maintainability | A | [22,27] |
Interoperability | A | [22,28] |
Adaptability | A | [19,22,27] |
Autonomy | A | [4,16,20,22] |
Durability | A | [22,27] |
System scalability | A | [1,6,16,19,21,28] |
Production scalability | B | [1,6,16,19,21,28] |
Low environmental impact | C | [6,16,22,29] |
Reusability | C | [6,23] |
Debris mitigation | C | [4,5,6,16,19,20,22,23] |
Safety | C | [3,5,6] |
Technological independence | C | [30] |
Design Enablers | Category | Sources |
---|---|---|
Innovative materials and technologies | A | [20,22,25] |
Artificial intelligence | A | [20,22] |
Robotics | A | [22,28] |
Graceful degradation | A | [22,26] |
Use of commercial off-the-shelf (COTS) components | B | [4,5,16,19,20,21,23] |
Miniaturization | B | [1,4,5,6,16,19,20,21,23] |
Microfabrication | B | [16,20,23,25,28] |
Modularity | B | [6,20,28] |
Standardization | B | [1,6,16,20,23,28] |
Space standard-driven design | B | [23,29,31] |
Rapid prototyping | B | [20] |
Additive manufacturing | B | [5,16,21,27,28] |
Smart manufacturing | B | [28] |
Mass production | B | [1,19,21,28] |
Life cycle assessments | C | [29] |
Design for demise and end-of-life (EOL) strategies | C | [4,5,6,21,26] |
Use of safe materials | C | [6,23,29] |
Use of in situ resources | C | [1,5,16,24,27] |
Regulatory-aware design and local supply integration | C | [6,16,21,29,30,31] |
Application Domains |
---|
LEO constellations of small satellites |
Operations and servicing in space |
Space exploration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, D.; Cicconi, P.; Minotti, A.; Trovato, M.; Caputo, A.C. New Space Engineering Design: Characterization of Key Drivers. Appl. Sci. 2025, 15, 8138. https://doi.org/10.3390/app15158138
Ferrara D, Cicconi P, Minotti A, Trovato M, Caputo AC. New Space Engineering Design: Characterization of Key Drivers. Applied Sciences. 2025; 15(15):8138. https://doi.org/10.3390/app15158138
Chicago/Turabian StyleFerrara, Daniele, Paolo Cicconi, Angelo Minotti, Michele Trovato, and Antonio Casimiro Caputo. 2025. "New Space Engineering Design: Characterization of Key Drivers" Applied Sciences 15, no. 15: 8138. https://doi.org/10.3390/app15158138
APA StyleFerrara, D., Cicconi, P., Minotti, A., Trovato, M., & Caputo, A. C. (2025). New Space Engineering Design: Characterization of Key Drivers. Applied Sciences, 15(15), 8138. https://doi.org/10.3390/app15158138