Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Sample Preparation
2.2. The Study of Aptamer–AFB1 Complexation by Fluorescence Anisotropy Measurements Using Fluorescein-Labeled AFB1 Derivative
2.2.1. The Measurements of FA Dependencies of AFB1-EDF on Sodium and Magnesium Concentrations
2.2.2. The Measurements of Dissociation Constant of Aptamer Interactions with Labeled and Native AFB1 Under Different Conditions Using FA
2.3. The Measurements of Dissociation Constant of Aptamer–AFB1 Interactions Under Different Salt Conditions Using Isothermal Titration Calorimetry
2.4. The Measurements of Fluorescence Resonance Energy Transfer Between Fluorophore-Labeled Aptamer and Quencher-Labeled cDNA
2.4.1. The Study of Duplex Formation of Aptamer with cDNA Under Different Salt Conditions Using FRET Registration
2.4.2. The Study of Competition Between AFB1 and Complementary Strand for Complexation with Aptamer
3. Results and Discussion
3.1. The Characteristics of Anti-AFB1 Aptamer
3.2. The Study of Aptamer-Labeled AFB1 Binding on the Concentration of Mg2+, Na+, and Their Mixtures Using Fluorescence Anisotropy
3.3. The Measurements of Equilibrium Dissociation Constant Between Aptamer and AFB1-EDF in Reaction Medium with Different Content of Cations Using FA Measurements
- (A)
- Mg2+ in concentration corresponding to the IC95% in Figure 3 (rounded to 300 mM);
- (B)
- Mg2+ in concentration within the generally accepted range (20 mM);
- (C)
- Mg2+ and Na+ concentrations for the most pronounced effects (250 mM Na+ and 20 mM Mg2+–ratio 12.5); and
- (D)
- Na+ in concentration around the saturation point (1 M).
- -
- The interference of the aptamer–ligand binding by Na+ occurred at certain Na+/Mg2+ ratios.
- -
- The AFB1-EDF–aptamer binding does require cations and they could be either mono- or divalent.
- -
- The increase of Mg2+ up to 300 mM is accompanied with the increase of the KDAFB1-EDF.
3.4. The Measurements of KD for Aptamer–AFB1 Complexes Under Different Concentrations of Magnesium Using FA and ITC
3.5. The Study of Aptamer–cDNA Binding on Concentration of Mg2+ and Na+ Using FRET
3.6. The Measurements of the Aptamer 26 Nt Interaction with Different cDNAs Using FRET
3.7. The Study of Combined Interaction of AFB1 and cDNAs with Different Affinities with the Aptamer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.F.; Ling, M.; Kacherovsky, N.; Pun, S.H. Aptamers 101: Aptamer discovery and in vitro applications in biosensors and separations. Chem. Sci. 2023, 14, 4961–4978. [Google Scholar] [CrossRef] [PubMed]
- Domsicova, M.; Korcekova, J.; Poturnayova, A.; Breier, A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int. J. Mol. Sci. 2024, 25, 6833. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Strom, M.; Hammond, D.S.; Shigdar, S. Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications? Molecules 2019, 24, 4377. [Google Scholar] [CrossRef] [PubMed]
- Munzar, J.D.; Ng, A.; Juncker, D. Duplexed aptamers: History, design, theory, and application to biosensing. Chem. Soc. Rev. 2019, 48, 1390–1419. [Google Scholar] [CrossRef]
- Moutsiopoulou, A.; Broyles, D.; Dikici, E.; Daunert, S.; Deo, S.K. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. Small 2019, 15, e1902248. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 445–447. [Google Scholar]
- Stoltenburg, R.; Nikolaus, N.; Strehlitz, B. Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics. J. Anal. Methods Chem. 2012, 2012, 415697. [Google Scholar] [CrossRef]
- Munzar, J.D.; Ng, A.; Corrado, M.; Juncker, D. Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chem. Sci. 2017, 8, 2251–2256. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.-Y.; et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264. [Google Scholar] [CrossRef]
- Qi, S.; Dong, X.; Hamed, E.M.; Jiang, H.; Cao, W.; Yau Li, S.F.; Wang, Z. Ratiometric Fluorescence Aptasensor of Allergen Protein Based on Multivalent Aptamer-Encoded DNA Flowers as Fluorescence Resonance Energy Transfer Platform. Anal. Chem. 2024, 96, 6947–6957. [Google Scholar] [CrossRef]
- Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. 2021, 60, 16800–16823. [Google Scholar] [CrossRef]
- Dillen, A.; Vandezande, W.; Daems, D.; Lammertyn, J. Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: A thermodynamic study. Anal. Bioanal. Chem. 2021, 413, 4739–4750. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Easley, C.J. A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis. Analyst 2011, 136, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tian, F.-J.; Zuo, H.-W.; Qiu, Q.-Y.; Zhang, J.-H.; Wei, W.; Tan, Z.-J.; Zhang, Y.; Wu, W.-Q.; Dai, L.; et al. Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging. Nat. Commun. 2025, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Cardin, C.J. Interactions Between Metal Ions and DNA. In The Periodic Table II; Mingos, D.M.P., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 203–237. [Google Scholar]
- Liu, X.; Hou, Y.; Chen, S.; Liu, J. Controlling dopamine binding by the new aptamer for a FRET-based biosensor. Biosens. Bioelectron. 2021, 173, 112798. [Google Scholar] [CrossRef]
- da Silva, J.V.; de Oliveira, C.A.; Ramalho, L.N. Effects of Prenatal Exposure to Aflatoxin B1: A Review. Molecules 2021, 26, 7312. [Google Scholar] [CrossRef]
- Le, L.C.; Cruz-Aguado, J.A.; Penner, G.A. DNA Ligands for Aflatoxin and Zearalenone. WO2011020198A1, 24 February 2011. [Google Scholar]
- Sheng, Y.J.; Eremin, S.; Mi, T.J.; Zhang, S.X.; Shen, J.Z.; Wang, Z.H. The development of a fluorescence polarization immunoassay for aflatoxin detection. Biomed. Environ. Sci. 2014, 27, 126–129. [Google Scholar]
- Samokhvalov, A.V.; Mironova, A.A.; Eremin, S.A.; Zherdev, A.V.; Dzantiev, B.B. Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1. Sensors 2024, 24, 3230. [Google Scholar] [CrossRef]
- Roehrl, M.H.; Wang, J.Y.; Wagner, G. A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 2004, 43, 16056–16066. [Google Scholar] [CrossRef]
- Samokhvalov, A.V.; Safenkova, I.V.; Eremin, S.A.; Zherdev, A.V.; Dzantiev, B.B. Measurement of (Aptamer-Small Target) KD Using the Competition between Fluorescently Labeled and Unlabeled Targets and the Detection of Fluorescence Anisotropy. Anal. Chem. 2018, 90, 9189–9198. [Google Scholar] [CrossRef]
- Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P.P.; Krajewski, K.; Saito, N.G.; Stuckey, J.A.; et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004, 332, 261–273. [Google Scholar] [CrossRef]
- Xu, G.; Wang, C.; Yu, H.; Li, Y.; Zhao, Q.; Zhou, X.; Li, C.; Liu, M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer. Nucleic Acids Res. 2023, 51, 7666–7674. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhao, Q. Direct fluorescence anisotropy approach for aflatoxin B1 detection and affinity binding study by using single tetramethylrhodamine labeled aptamer. Talanta 2018, 189, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, L.; Zhao, Q. Aptamer based surface plasmon resonance sensor for aflatoxin B1. Microchim. Acta 2017, 184, 2605–2610. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Zhao, Q. Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher 1-labeled complementary DNA. Anal. Bioanal. Chem. 2018, 410, 6269–6277. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Zhao, Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens. Bioelectron. 2019, 144, 111641. [Google Scholar] [CrossRef]
- Kuo, T.C.; Lee, P.C.; Tsai, C.W.; Chen, W.Y. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer—Thermodynamics and spectroscopic evidences. J. Mol. Recognit. 2013, 26, 149–159. [Google Scholar] [CrossRef]
- Wang, X.; Hao, Z.; Olsen, T.R.; Zhang, W.; Lin, Q. Measurements of aptamer–protein binding kinetics using graphene field-effect transistors. Nanoscale 2019, 11, 12573–12581. [Google Scholar] [CrossRef]
- Sengupta, A.; Gavvala, K.; Koninti, R.K.; Hazra, P. Role of Mg2+ ions in flavin recognition by RNA aptamer. J. Photochem. Photobiol. B Biol. 2014, 140, 240–248. [Google Scholar] [CrossRef]
- Kaiyum, Y.A.; Hoi Pui Chao, E.; Dhar, L.; Shoara, A.A.; Nguyen, M.-D.; Mackereth, C.D.; Dauphin-Ducharme, P.; Johnson, P.E. Ligand-Induced Folding in a Dopamine-Binding DNA Aptamer. ChemBioChem 2024, 25, e202400493. [Google Scholar] [CrossRef]
- Niu, C.; Ding, Y.; Zhang, C.; Liu, J. Comparing two cortisol aptamers for label-free fluorescent and colorimetric biosensors. Sens. Diagn. 2022, 1, 541–549. [Google Scholar] [CrossRef]
- Neves, M.A.D.; Slavkovic, S.; Churcher, Z.R.; Johnson, P.E. Salt-mediated two-site ligand binding by the cocaine-binding aptamer. Nucleic Acids Res. 2016, 45, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Amano, R.; Takada, K.; Tanaka, Y.; Nakamura, Y.; Kawai, G.; Kozu, T.; Sakamoto, T. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein. Biochemistry 2016, 55, 6221–6229. [Google Scholar] [CrossRef] [PubMed]
- Xi, K.; Wang, F.H.; Xiong, G.; Zhang, Z.L.; Tan, Z.J. Competitive Binding of Mg2+ and Na+ Ions to Nucleic Acids: From Helices to Tertiary Structures. Biophys. J. 2018, 114, 1776–1790. [Google Scholar] [CrossRef] [PubMed]
- Cruz-León, S.; Schwierz, N. Hofmeister Series for Metal-Cation–RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics. Langmuir 2020, 36, 5979–5989. [Google Scholar] [CrossRef]
- Bai, Y.; Greenfeld, M.; Travers, K.J.; Chu, V.B.; Lipfert, J.; Doniach, S.; Herschlag, D. Quantitative and Comprehensive Decomposition of the Ion Atmosphere around Nucleic Acids. J. Am. Chem. Soc. 2007, 129, 14981–14988. [Google Scholar] [CrossRef]
- Bleam, M.L.; Anderson, C.F.; Record, M.T. Relative binding affinities of monovalent cations for double-stranded DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 3085–3089. [Google Scholar] [CrossRef]
- Nardo, L.; Bondani, M.; Andreoni, A. DNA-ligand binding mode discrimination by characterizing fluorescence resonance energy transfer through lifetime measurements with picosecond resolution. Photochem. Photobiol. 2008, 84, 101–110. [Google Scholar] [CrossRef]
- Crisalli, P.; Kool, E.T. Multi-path quenchers: Efficient quenching of common fluorophores. Bioconjug. Chem. 2011, 22, 2345–2354. [Google Scholar] [CrossRef]
- Torimura, M.; Kurata, S.; Yamada, K.; Yokomaku, T.; Kamagata, Y.; Kanagawa, T.; Kurane, R. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal. Sci. 2001, 17, 155–160. [Google Scholar] [CrossRef]
- Heinlein, T.; Knemeyer, J.-P.; Piestert, O.; Sauer, M. Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. J. Phys. Chem. B 2003, 107, 7957–7964. [Google Scholar] [CrossRef]
- Hulme, E.C.; Trevethick, M.A. Ligand binding assays at equilibrium: Validation and interpretation. Br. J. Pharmacol. 2010, 161, 1219–1237. [Google Scholar] [CrossRef]
Indications | Aptamers (5′-3′) | Stem Length | Hydrogen Bonds | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Loop | Stem | ||||||||||||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | |||
38 nt | G | T | T | G | G | G | C | A | C | G | T | G | T | T | G | T | C | T | C | T | C | T | G | T | G | T | C | T | C | G | T | G | C | C | C | T | T | C | 10 | 27 |
26 nt | A | T | C | A | C | G | T | G | T | T | G | T | C | T | C | T | C | T | G | T | G | T | C | T | C | G | T | G | 4 | 11 | ||||||||||
Indications | cDNAs (3′-5′) | Length | Hydrogen Bonds | |||||||||||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | |||
|7–19| | G | T | G | C | A | C | A | A | C | A | G | A | G | 13 | 33 | |||||||||||||||||||||||||
|15–26| | C | A | G | A | G | A | G | A | C | 9 | 24 | |||||||||||||||||||||||||||||
|18–25| | A | G | A | G | A | C | A | C | 8 | 20 |
Reaction media | Mg(CH3COO)2 (mM) | NaCl (M) | KDAFB1-EDF (nM) |
---|---|---|---|
A | 300 | 0 | 44.9 ± 3.8 |
B | 20 | 0 | 106.8 ± 0.8 |
C | 20 | 0.25 | 168.8 ± 5.9 |
D | 0 | 1 | 122.4 ± 5.1 |
Fluorescence Anisotropy | ||||||
---|---|---|---|---|---|---|
Mg(CH3COO)2 (mM) | NaCl (M) | L50 (nM) | KD (nM) | |||
20 | 0 | 126.3 ± 5.8 | 36.8 ± 2.2 | |||
300 | 0 | 117.7 ± 6.3 | 16.5 ± 2.2 | |||
Isothermal Calorimetry | ||||||
Mg(CH3COO)2 (mM) | NaCl (M) | Stoichiometry | ∆H (kcal/mol) | ∆S ×T (kcal/mol)×K | ∆G (kcal/mol) | KD (nM) |
20 | 0 | 1.00 | −29.9 ± 0.4 | −19.9 | −9.9 | 42.1 ± 6.2 |
300 | 0 | 0.96 | −29.6 ± 0.3 | −18.8 | −10.4 | 25.3 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samokhvalov, A.V.; Maksimenko, O.G.; Eremin, S.A.; Zherdev, A.V.; Dzantiev, B.B. Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1. Molecules 2025, 30, 2125. https://doi.org/10.3390/molecules30102125
Samokhvalov AV, Maksimenko OG, Eremin SA, Zherdev AV, Dzantiev BB. Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1. Molecules. 2025; 30(10):2125. https://doi.org/10.3390/molecules30102125
Chicago/Turabian StyleSamokhvalov, Alexey V., Oksana G. Maksimenko, Sergei A. Eremin, Anatoly V. Zherdev, and Boris B. Dzantiev. 2025. "Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1" Molecules 30, no. 10: 2125. https://doi.org/10.3390/molecules30102125
APA StyleSamokhvalov, A. V., Maksimenko, O. G., Eremin, S. A., Zherdev, A. V., & Dzantiev, B. B. (2025). Interactions of Ligand, Aptamer, and Complementary Oligonucleotide: Studying Impacts of Na+ and Mg2+ Cations on Sensitive FRET-Based Detection of Aflatoxin B1. Molecules, 30(10), 2125. https://doi.org/10.3390/molecules30102125