Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = target-induced strand displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6714 KiB  
Article
Construction of Graphene Oxide Probes Loaded with Antisense Peptide Nucleic Acid and Doxorubicin for Regulating Telomerase Activity and Inducing Apoptosis of Cancer Cells
by Yanyan Zhu, Qinghong Ji and Min Hong
Biosensors 2025, 15(6), 337; https://doi.org/10.3390/bios15060337 - 26 May 2025
Viewed by 539
Abstract
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the [...] Read more.
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the antisense PNA component selectively hybridized with human telomerase reverse transcriptase (hTERT) mRNA through sequence-specific recognition, inducing structural detachment from the GO surface. This displacement restored the fluorescence signal of previously quenched fluorophores conjugated to the PNA strand, thereby enabling the real-time in situ detection and quantitative fluorescence imaging of intracellular hTERT mRNA dynamics. The antisense PNA component effectively reduced the hTERT mRNA level and downregulated telomerase activity via an antisense gene regulation pathway, while the pH-responsive release of DOX induced potent cancer cell apoptosis through chemotherapeutic action. This combinatorial therapeutic strategy demonstrated enhanced anticancer efficacy compared to single-modality treatments, achieving a 60% apoptosis induction in HeLa cells through coordinated gene silencing and chemotherapy. This study establishes GO as a promising dual-drug nanocarrier platform for developing next-generation theranostic systems that integrate molecular diagnostics with multimodal cancer therapy. Full article
(This article belongs to the Special Issue Fluorescent Probes for Bioimaging and Biosensors)
Show Figures

Figure 1

18 pages, 2266 KiB  
Article
Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1
by Alexey V. Samokhvalov, Oksana G. Maksimenko, Sergei A. Eremin, Anatoly V. Zherdev and Boris B. Dzantiev
Molecules 2025, 30(10), 2125; https://doi.org/10.3390/molecules30102125 - 11 May 2025
Viewed by 485
Abstract
The effects of magnesium and sodium on the interactions between aptamer, its specific ligand, and short complementary oligonucleotides (cDNAs) differing in affinity of their binding with the aptamer were studied. Aflatoxin B1 (AFB1) and AFB1-binding aptamer were used in the study. Dependencies for [...] Read more.
The effects of magnesium and sodium on the interactions between aptamer, its specific ligand, and short complementary oligonucleotides (cDNAs) differing in affinity of their binding with the aptamer were studied. Aflatoxin B1 (AFB1) and AFB1-binding aptamer were used in the study. Dependencies for the aptamer binding with the fluorophore-labeled AFB1 under varied concentrations of the cations were obtained using fluorescence anisotropy measurements. The increase of the aptamer affinity to AFB1 in the presence of cations was demonstrated using fluorescence anisotropy and isothermal calorimetry. The collected data indicate that 300 mM Mg2+ (significantly more than the range commonly used in aptamer sensors) provides the best affinity (16.5 ± 2.2 nM) of the aptamer–AFB1 complexation. Sodium decreases the Mg2+-modulated affinity at some Na+/Mg2+ ratios. The aptamer affinity with cDNAs increases with concentration of cations, but not in the same way as for AFB1. Based on the characterized conditions for bimolecular interactions, the ligand-induced displacement of cDNAs was studied with the registration of the Forster fluorescence energy transfer (FRET). The most sensitive revealing of AFB1 (IC10% 3.2 ± 0.3 nM) in this three-compound FRET system was demonstrated for cDNA having an equilibrium constant of the aptamer binding close to the constant of the aptamer–AFB1 reaction. Full article
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay
by Sireethorn Tungsirisurp and Nunzianda Frascione
Biosensors 2024, 14(10), 509; https://doi.org/10.3390/bios14100509 - 17 Oct 2024
Cited by 2 | Viewed by 1905
Abstract
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA [...] Read more.
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements. Here, the use of complementary ‘antisense’ strands is proposed to enable fluorescence measurement through strand displacement upon target binding. Using a published target-specific DNA aptamer against the receptor binding domain of SARS-CoV-2, we designed a streptavidin-aptamer bead complex as a fluorescence displacement assay for target detection. The developed assay demonstrates a linear range from 50 to 800 nanomolar (nM) with a limit of detection calculated at 67.5 nM and a limit of quantification calculated at 204.5 nM. This provides a ‘fit-for-purpose’ model assay for the detection and quantification of any target of interest by adapting and functionalising a suitable target-specific DNA aptamer and its complementary antisense strand. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Graphical abstract

21 pages, 5611 KiB  
Article
Molecular Basis of XRN2-Deficient Cancer Cell Sensitivity to Poly(ADP-ribose) Polymerase Inhibition
by Talysa Viera, Quinn Abfalterer, Alyssa Neal, Richard Trujillo and Praveen L. Patidar
Cancers 2024, 16(3), 595; https://doi.org/10.3390/cancers16030595 - 30 Jan 2024
Cited by 2 | Viewed by 2167
Abstract
R-loops (RNA–DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5′-3′-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII [...] Read more.
R-loops (RNA–DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5′-3′-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII termination, and XRN2-deficient cells exhibit increased DNA damage emanating from elevated R-loops. Recently, we showed that DNA damage instigated by XRN2 depletion in human fibroblast cells resulted in enhanced poly(ADP-ribose) polymerase 1 (PARP1) activity. Additionally, we established a synthetic lethal relationship between XRN2 and PARP1. However, the underlying cellular stress response promoting this synthetic lethality remains elusive. Here, we delineate the molecular consequences leading to the synthetic lethality of XRN2-deficient cancer cells induced by PARP inhibition. We found that XRN2-deficient lung and breast cancer cells display sensitivity to two clinically relevant PARP inhibitors, Rucaparib and Olaparib. At a mechanistic level, PARP inhibition combined with XRN2 deficiency exacerbates R-loop and DNA double-strand break formation in cancer cells. Consistent with our previous findings using several different siRNAs, we also show that XRN2 deficiency in cancer cells hyperactivates PARP1. Furthermore, we observed enhanced replication stress in XRN2-deficient cancer cells treated with PARP inhibitors. Finally, the enhanced stress response instigated by compromised PARP1 catalytic function in XRN2-deficient cells activates caspase-3 to initiate cell death. Collectively, these findings provide mechanistic insights into the sensitivity of XRN2-deficient cancer cells to PARP inhibition and strengthen the underlying translational implications for targeted therapy. Full article
(This article belongs to the Collection Genome Maintenance in Cancer Biology and Therapy)
Show Figures

Figure 1

12 pages, 1448 KiB  
Article
Nonenzymatic DNA-Based Fluorescence Biosensor Combining Carbon Dots and Graphene Oxide with Target-Induced DNA Strand Displacement for microRNA Detection
by Yuanyuan Gao, Hong Yu, Jingjing Tian and Botao Xiao
Nanomaterials 2021, 11(10), 2608; https://doi.org/10.3390/nano11102608 - 3 Oct 2021
Cited by 15 | Viewed by 3331
Abstract
Based on a fluorescence “on-off-on” strategy, we fabricated a simple and highly sensitive DNA-based fluorescence biosensor for the detection of micro (mi)RNA from carbon dots (CDs) and graphene oxide (GO) without complicated and time-consuming operations. CDs were successfully synthesized and conjugated to the [...] Read more.
Based on a fluorescence “on-off-on” strategy, we fabricated a simple and highly sensitive DNA-based fluorescence biosensor for the detection of micro (mi)RNA from carbon dots (CDs) and graphene oxide (GO) without complicated and time-consuming operations. CDs were successfully synthesized and conjugated to the end of a single-stranded fuel DNA that was adsorbed onto the surface of GO through π-π stacking, resulting in fluorescence quenching. In the presence of the target miRNA let-7a, the fuel DNA was desorbed from the GO surface, and fluorescence was restored through two successive toehold-mediated strand displacement reactions on double-stranded DNA-modified gold nanoparticles. The target miRNA let-7a was recycled, leading to signal amplification. The concentration of let-7a was proportional to the degree of fluorescence recovery. Under optimal conditions, there was a good linear relationship between the relative fluorescence intensity and let-7a concentration in the range of 0.01–1 nM, with a detection limit of 7.8 pM. With its advantages of signal amplification and high biocompatibility, this fluorescence sensing strategy can be applied to the detection of a variety of target miRNAs and can guide the design of novel biosensors with improved properties. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

20 pages, 2556 KiB  
Article
Targeting of Telomeric Repeat-Containing RNA G-Quadruplexes: From Screening to Biophysical and Biological Characterization of a New Hit Compound
by Simona Marzano, Bruno Pagano, Nunzia Iaccarino, Anna Di Porzio, Stefano De Tito, Eleonora Vertecchi, Erica Salvati, Antonio Randazzo and Jussara Amato
Int. J. Mol. Sci. 2021, 22(19), 10315; https://doi.org/10.3390/ijms221910315 - 24 Sep 2021
Cited by 14 | Viewed by 3678
Abstract
DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing [...] Read more.
DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures. Full article
Show Figures

Figure 1

11 pages, 7849 KiB  
Article
Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria
by Jung Ho Kim, Seokjoon Kim, Sung Hyun Hwang, Tae Hwi Yoon, Jung Soo Park, Eun Sung Lee, Jisu Woo and Ki Soo Park
Sensors 2021, 21(12), 4132; https://doi.org/10.3390/s21124132 - 16 Jun 2021
Cited by 7 | Viewed by 3537
Abstract
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed [...] Read more.
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum. Full article
(This article belongs to the Special Issue Biomolecular Engineering for Diagnostic Applications II)
Show Figures

Figure 1

20 pages, 1414 KiB  
Review
DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?
by Elzbieta Pawłowska, Joanna Szczepanska and Janusz Blasiak
Int. J. Mol. Sci. 2017, 18(7), 1562; https://doi.org/10.3390/ijms18071562 - 18 Jul 2017
Cited by 29 | Viewed by 10605
Abstract
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair [...] Read more.
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER), interacting with the replication protein A (RPA) and the flap endonuclease 1 (FEN1). DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN) and Bloom syndrome protein (BLM). In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB) repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes. Full article
(This article belongs to the Special Issue DNA Injury and Repair Systems)
Show Figures

Graphical abstract

Back to TopTop