Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = tanning wastewater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3218 KiB  
Article
Multi-Omics Integration Reveals the Impact of Gastrointestinal Microbiota on Feed Efficiency in Tan Sheep
by Guohan Sun, Xiaohong Han, Tonggao Liu, Xinrui Zhang, An Shi, Chong Yang and Jinzhong Tao
Microorganisms 2025, 13(7), 1608; https://doi.org/10.3390/microorganisms13071608 - 8 Jul 2025
Viewed by 340
Abstract
The rumen and intestinal microbiota play a pivotal role in the digestion and absorption processes of ruminants. Elucidating the mechanisms by which gastrointestinal microbiota influence the feed conversion ratio (FCR) in ruminants is significantly important for enhancing feed utilization efficiency in these animals. [...] Read more.
The rumen and intestinal microbiota play a pivotal role in the digestion and absorption processes of ruminants. Elucidating the mechanisms by which gastrointestinal microbiota influence the feed conversion ratio (FCR) in ruminants is significantly important for enhancing feed utilization efficiency in these animals. In this study, RT-qPCR, 16S rRNA sequencing, and metabolomic techniques were systematically employed to compare the microbial community structures in the rumen, cecum, and rectum, as well as the differences in rumen metabolites between high- and low-FCR Tan sheep. The results showed that, compared to the HFCR group of Tan sheep, the LFCR group exhibited a significant reduction in unclassified_f__Selenomonadaceae, Blvii28_wastewater-sludge_group, and Papillibacter in the rumen; a significant increase in Lachnospiraceae_AC2044_group and Sanguibacteroides; a significant reduction in unclassified_f__Peptostreptococcaceae, Clostridium_sensu_stricto_1, and Parasutterella in the cecum; a significant increase in norank_f__Bacteroidales_UCG-001; and a significant reduction in norank_f__Muribaculaceae, Blautia, and Turicibacter in the rectum. There is a significant positive correlation between Parasutterella in the cecum and three microorganisms, including unclassified_f__Selenomonadaceae, in the rumen. Additionally, Blvii28_wastewater-sludge_group was positively correlated with Lactobacillus. Furthermore, unclassified_f__Selenomonadaceae in the rumen was positively correlated with Turicibacter, unclassified_f__Peptostreptococcaceae, and Breznakia in the rectum. Blvii28_wastewater-sludge_group also showed positive correlations with Blautia, norank_f__Muribaculaceae, and Clostridium_sensu_stricto_1, while Papillibacter was positively correlated with Faecalitalea. The metabolomic results indicated that, compared to the HFCR group, 261 differential metabolites, including Phenylacetylglutamine and Populin, in the rumen of Tan sheep in the LFCR group were significantly downregulated, whereas 36 differential metabolites, including Glycyl-L-tyrosine, were significantly upregulated. Furthermore, the rumen microbe unclassified_f__Selenomonadaceae exhibited positive correlations with significantly differential metabolites such as L-tryptophan, Etiocholanolone glucuronide, N-acetyl-O-demethylpuromycin, and 6-deoxyerythronolide B. Blvii28_wastewater-sludge_group and Papillibacter also exhibited positive correlations with Icilin. High and low FCRs in the rumen of Tan sheep were investigated, especially in relation to unclassified_f__Selenomonadaceae, Blvii28_wastewater-sludge_group, and Papillibacter. Correlations can be seen with microorganisms such as Parasutatella and Lactobacillus in the cecum; Turicibacter, norank_f__Bacteroideales_UCG-001, and Blautia in the rectum; and metabolites such as L-tryptophan, Etiocholanolone glucuronide, and N-acetyl-O-demethylpuromycin. This reveals the role of microorganisms in the digestion and absorption of Tan sheep feed, thus providing a preliminary basis for further research on the microbial regulation of ruminant animal feed utilization and a theoretical basis for improving Tan sheep feed utilization efficiency. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

20 pages, 2096 KiB  
Article
Study of Total Ammoniacal Nitrogen Recovery Using Polymeric Thin-Film Composite Membranes for Continuous Operation of a Hybrid Membrane System
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2025, 17(12), 1696; https://doi.org/10.3390/polym17121696 - 18 Jun 2025
Viewed by 324
Abstract
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for [...] Read more.
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for reuse. The results showed that TAN rejection was significantly influenced by membrane type, feed pH, and the ammonium salt used. This study represents the first attempt to simulate real manure wastewater conditions typically found in pig manure. TAN rejection for (NH4)2SO4 and NH4HCO3 reached up to 95% at pH values below 7, with the SW30 membrane showing the highest performance (99.5%), attributed to effective size exclusion and electrostatic repulsion of SO42− and HCO3 ions. In contrast, lower rejection was observed for NH4Cl, particularly with the MPF-34 membrane, due to its higher molecular weight cut-off (MWCO), which diminishes both exclusion mechanisms. TAN rejection decreased markedly with increasing pH across the BW30, NF90, and MPF-34 membranes as the proportion of uncharged NH3 increased. The lowest rejection rates (<15%) were recorded at pH 11.5 for both NF membranes. These results reveal a notable shift in separation behavior, where NH3 permeation under alkaline conditions becomes dominant over the commonly reported NH4+ retention at low pH. This novel insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. TAN recovery was evaluated using a hybrid membrane system, where NF membranes operated at high pH promoted NH3 permeation, and the SW30 membrane at pH 6.5 enabled TAN rejection as (NH4)2SO4. This hybrid system insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. Based on NH3 permeation and membrane characteristics, the NF90 membrane was operated at pH 9.5, achieving a TAN recovery of 48.3%, with a TAN concentration of 11.7 g/L, corresponding to 0.9% nitrogen. In contrast, the MPF-34 membrane was operated at pH 11.5. The NF90–SW30 system also achieved a TAN recovery of 48.3%, yielding 11.7 g/L of TAN with a nitrogen content of 1.22%. These nitrogen concentrations indicate that both retentate streams are suitable for use as liquid fertilizers in the form of (NH4)2SO4. A preliminary economic assessment estimated the chemical consumption cost at 0.586 EUR/kg and 0.729 EUR/kg of (NH4)2SO4 produced for the NF90–SW30 and MPF-34–SW30 systems, respectively. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

20 pages, 2815 KiB  
Review
The Potential of Biogenic Materials as Sustainable and Environmentally Benign Alternatives to Conventional Adsorbents for Dyes Removal: A Review
by Sonia Mihai, Andreea Bondarev and Mihaela Necula
Processes 2025, 13(2), 589; https://doi.org/10.3390/pr13020589 - 19 Feb 2025
Cited by 1 | Viewed by 1080
Abstract
The dyeing industry plays a substantial role in environmental pollution, primarily through the release of wastewater that contains a variety of chemicals into aquatic ecosystems. Synthetic dyes play a crucial role in numerous sectors, including textiles, tanning, food production and pharmaceuticals. However, the [...] Read more.
The dyeing industry plays a substantial role in environmental pollution, primarily through the release of wastewater that contains a variety of chemicals into aquatic ecosystems. Synthetic dyes play a crucial role in numerous sectors, including textiles, tanning, food production and pharmaceuticals. However, the effluents generated by industries that utilize these dyes are regarded as detrimental to both the environment and human health. Additionally, wastewater may include a range of chemical additives utilized during the dyeing process, including fixing agents, surfactants and pH adjusters. Various techniques for dye remediation have been extensively studied. Nevertheless, effective and economically viable methods for dye removal have yet to be fully developed. This paper emphasizes and provides an overview of the recent literature concerning the application of the most commonly accessible biogenic materials in the context of dye removal by the adsorption process. Various biogenic adsorbents sourced from plants, algae, microorganisms and biopolymers contain bioactive compounds that interact with the functional groups of dyes, leading to their attachment to the sorbent. By mechanical, thermal and chemical modifications of these materials, their adsorption capabilities could be increased. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Figure 1

16 pages, 3151 KiB  
Article
Influence of Anthropogenic and Climatic Factors on the Dynamics of Nitrogen and Phosphorus in an Urbanized River Basin
by Qinghuan Zhang, Fuzhen Liu, Fenfang Tan and Abdul Qadeer
Water 2024, 16(24), 3635; https://doi.org/10.3390/w16243635 - 17 Dec 2024
Viewed by 926
Abstract
The management of and reduction in ammonia nitrogen (NH3-N) and total phosphorus (TP) in the water environment are crucial for protecting water quality amid rapid urbanization and population growth in highly industrialized regions. Specifically, in the Xiangjiang River Basin, the development [...] Read more.
The management of and reduction in ammonia nitrogen (NH3-N) and total phosphorus (TP) in the water environment are crucial for protecting water quality amid rapid urbanization and population growth in highly industrialized regions. Specifically, in the Xiangjiang River Basin, the development of the Chang–Zhu–Tan urban agglomeration resulted in the deterioration of river water quality in the past, where ammonia nitrogen (NH3-N) and total phosphorus (TP) were the dominant pollutants. This study aims to assess the influence of anthropogenic and climatic factors on the dynamics of nitrogen and phosphorus in an urbanized river basin in the middle Xiangjiang River Basin, China, from 2016 to 2020. This study examines NH3-N and TP trends and their influencing factors across six tributaries, as well as how their concentrations have changed in response to urbanization and wastewater treatment management. The results reveal that average NH3-N and TP concentrations decreased from 2016 to 2020 in the urbanized river system. NH3-N and TP concentrations exhibited positive correlations with the proportion of cropland and negative correlations with population number, percentages of urban lands, and forests. In contrast, the influence of precipitation and streamflow on NH3-N and TP concentrations was relatively weak. Consequently, agricultural activity was the primary contributing factor to NH3-N and TP concentrations. Our study also suggests that the government’s newly implemented water protection regulations can effectively control pollutant levels in urbanized river basins. Full article
(This article belongs to the Special Issue Contaminants in the Water Environment)
Show Figures

Figure 1

13 pages, 2123 KiB  
Article
Effects of Sesuvium portulacastrum Floating Treatment Wetlands on Nitrogen Removal and Carbon Sequestration in Aquaculture Water
by Shenghua Zheng, Man Wu, Liyang Zhan, Yongqing Lin, Miaofeng Yang, Huidong Zheng, Fang Yang, Donglian Luo and Xin Wang
Water 2024, 16(23), 3472; https://doi.org/10.3390/w16233472 - 2 Dec 2024
Viewed by 1046
Abstract
Sesuvium portulacastrum floating treatment wetlands (FTWs) are effective at removing nitrogen and phosphorus, adsorbing heavy metals, and removing organic pollutants from aquaculture wastewater, and thus improve fish farming productivity. In this study, an S. portulacastrum FTW was used in a simulated grouper aquaculture [...] Read more.
Sesuvium portulacastrum floating treatment wetlands (FTWs) are effective at removing nitrogen and phosphorus, adsorbing heavy metals, and removing organic pollutants from aquaculture wastewater, and thus improve fish farming productivity. In this study, an S. portulacastrum FTW was used in a simulated grouper aquaculture experiment for 40 days. The FTW removed 1~3 mg/L of dissolved inorganic nitrogen (DIN) throughout the experimental period as well as the following toxic nitrogen species: 88% NO2-N in the middle stage and 90% TAN (total ammonia nitrogen) in the middle stage. The health of the groupers was promoted and the weight of each grouper was 8% higher than those in the control group in the end. Compared with that of the control group, the carbon sequestration of the aquaculture ecosystem was also increased by S. portulacastrum FTW because more carbon was held in the biomass, including through the growth of the plant mass of the FTW, 109 g C/pond, and a reduction in fishing catch losses, 442 g C/pond. Therefore, S. portulacastrum FTW can serve as a potential technology for improving the water environment quality of feeding ponds and contributing to carbon sequestration in aquaculture systems. Full article
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent
by Mayra X. Muñoz-Martinez, Iván F. Macías-Quiroga and Nancy R. Sanabria-González
Gels 2024, 10(12), 779; https://doi.org/10.3390/gels10120779 - 28 Nov 2024
Cited by 3 | Viewed by 1318
Abstract
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. [...] Read more.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system. The synthesized organobentonite (OBent) was encapsulated in alginate, utilizing calcium chloride as a crosslinking agent to generate hydrogel beads. The effects of the volumetric flow rate, bed height, and initial Cr(VI) concentration on a synthetic sample were analyzed in the experiments in fixed-bed columns. The fractal-like modified Thomas model showed a good fit to the experimental data for the asymmetric breakthrough curves, confirmed by the high R2 correlation coefficients and low χ2 values. The application of organoclay/alginate hydrogel beads was confirmed with a wastewater sample from an artisanal tannery industry in Belén (Nariño, Colombia), in which a Cr(VI) removal greater than 99.81% was achieved. Organobentonite/alginate hydrogels offer the additional advantage of being composed of a biodegradable polymer (sodium alginate) and a natural material (bentonite-type clay), resulting in promising adsorbents for the removal of Cr(VI) from aqueous solutions in both synthetic and real water samples. Full article
Show Figures

Graphical abstract

22 pages, 1760 KiB  
Review
A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery
by Philadelphia V. Ngobeni, Ashton B. Mpofu, Amrita Ranjan and Pamela J. Welz
Processes 2024, 12(7), 1527; https://doi.org/10.3390/pr12071527 - 20 Jul 2024
Cited by 3 | Viewed by 1867
Abstract
Tanneries generate copious amounts of potentially toxic sludge and effluent from the processing of skins and hides to leather. The effluent requires remediation before discharge to protect the receiving environment. A range of physicochemical methods are used for pre- and post-treatment, but biological [...] Read more.
Tanneries generate copious amounts of potentially toxic sludge and effluent from the processing of skins and hides to leather. The effluent requires remediation before discharge to protect the receiving environment. A range of physicochemical methods are used for pre- and post-treatment, but biological secondary remediation remains the most popular choice for the reduction of the organic and macronutrient fraction of tannery effluent. This review provides an update and critical discussion of biological systems used to remediate tannery effluent. While the conventional activated sludge process and similar technologies are widely used by tanneries, they have inherent problems related to poor sludge settling, low removal efficiencies, and high energy requirements. Treatment wetlands are recommended for the passive polishing step of beamhouse effluent. Hybrid systems that incorporate anoxic and/or anaerobic zones with sludge and/or effluent recycling have been shown to be effective for the removal of organics and nitrogenous species at laboratory scale, and some have been piloted. Novel systems have also been proposed for the removal and recovery of elemental sulfur and/or energy and/or process water in support of a circular economy. Full-scale studies showing successful long-term operation of such systems are now required to convince tanneries to modernize and invest in new infrastructure. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Figure 1

22 pages, 4964 KiB  
Article
Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2024, 16(13), 1834; https://doi.org/10.3390/polym16131834 - 27 Jun 2024
Cited by 4 | Viewed by 1443
Abstract
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer [...] Read more.
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution–diffusion model, Nernst–Planck equation, and film theory, applying the acid–base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively. Full article
(This article belongs to the Special Issue Functional Polymeric Materials for Water and Wastewater Management)
Show Figures

Figure 1

27 pages, 10110 KiB  
Article
Sustainable Napier Grass (Pennisetum purpureum) Biochar for the Sorptive Removal of Acid Orange 7 (AO7) from Water
by Anand Kumar Yadav, Abhishek Kumar Chaubey, Shivang Kapoor, Tej Pratap, Brahmacharimayum Preetiva, Vineet Vimal and Dinesh Mohan
Processes 2024, 12(6), 1115; https://doi.org/10.3390/pr12061115 - 28 May 2024
Cited by 6 | Viewed by 3446
Abstract
The unregulated discharge of synthetic dyes from various anthropogenic and industrial activities has resulted in the contamination of different environmental compartments. These dyes can contaminate water bodies, soil, and even the air, resulting in many environmental and health issues. True colors may persist [...] Read more.
The unregulated discharge of synthetic dyes from various anthropogenic and industrial activities has resulted in the contamination of different environmental compartments. These dyes can contaminate water bodies, soil, and even the air, resulting in many environmental and health issues. True colors may persist for long periods, thereby affecting the aesthetics and ecology of dye-contaminated areas. Furthermore, they pose potential risks to aquatic life and human health through the ingestion or absorption of dye-contaminated water or food. Acid orange 7 (AO7) is a synthetic azo dye used in the textile, tanning, food, pharmaceutical, paint, electronics, cosmetics, and paper and pulp industries. AO7 can have various human health implications, such as dermatitis, nausea, severe headache, respiratory tract irritation, and bone marrow depletion, due to its high toxicity, mutagenicity, and carcinogenicity. Efforts to regulate and mitigate dye pollution (AO7) are crucial for environmental sustainability and public health. Therefore, this study aimed to remove AO7 from water using sustainable biochar. This objective was accomplished by pyrolyzing dried Napier grass at 700 °C to develop affordable and sustainable Napier grass biochar (NGBC700). The developed biochar was characterized for its surface morphology, surface functional groups, surface area, and elemental composition. The yield, moisture content, and ash content of the NGBC700 were approximately 31%, 6%, and 21%, respectively. The NGBC700’s BET (Brunauer–Emmett–Teller) surface area was 108 m2 g−1. Batch sorption studies were carried out at different pH levels (2–10), biochar dosages (1, 2, 3, and 4 g L−1), and AO7 concentrations (10, 20, and 30 mg L−1). The kinetic data were better fitted to the pseudo-second-order (PSO) equation (R2 = 0.964–0.997) than the pseudo-first-order (PFO) equation (R2 = 0.789–0.988). The Freundlich isotherm equation (R2 = 0.965–0.994) fitted the sorption equilibrium data better than the Langmuir equation (R2 = 0.788–0.987), suggesting AO7 sorption on heterogenous NGBC700. The maximum monolayer AO7 adsorption capacities of the NGBC700 were 14.3, 12.7, and 8.4 mg g−1 at 10, 25, and 40 °C, respectively. The column AO7 sorption capacity was 4.4 mg g−1. Fixed-bed AO7 sorption data were fitted to the Thomas and Yoon–Nelson column models. The NGBC700 efficiently removed AO7 from locally available dye-laden wastewater. NGBC700 was regenerated using different NaOH concentrations. Possible interactions contributing to AO7 sorption on NGBC700 include hydrogen bonding, electrostatic interactions, and π–π electron donor–acceptor attractions. The estimated total preparation cost of NGBC700 was US$ 6.02 kg−1. The developed sustainable NGBC700 is potentially cost-effective and environmentally friendly, and it utilizes waste (Napier grass) to eliminate fatal AO7 dye from aqueous media. Full article
(This article belongs to the Special Issue Application of Biochar in Environmental Research)
Show Figures

Graphical abstract

23 pages, 5076 KiB  
Article
Selective Isolation and Identification of Microorganisms with Dual Capabilities: Leather Biodegradation and Heavy Metal Resistance for Industrial Applications
by Manuela Bonilla-Espadas, Basilio Zafrilla, Irene Lifante-Martínez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís, Marcelo Bertazzo and María-José Bonete
Microorganisms 2024, 12(5), 1029; https://doi.org/10.3390/microorganisms12051029 - 20 May 2024
Cited by 2 | Viewed by 2178
Abstract
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium’s oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological [...] Read more.
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium’s oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products’ end-of-life management, with composting being the most researched and viable option. This study aimed to isolate microorganisms from tannery wastewater and identify those responsible for different types of tanned leather biodegradation. Bacterial shifts during leather biodegradation were observed using a leather biodegradation assay (ISO 20136) with tannery and municipal wastewater as the inoculum. Over 10,000 bacterial species were identified in all analysed samples, with 7 bacterial strains isolated from tannery wastewaters. Identification of bacterial genera like Acinetobacter, Brevundimonas, and Mycolicibacterium provides insights into potential microbial candidates for enhancing leather biodegradability, wastewater treatment, and heavy metal bioremediation in industrial applications. Full article
(This article belongs to the Special Issue New Insights into the Diversity and Characterization of Extremophiles)
Show Figures

Figure 1

16 pages, 3804 KiB  
Article
Removal of Cr and Organic Matter from Real Tannery Wastewater via Fenton-like Process Using Commercial Nano-Scale Zero-Valent Iron
by Yaneth Vasquez, Jair Franco, Mario Vasquez, Felipe Agudelo, Eleni Petala, Jan Filip, Jose Galvis and Oscar Herrera
Water 2024, 16(5), 754; https://doi.org/10.3390/w16050754 - 1 Mar 2024
Cited by 2 | Viewed by 2111
Abstract
The tannery wastewater from the tanning stage (TWT) comprises organic and Cr pollutants, which can adversely affect aquatic life and have carcinogenic effects. In this study, we investigated the performance of a Fenton-like process using commercial Nano-scale zero-valent iron (nZVI) for the simultaneous [...] Read more.
The tannery wastewater from the tanning stage (TWT) comprises organic and Cr pollutants, which can adversely affect aquatic life and have carcinogenic effects. In this study, we investigated the performance of a Fenton-like process using commercial Nano-scale zero-valent iron (nZVI) for the simultaneous removal of Cr and organic matter from real TWT. We used an experimental design to select the principal operating parameters. A Plackett–Burman design identified variables for Cr-total and COD removal, followed by a central composite design (CC-D) to determine optimal variable levels. Finally, the response surface methodology (RSM) was used to find the optimum concentration of individual variables influencing Cr-total removal. Additionally, the effect of the leather-related, co-existing substances that influenced the efficiency of the process and the possibility of recycling nZVI were explored. The inclusion of nZVI was significantly more effective at removing both Cr-total and COD (97.3% ± 5.7% and 73.9% ± 9.1%, respectively), whereas the traditional Fenton process achieved lower removal rates (55.6% ± 10.0% for Cr-total and 34.8% ± 10.9% for COD). The optimal conditions for the Fenton-like process were nZVI/H2O2 = 1.05 w/w, and pH = 2.93. We obtained the best results during the first 5 min of the reaction, which increased after 48 h of agitation and subsequent neutralization. According to the results of four consecutive cycles, nZVI exhibited high reusability (97%) without compromising its adsorption potency. XPS analysis confirmed Cr removal through the adsorption mechanism on the nZVI surface. Hence, a Fenton-like process based on nZVI can be used as a promising alternative for treating organic and Cr wastewater. Full article
(This article belongs to the Special Issue Advanced Processes for Industrial Wastewater Treatment)
Show Figures

Graphical abstract

17 pages, 2057 KiB  
Article
Improving Tannery Wastewater Treatments Using an Additional Microbial Treatment with a Bacterial–Fungal Consortium
by Fuad Ameen
Biology 2023, 12(12), 1507; https://doi.org/10.3390/biology12121507 - 8 Dec 2023
Cited by 1 | Viewed by 2627
Abstract
Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques [...] Read more.
Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques was evaluated in four tanneries in Saudi Arabia. It was observed that the wastewaters contained high amounts of pollutants, needing further treatment. We isolated microorganisms from the wastewaters and carried out experiments to treat the effluents with different bacteria, fungi, and their consortia. We hypothesized that a consortium of microorganisms is more efficient than the single microorganisms in the consortium. The efficiency of five single bacterial and five fungal species from different genera was tested. In a consortium experiment, the efficiency of nine bacterial–fungal consortia was studied. The bacterium Corynebacterium glutamicum and the fungus Acremonium sp. were the most efficient in the single-microbe treatment. In the consortium treatment, the consortium of these two was the most efficient at treating the effluent. The factory wastewater treatment reduced total dissolved solids (TDS) from 1885 mg/L to 880 mg/L. C. glutamicum treatment reduced TDS to 150 mg/L and Acremonium sp. to 140 mg/L. The consortium of these two reduced TDS further to 80 mg/L. Moreover, the factory treatment reduced BOD from 943 mg/L to 440 mg/L, C. glutamicum to 75 mg/L, and Acremonium sp. 70 mg/L. The consortium reduced BOD further to 20 mg/L. The total heavy-metal concentration (Cd, Cr, Cu, Mn, and Pb) was reduced by the factory treatment from 43 μg/L to 26 μg/L and by the consortium to 0.2 μg/L. The collagen concentration that was studied using hydroxyproline assay decreased from 120 mg/L to 39 mg/L. It was shown that the consortium of the bacterium C. glutamicum and the fungus Acremonium sp. was more efficient in reducing the pollutants than the single species. The consortium reduced almost all parameters to below the environmental regulation limit for wastewater discharge to the environment in Saudi Arabia. The consortium should be studied further as an additional treatment to the existing conventional tannery wastewater treatments. Full article
Show Figures

Figure 1

31 pages, 9982 KiB  
Article
Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media
by Ayesha Javaid, Muhammad Imran, Farah Kanwal, Shoomaila Latif, Syed Farooq Adil, Mohammed Rafi Shaik and Mujeeb Khan
Molecules 2023, 28(24), 7979; https://doi.org/10.3390/molecules28247979 - 6 Dec 2023
Cited by 8 | Viewed by 2235
Abstract
This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2−xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were [...] Read more.
This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2−xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were synthesized through a co-precipitation route. The as-synthesized materials were characterized for their optical properties, functional groups, chemical oxidation states, structural phases, surface properties, and dielectric characteristics using UV–Vis spectroscopy (UV–Vis), Fourier transform infrared (FTIR) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, and impedance spectroscopy, respectively. UV–Vis study showed a prominent red shift of absorption maxima and a continuous decrease in band gap (3.35 eV to 2.79 eV) by increasing the dopant concentration. The presence of Ce–O and Mo–O–Mo bonds, detected via FTIR and Raman spectroscopies, are confirmed, indicating the successful synthesis of the desired material. The monoclinic phase was dominant in all materials, and the crystallite size was decreased from 40.29 nm to 29.09 nm by increasing the Sb content. A significant increase in the dielectric constant (ε′ = 2.856 × 108, 20 Hz) and a decrease in the loss tan (tanδ = 1.647, 20 Hz) were exhibited as functions of the increasing Sb concentration. Furthermore, the photocatalytic efficiency of pristine cerium molybdate was also increased by 1.24 times against diclofenac potassium by incorporating Sb (x = 0.09) in the cerium molybdate. The photocatalytic efficiency of 85.8% was achieved within 180 min of UV light exposure at optimized conditions. The photocatalytic reaction followed pseudo-first-order kinetics with an apparent rate constant of 0.0105 min−1, and the photocatalyst was recyclable with good photocatalytic activity even after five successive runs. Overall, the as-synthesized Sb-doped cerium molybdate material has proven to be a promising candidate for charge storage devices and a sustainable photocatalyst for wastewater treatment. Full article
Show Figures

Figure 1

21 pages, 4566 KiB  
Article
Acute Ecotoxicity Potential of Untreated Tannery Wastewater Release in Arequipa, Southern Peru
by Kevin Tejada-Meza, Armando Arenazas-Rodríguez, Pablo A. Garcia-Chevesich, Carmen Flores-Farfan, Lino Morales-Paredes, Giuliana Romero-Mariscal, Juana Ticona-Quea, Gary Vanzin and Jonathan O. Sharp
Sustainability 2023, 15(21), 15240; https://doi.org/10.3390/su152115240 - 25 Oct 2023
Cited by 8 | Viewed by 3084
Abstract
The centralized Rio Seco Industrial Park (RSIP) tannery collective in the Southern Peruvian city of Arequipa releases untreated tannery wastewater into a proximal creek that is a tributary of the Chili River. As industrial leather tanning wastewater contains high concentrations of metal(loid)s, salts, [...] Read more.
The centralized Rio Seco Industrial Park (RSIP) tannery collective in the Southern Peruvian city of Arequipa releases untreated tannery wastewater into a proximal creek that is a tributary of the Chili River. As industrial leather tanning wastewater contains high concentrations of metal(loid)s, salts, dyes, and organics, this complex mixture could exert a myriad of toxicological effects on the surrounding ecosystem. The RSIP effluent was analyzed to quantify the acute ecotoxicity and ecotoxicological status of this untreated industrial wastewater at multiple trophic levels with the following bioindicators: the floating macrophyte Lemna minor, invertebrates Daphnia magna and Physa venustula, and the amphibian Xenopus laevis. A physicochemical characterization of the RSIP effluent revealed a highly contaminated waste stream. In addition to chromium (10.4 ± 0.4 mg/L) and other toxic metals, the water harbored extremely high concentrations of total dissolved solids (67,770 ± 15,600 mg/L), biochemical oxygen demand (1530 ± 290 mg/L) and total nitrogen (490 ± 10 mg/L). The toxicological responses of certain bioindicator species tested were evaluated after exposure to 0, 1.5, 3.0, and 4.5% untreated tannery wastewater blended with dechlorinated tap water. L. minor experienced a significant decrease in the number of fronds, wet weight, and dry weight at the lowest blended wastewater of 1.5%. Bioassays with D. magna showed the effect on neonatal mortality with a calculated LC50 of 1.1% for 48 h. Bioassays with P. venustula embryos showed high sensitivity to diluted effluent with complete mortality at 3.0% wastewater and above. Finally, X. laevis showed a high sensitivity to the dilutions with an LC50 of 1.6 for embryos and 1.8% for tadpoles. Although RSIP wastewater contains many potentially toxic components, chromium and total dissolved solids, with a major contribution from sodium, are best correlated with acute toxicity variables. This suggests that conductivity or analogous measurements could provide a rapid and affordable forensic tool to query acute ecosystem pressures. Collectively, the results indicate that the release of untreated tannery wastewater from RSIP can exert pronounced acute impacts across trophic levels with the need for treatment or dilution to below 1% of total flow. As the assays addressed acute toxicity, the necessary treatment and/or dilution to mitigate chronic effects is likely much lower. In conclusion, untreated RSIP tannery wastewaters represent an ecological risk to downstream aquatic ecosystems; this needs to be addressed to prevent current and future environmental consequences. Full article
(This article belongs to the Special Issue Sustainability of Arid Lands in Southern Peru)
Show Figures

Figure 1

17 pages, 5774 KiB  
Article
Adsorption–Desorption Process to Separate Dyes from Tanning Wastewaters
by Paolo Trucillo, Amedeo Lancia and Francesco Di Natale
Processes 2023, 11(10), 3006; https://doi.org/10.3390/pr11103006 - 19 Oct 2023
Cited by 2 | Viewed by 2571
Abstract
Wastewater production is a major environmental issue for the leather and textile industries: in a modern plant, several synthetic dyes are used in separated coloring batches whose wastewaters are usually mixed, diluted with other process water streams, and sent to a unique wastewater [...] Read more.
Wastewater production is a major environmental issue for the leather and textile industries: in a modern plant, several synthetic dyes are used in separated coloring batches whose wastewaters are usually mixed, diluted with other process water streams, and sent to a unique wastewater treatment plant. This includes specific physical and biochemical tertiary treatments to remove dyes efficiently. One of the main difficulties of these processes is the presence of multiple dyes, which cannot be treated with the same efficiency as a “wide-spectrum” process. This work explores the possibility of using conventional granular activated carbon (GAC) and a new polyurethane foam (PUF) for the adsorption of an acid red dye in the wastewater of a specific coloring batch of the tanning industry. The aim of this work is twofold: on the one hand, we aim to explore the performance of the new PUF sorbent; on the other hand, we aim to explore the possibility of using adsorption as an optimized pre-treatment for single-dye batches, which may take advantage of the presence of a single type of target dye and its higher concentration. The effluent is then sent to the wastewater treatment plant for further depuration. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Graphical abstract

Back to TopTop