Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = synthetic hexaploid wheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1675 KiB  
Article
Variation in Root Traits and Root-Endophyte Interactions in Primary Synthetic Wheat Derived from Aegilops tauschii Collected from Diverse Soil Types
by Ahmed Khaled Hassan Mohammedali, Nasrein Mohamed Kamal, Yasir Serag Alnor Gorafi, Izzat Sidahmed Ali Tahir, Hisashi Tsujimoto and Takeshi Taniguchi
Agronomy 2025, 15(6), 1443; https://doi.org/10.3390/agronomy15061443 - 13 Jun 2025
Viewed by 414
Abstract
Modern wheat breeding has largely emphasized aboveground traits, often at the expense of belowground characteristics such as root biomass, architecture, and beneficial microbial associations. This has narrowed genetic diversity, impacting traits essential for stress resilience and efficient nutrient and water acquisition—factors expected to [...] Read more.
Modern wheat breeding has largely emphasized aboveground traits, often at the expense of belowground characteristics such as root biomass, architecture, and beneficial microbial associations. This has narrowed genetic diversity, impacting traits essential for stress resilience and efficient nutrient and water acquisition—factors expected to become increasingly critical under climate change. In this study, we evaluated 36 primary synthetic (PS) hexaploid wheat lines developed by crossing Aegilops tauschii with the durum wheat cultivar Langdon (LNG) and compared them with LNG and the hexaploid variety Norin 61 (N61). We observed significant variation in root length, biomass, and associations with fungal endophytes, including beneficial Arbuscular Mycorrhizal Fungi (AMF) and Serendipita indica, and pathogenic Alternaria sp. Clustering analysis based on these traits identified three distinct PS groups: (1) lines with greater root length and biomass, high AMF and S. indica colonization, and low Alternaria infection; (2) lines with intermediate traits; and (3) lines with reduced root traits and high Alternaria susceptibility. Notably, these phenotypic patterns corresponded closely with the soil classification of the Ae. tauschii progenitors’ origin, such as Cambisols (supportive of root growth), and Gleysols and Calcisols (restrictive of root growth). This highlights the soil microenvironment as a key determinant of belowground trait expression. By comparing PS lines with domesticated tetraploid and hexaploid wheat, we identified and selected PS lines derived from diverse Ae. tauschii with enhanced root traits. Our study emphasizes the potential of wild D-genome diversity to restore critical root traits for breeding resilient wheat. Full article
(This article belongs to the Special Issue Identification and Utilization of Crop Wild Relatives’ Germplasm)
Show Figures

Figure 1

13 pages, 2123 KiB  
Article
Mining and Genetic Mapping of a Novel Powdery Mildew Resistance Gene, PmKu-2013, Identified in Aegilops tauschii
by Wuying Chen, Jing Li, Lijun Fan, Dandan Qi, Honglu Zhang, Yongchao Hao, Mingmin Liang, Cunyao Bo, Silong Sun, Xiaoqian Wang, Anfei Li, Hongwei Wang, Lingrang Kong and Xin Ma
Agronomy 2024, 14(4), 744; https://doi.org/10.3390/agronomy14040744 - 3 Apr 2024
Viewed by 1585
Abstract
Wheat powdery mildew is a fungal disorder caused by Blumeria graminis f. sp. tritici (Bgt) and is a severe and significant threat to the yield and quality of its host. The most practical and environmentally friendly approach to controlling this disease [...] Read more.
Wheat powdery mildew is a fungal disorder caused by Blumeria graminis f. sp. tritici (Bgt) and is a severe and significant threat to the yield and quality of its host. The most practical and environmentally friendly approach to controlling this disease is through resistance gene identification to develop resistant varieties. Wild germplasm relatives of wheat are a valuable reservoir of genes contributing to resistance against powdery mildew. In our study, we identified the Aegilops tauschii germplasm “KU-2013”, exhibiting seedling resistance to Bgt isolate E09 following hexaploidization. Genetic analysis and chromosomal localization of the powdery mildew resistance gene in doubled haploid (DH) KU-2013 indicated that the disease resistance gene in DHKU-2013 is governed by a dominant gene situated in 5DS, tentatively named PmKu-2013. Following the analysis of PmKu-2013 relative to the genes at the Pm2 locus, it was inferred that PmKu-2013 represented a distinct novel gene separate from Pm2. Using molecular marker analysis, PmKu-2013 was found to be ultimately mapped between the sdau5DS5-3 and sdau5DS6-1 markers, with genetic distances of 0.6 cM and 1.3 cM, respectively. Using markers tightly linked to PmKu-2013, the genotypes of core wheat varieties from various regions were identified, laying the foundation for the transfer and utilization of PmKu-2013 in molecular-assisted selection (MAS) for breeding. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Modeling within and between Sub-Genomes Epistasis of Synthetic Hexaploid Wheat for Genome-Enabled Prediction of Diseases
by Jaime Cuevas, David González-Diéguez, Susanne Dreisigacker, Johannes W. R. Martini, Leo Crespo-Herrera, Nerida Lozano-Ramirez, Pawan K. Singh, Xinyao He, Julio Huerta and Jose Crossa
Genes 2024, 15(3), 262; https://doi.org/10.3390/genes15030262 - 20 Feb 2024
Cited by 3 | Viewed by 1651
Abstract
Common wheat (Triticum aestivum) is a hexaploid crop comprising three diploid sub-genomes labeled A, B, and D. The objective of this study is to investigate whether there is a discernible influence pattern from the D sub-genome with epistasis in genomic models [...] Read more.
Common wheat (Triticum aestivum) is a hexaploid crop comprising three diploid sub-genomes labeled A, B, and D. The objective of this study is to investigate whether there is a discernible influence pattern from the D sub-genome with epistasis in genomic models for wheat diseases. Four genomic statistical models were employed; two models considered the linear genomic relationship of the lines. The first model (G) utilized all molecular markers, while the second model (ABD) utilized three matrices representing the A, B, and D sub-genomes. The remaining two models incorporated epistasis, one (GI) using all markers and the other (ABDI) considering markers in sub-genomes A, B, and D, including inter- and intra-sub-genome interactions. The data utilized pertained to three diseases: tan spot (TS), septoria nodorum blotch (SNB), and spot blotch (SB), for synthetic hexaploid wheat (SHW) lines. The results (variance components) indicate that epistasis makes a substantial contribution to explaining genomic variation, accounting for approximately 50% in SNB and SB and only 29% for TS. In this contribution of epistasis, the influence of intra- and inter-sub-genome interactions of the D sub-genome is crucial, being close to 50% in TS and higher in SNB (60%) and SB (60%). This increase in explaining genomic variation is reflected in an enhancement of predictive ability from the G model (additive) to the ABDI model (additive and epistasis) by 9%, 5%, and 1% for SNB, SB, and TS, respectively. These results, in line with other studies, underscore the significance of the D sub-genome in disease traits and suggest a potential application to be explored in the future regarding the selection of parental crosses based on sub-genomes. Full article
(This article belongs to the Special Issue Genetics and Genomics of Polyploid Plants)
Show Figures

Figure 1

12 pages, 1696 KiB  
Article
Untapped Sources of Dual Resistance to Hessian Fly and Greenbug in Synthetic Hexaploid Wheats
by Subhashree Subramanyam, Harold E. Bockelman and Nagesh Sardesai
Plants 2023, 12(22), 3883; https://doi.org/10.3390/plants12223883 - 17 Nov 2023
Cited by 2 | Viewed by 1535
Abstract
The Hessian fly (Hf) and greenbugs (Gb) are major pests of wheat, causing severe economic losses globally. Deploying resistant wheat is the most effective strategy for managing these destructive insects. However, the resistance is not effective against all Hf or Gb biotypes and [...] Read more.
The Hessian fly (Hf) and greenbugs (Gb) are major pests of wheat, causing severe economic losses globally. Deploying resistant wheat is the most effective strategy for managing these destructive insects. However, the resistance is not effective against all Hf or Gb biotypes and can impose selection pressure on insects, resulting in the development of virulent biotypes. These challenges must be met through the discovery of new and novel sources of resistance to these pests. Synthetic Hexaploid Wheat (SHW)-developed cultivars are a rich source of resistance against a diverse array of pathogens and pests. In this study, 80 SHW lines were evaluated for their resistance to Hf and Gb under controlled environmental conditions. Of these, a total of 36 SHW lines showed resistance independently to Hf biotype L and Gb biotype E, while 27 lines showed combined resistance to both Hf and Gb. Further, a subset of 10 SHW lines showed resistance to additional Hf biotypes, Great Plains and vH13. The identification of SHW lines resistant to multiple insects and biotypes offers an invaluable resource to breeders who are looking to stack resistance traits to develop elite cultivars as a strategy to alleviate economic impacts upon global wheat production. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 4202 KiB  
Article
Role of Temporal Zn Fertilization along with Zn Solubilizing Bacteria in Enhancing Zinc Content, Uptake, and Zinc Use Efficiency in Wheat Genotypes and Its Implications for Agronomic Biofortification
by Azizullah Khalili, Abdul Qayyum, Sami Ullah Khan, Iltaf Ullah and Ahlam Khalofah
Agronomy 2023, 13(11), 2677; https://doi.org/10.3390/agronomy13112677 - 25 Oct 2023
Cited by 7 | Viewed by 2119
Abstract
Wheat (Triticum aestivum L.) is a vital cereal crop for food security in Pakistan. In Zn-deficient soils, its productivity and quality suffer, affecting grain yield, Zn bioavailability, and nutrition, which can lead to malnutrition. Field experiments were conducted using factorial randomized block [...] Read more.
Wheat (Triticum aestivum L.) is a vital cereal crop for food security in Pakistan. In Zn-deficient soils, its productivity and quality suffer, affecting grain yield, Zn bioavailability, and nutrition, which can lead to malnutrition. Field experiments were conducted using factorial randomized block design at the Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan to evaluate the impact of wheat genotypes (G1-TRB-72-311 synthetic hexaploid, G2-TRB-89-348 advanced line, and G3-Pirsabak-19-approved variety), Zn application methods (AM1: no Zn application, AM2: seed priming with 0.5% Zn, AM3: soil application of 10 kg ha−1 Zn, and AM4: foliar application of 0.5% Zn), and the experiment also explored the use of ZSB (BF1: with bacteria, BF0: without bacteria) to cope with Zn deficiency. The study revealed significant impacts on wheat’s Zn content, uptake, and nutrient efficiency, arising from genotypes variance, Zn application approaches, and ZSB. TRB-72-311 synthetic hexaploid genotype with 0.5% foliar Zn and ZSB excelled, enhancing grain (17.8%) and straw Zn (23.1%), increasing total Zn uptake (55.0%), reducing grain phytic acid (11.7%), and boosting Zn-related efficiencies in wheat. These results prompt further discussion regarding the potential implications for agricultural practices. In conclusion, utilizing the TRB-72-311 genotype with 0.5% foliar Zn application and ZSB enhances wheat’s Zn content, uptake, grain quality, and addresses malnutrition. Full article
Show Figures

Figure 1

15 pages, 14075 KiB  
Article
Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117
by Hui Li, Xin Liu, Junqing Zhang, Longyu Chen, Minghu Zhang, Yongping Miao, Pan Ma, Ming Hao, Bo Jiang, Shunzong Ning, Lin Huang, Zhongwei Yuan, Xuejiao Chen, Xue Chen, Dengcai Liu, Hongshen Wan and Lianquan Zhang
Int. J. Mol. Sci. 2023, 24(16), 12845; https://doi.org/10.3390/ijms241612845 - 16 Aug 2023
Viewed by 8026
Abstract
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, [...] Read more.
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3091 KiB  
Article
Development and Characterization of Near-Isogenic Lines Derived from Synthetic Wheat Revealing the 2 kb Insertion in the PPD-D1 Gene Responsible for Heading Delay and Grain Number Improvement
by Shunzong Ning, Shengke Li, Kai Xu, Dongmei Liu, Li Ma, Chunfang Ma, Ming Hao, Lianquan Zhang, Wenjie Chen, Bo Zhang, Yun Jiang, Lin Huang, Xuejiao Chen, Bo Jiang, Zhongwei Yuan and Dengcai Liu
Int. J. Mol. Sci. 2023, 24(13), 10834; https://doi.org/10.3390/ijms241310834 - 29 Jun 2023
Cited by 2 | Viewed by 2447
Abstract
Spikelet number and grain number per spike are two crucial and correlated traits for grain yield in wheat. Photoperiod-1 (Ppd-1) is a key regulator of inflorescence architecture and spikelet formation in wheat. In this study, near-isogenic lines derived from the cross of a [...] Read more.
Spikelet number and grain number per spike are two crucial and correlated traits for grain yield in wheat. Photoperiod-1 (Ppd-1) is a key regulator of inflorescence architecture and spikelet formation in wheat. In this study, near-isogenic lines derived from the cross of a synthetic hexaploid wheat and commercial cultivars generated by double top-cross and two-phase selection were evaluated for the number of days to heading and other agronomic traits. The results showed that heading time segregation was conferred by a single incomplete dominant gene PPD-D1, and the 2 kb insertion in the promoter region was responsible for the delay in heading. Meanwhile, slightly delayed heading plants and later heading plants obviously have advantages in grain number and spikelet number of the main spike compared with early heading plants. Utilization of PPD-D1 photoperiod sensitivity phenotype as a potential means to increase wheat yield potential. Full article
(This article belongs to the Special Issue Advances in Breeding and Genetics of Wheat Crops)
Show Figures

Figure 1

11 pages, 1462 KiB  
Article
Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat
by Guillermo García-Barrios, José Crossa, Serafín Cruz-Izquierdo, Víctor Heber Aguilar-Rincón, J. Sergio Sandoval-Islas, Tarsicio Corona-Torres, Nerida Lozano-Ramírez, Susanne Dreisigacker, Xinyao He, Pawan Kumar Singh and Rosa Angela Pacheco-Gil
Int. J. Mol. Sci. 2023, 24(13), 10506; https://doi.org/10.3390/ijms241310506 - 22 Jun 2023
Cited by 3 | Viewed by 2176
Abstract
Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of [...] Read more.
Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of interest. This study evaluated the performance of BLUP (Best Linear Unbiased Prediction) in predicting resistance to tan spot, spot blotch and Septoria nodorum blotch in synthetic hexaploid wheat. BLUP was implemented in single-trait and multi-trait models with three variations: (1) the pedigree relationship matrix (A-BLUP), (2) the genomic relationship matrix (G-BLUP), and (3) a combination of the two matrices (A+G BLUP). In all three diseases, the A-BLUP model had a lower performance, and the G-BLUP and A+G BLUP were statistically similar (p ≥ 0.05). The prediction accuracy with the single trait was statistically similar (p ≥ 0.05) to the multi-trait accuracy, possibly due to the low correlation of severity between the diseases. Full article
Show Figures

Figure 1

15 pages, 785 KiB  
Article
Phenolic Content and Antioxidant Capacity of Synthetic Hexaploid Wheats
by Vladimir P. Shamanin, Zeynep H. Tekin-Cakmak, Salih Karasu, Inna V. Pototskaya, Sergey S. Shepelev, Alexandr S. Chursin, Alexey I. Morgounov, Osman Sagdic and Hamit Koksel
Plants 2023, 12(12), 2301; https://doi.org/10.3390/plants12122301 - 13 Jun 2023
Cited by 3 | Viewed by 1876
Abstract
In this study, 21 synthetic hexaploid wheat samples were analyzed and compared for phenolic content (the Folin–Ciocalteu method), phenolic compositions, and antioxidant activity (DPPH, ABTS, and CUPRAC). The aim of the study was to determine the phenolic content and antioxidant activity of synthetic [...] Read more.
In this study, 21 synthetic hexaploid wheat samples were analyzed and compared for phenolic content (the Folin–Ciocalteu method), phenolic compositions, and antioxidant activity (DPPH, ABTS, and CUPRAC). The aim of the study was to determine the phenolic content and antioxidant activity of synthetic wheat lines developed from Ae. Tauschii, which has a wide genetic diversity, to be used in breeding programs for developing new varieties with better nutritional properties. Bound, free, and total phenolic contents (TPCs) of wheat samples were determined as 145.38–258.55 mg GAE/100 g wheat, 188.19–369.38 mg GAE/100 g wheat, and 333.58–576.93 mg GAE/100 g wheat, respectively. Phenolic compositions were detected by the HPLC system. Gallic acid was found in the highest concentrations in free fractions, whereas gallic, p-coumaric acid, and chlorogenic acid were generally found in the highest concentrations in bound fractions of the synthetic hexaploid wheat samples. The antioxidant activities (AA%) of the wheat samples were evaluated by the DPPH assay. AA% in the free extracts of the synthetic red wheat samples ranged from 33.0% to 40.5%, and AA% values in the bound extracts of the synthetic hexaploid wheat samples varied between 34.4% and 50.6%. ABTS and CUPRAC analyses were also used to measure antioxidant activities. The ABTS values of the free and bound extracts and total ABTS values of the synthetic wheat samples ranged from 27.31 to 123.18, 61.65 to 263.23, and 93.94 to 308.07 mg TE/100 g, respectively. The corresponding CUPRAC values of the synthetic wheats were between 25.78–160.94, 75.35–308.13, and 107.51–364.79 mg TE/100 g. This study revealed that synthetic hexaploid wheat samples are valuable resources for breeding programs for developing new wheat varieties with higher concentrations and better compositions of health-beneficial phytochemicals. The samples w1 (Ukr.-Od. 1530.94/Ae. squarrosa (629)), w18 (Ukr.-Od. 1530.94/Ae. squarrosa (1027)), and w20 (Ukr.-Od. 1530.94/Ae. squarrosa (392)) can be used as a genetic resource in breeding programs to enhance the nutritional quality of wheat. Full article
(This article belongs to the Special Issue Phenolic Substances and Volatiles in Developing Plants)
Show Figures

Figure 1

19 pages, 1927 KiB  
Article
Identification of Single-Nucleotide Polymorphisms (SNPs) Associated with Heat Tolerance at the Reproductive Stage in Synthetic Hexaploid Wheats Using GWAS
by Ambreen Mehvish, Abdul Aziz, Birra Bukhari, Humaira Qayyum, Zahid Mahmood, Muhammad Baber, Muhammad Sajjad, Xuequn Pang and Fenglan Wang
Plants 2023, 12(8), 1610; https://doi.org/10.3390/plants12081610 - 10 Apr 2023
Cited by 4 | Viewed by 2385
Abstract
The projected rise in global ambient temperature by 3–5 °C by the end of this century, along with unpredicted heat waves during critical crop growth stages, can drastically reduce grain yield and will pose a great food security challenge. It is therefore important [...] Read more.
The projected rise in global ambient temperature by 3–5 °C by the end of this century, along with unpredicted heat waves during critical crop growth stages, can drastically reduce grain yield and will pose a great food security challenge. It is therefore important to identify wheat genetic resources able to withstand high temperatures, discover genes underpinning resilience to higher temperatures, and deploy such genetic resources in wheat breeding to develop heat-tolerant cultivars. In this study, 180 accessions of synthetic hexaploid wheats (SHWs) were evaluated under normal and late wheat growing seasons (to expose them to higher temperatures) at three locations (Islamabad, Bahawalpur, and Tando Jam), and data were collected on 11 morphological and yield-related traits. The diversity panel was genotyped with a 50 K SNP array to conduct genome-wide association studies (GWASs) for heat tolerance in SHW. A known heat-tolerance locus, TaHST1, was profiled to identify different haplotypes of this locus in SHWs and their association with grain yield and related traits in SHWs. There was a 36% decrease in grain yield (GY), a 23% decrease in thousand-grain weight (TKW), and an 18% decrease in grains per spike (GpS) across three locations in the population due to the heat stress conditions. GWASs identified 143 quantitative trait nucleotides (QTNs) distributed over all 21 chromosomes in the SHWs. Out of these, 52 QTNs were associated with morphological and yield-related traits under heat stress, while 15 of them were pleiotropically associated with multiple traits. The heat shock protein (HSP) framework of the wheat genome was then aligned with the QTNs identified in this study. Seventeen QTNs were in proximity to HSPs on chr2B, chr3D, chr5A, chr5B, chr6D, and chr7D. It is likely that QTNs on the D genome and those in proximity to HSPs may carry novel alleles for heat-tolerance genes. The analysis of TaHST1 indicated that 15 haplotypes were present in the SHWs for this locus, while hap1 showed the highest frequency of 25% (33 SHWs). These haplotypes were significantly associated with yield-related traits in the SHWs. New alleles associated with yield-related traits in SHWs could be an excellent reservoir for breeding deployment. Full article
(This article belongs to the Special Issue Tools and Resources for Wheat Molecular Breeding)
Show Figures

Figure 1

18 pages, 1926 KiB  
Article
Physio-Chemical and Agronomic-Based Characterization of Synthetic Hexaploid Wheat Germplasm under Field Imposed Conditions of Drought and Heat Stress
by Fahad Alghabari, Zahid Hussain Shah and Hyojin Seo
Agronomy 2023, 13(2), 458; https://doi.org/10.3390/agronomy13020458 - 3 Feb 2023
Cited by 2 | Viewed by 2245
Abstract
Abiotic stresses, such as a drought and heat, are potential constraints limiting wheat production across the globe. This current perspective study intended to characterize the performance of exotic synthetic hexaploid (SH) wheat genotypes on a physiological, biochemical, and agronomic basis under field-based drought [...] Read more.
Abiotic stresses, such as a drought and heat, are potential constraints limiting wheat production across the globe. This current perspective study intended to characterize the performance of exotic synthetic hexaploid (SH) wheat genotypes on a physiological, biochemical, and agronomic basis under field-based drought and heat conditions. The tri-replicate experiments were conducted in two seasons using two-factorial arrangements in a randomized complete block design (RCBD) with stresses as one factor and genotypes as another factor. The recorded data were statistically analyzed using computer-based software statistix8.1 and R-studio. In this study, all the physiological parameters (total chlorophyll, stomatal conductance, photosynthesis rate, transpiration rate, and cell membrane stability percentage), biochemical stress markers (antioxidant enzymes, glycine betaine, and proline), and agronomic traits (flag leaf area, plant height, tillers per plant, spike length, grains per spike, and thousand grain weight) varied significantly under separate and combined regimes of drought and heat stresses. All traits varied in same direction, excluding glycine betaine and proline, which varied in the opposite direction because of stress, as explicated by correlation analysis. Furthermore, PCA and heatmap analysis confirmed that the expression of the traits varied more significantly because of combined regimes of drought and heat stresses as compared to controlled and isolated applications. Interestingly, synthetic hexaploid (SH) genotypes depicted similar responses to individual and integrated regimes of drought and heat stresses. The current study proved that deciphering the physiological, biochemical, and agronomic performance of wheat genotypes under stress can provide effective criteria for the future selection of wheat germplasm for breeding against drought and heat stresses. Full article
Show Figures

Figure 1

13 pages, 2515 KiB  
Review
Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat
by Hongshen Wan, Fan Yang, Jun Li, Qin Wang, Zehou Liu, Yonglu Tang and Wuyun Yang
Genes 2023, 14(2), 283; https://doi.org/10.3390/genes14020283 - 21 Jan 2023
Cited by 13 | Viewed by 3607
Abstract
Synthetic hexaploid wheat (SHW) is a useful genetic resource that can be used to improve the performance of common wheat by transferring favorable genes from a wide range of tetraploid or diploid donors. From the perspectives of physiology, cultivation, and molecular genetics, the [...] Read more.
Synthetic hexaploid wheat (SHW) is a useful genetic resource that can be used to improve the performance of common wheat by transferring favorable genes from a wide range of tetraploid or diploid donors. From the perspectives of physiology, cultivation, and molecular genetics, the use of SHW has the potential to increase wheat yield. Moreover, genomic variation and recombination were enhanced in newly formed SHW, which could generate more genovariation or new gene combinations compared to ancestral genomes. Accordingly, we presented a breeding strategy for the application of SHW—the ‘large population with limited backcrossing method’—and we pyramided stripe rust resistance and big-spike-related QTLs/genes from SHW into new high-yield cultivars, which represents an important genetic basis of big-spike wheat in southwestern China. For further breeding applications of SHW-derived cultivars, we used the ‘recombinant inbred line-based breeding method’ that combines both phenotypic and genotypic evaluations to pyramid multi-spike and pre-harvest sprouting resistance QTLs/genes from other germplasms to SHW-derived cultivars; consequently, we created record-breaking high-yield wheat in southwestern China. To meet upcoming environmental challenges and continuous global demand for wheat production, SHW with broad genetic resources from wild donor species will play a major role in wheat breeding. Full article
(This article belongs to the Special Issue Genetics Studies on Wheat)
Show Figures

Graphical abstract

16 pages, 4465 KiB  
Article
Molecular Mapping of Biofortification Traits in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP Based Linkage Map
by Vasudha Jadon, Shashi Sharma, Hari Krishna, Gopalareddy Krishnappa, Rahul Gajghate, Narayana Bhat Devate, Kusuma Kumari Panda, Neelu Jain, Pradeep Kumar Singh and Gyanendra Pratap Singh
Genes 2023, 14(1), 221; https://doi.org/10.3390/genes14010221 - 14 Jan 2023
Cited by 10 | Viewed by 3114
Abstract
A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, [...] Read more.
A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, 2n = 14) was used to identify novel genomic regions associated in the expression of grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC) and thousand kernel weight (TKW). The RIL population was genotyped using SNPs from 35K Axiom® Wheat Breeder’s Array and 34 SSRs and phenotyped in two environments. A total of nine QTLs including five for GPC (QGpc.iari_1B, QGpc.iari_4A, QGpc.iari_4B, QGpc.iari_5D, and QGpc.iari_6B), two for GFeC (QGfec.iari_5B and QGfec.iari_6B), and one each for GZnC (QGznc.iari_7A) and TKW (QTkw.iari_4B) were identified. A total of two stable and co-localized QTLs (QGpc.iari_4B and QTkw.iari_4B) were identified on the 4B chromosome between the flanking region of Xgwm149–AX-94559916. In silico analysis revealed that the key putative candidate genes such as P-loop containing nucleoside triphosphatehydrolase, Nodulin-like protein, NAC domain, Purine permease, Zinc-binding ribosomal protein, Cytochrome P450, Protein phosphatase 2A, Zinc finger CCCH-type, and Kinesin motor domain were located within the identified QTL regions and these putative genes are involved in the regulation of iron homeostasis, zinc transportation, Fe, Zn, and protein remobilization to the developing grain, regulation of grain size and shape, and increased nitrogen use efficiency. The identified novel QTLs, particularly stable and co-localized QTLs are useful for subsequent use in marker-assisted selection (MAS). Full article
(This article belongs to the Special Issue Wheat Genomics, Genetics and Breeding)
Show Figures

Figure 1

18 pages, 5225 KiB  
Article
Novel Tetraploid Triticale (Einkorn Wheat × Rye)—A Source of Stem Rust Resistance
by Michał T. Kwiatek, Aleksandra Noweiska, Roksana Bobrowska, Adrianna Czapiewska, Mert Aygün, Francois d’Assise Munyamahoro, Sylwia Mikołajczyk, Agnieszka Tomkowiak, Danuta Kurasiak-Popowska and Paweł Poślednik
Plants 2023, 12(2), 278; https://doi.org/10.3390/plants12020278 - 7 Jan 2023
Cited by 3 | Viewed by 3064
Abstract
Among cereals, triticale (×Trititcoseale Wittmack ex A. Camus) represents a number of advantages such as high grain yield even in marginal environments, tolerance to drought, cold and acid soils, as well as lower production costs. Together with high biomass of grain and [...] Read more.
Among cereals, triticale (×Trititcoseale Wittmack ex A. Camus) represents a number of advantages such as high grain yield even in marginal environments, tolerance to drought, cold and acid soils, as well as lower production costs. Together with high biomass of grain and straw, triticale is also considered as an industrial energy crop. As an artificial hybrid, it has not evolved naturally, which is reflected in narrow genetic diversity causing a resistance collapse in recent years. Here, we describe a novel, synthetic tetraploid triticale, which was developed by the crossing of rye (Secale cereale L.) with einkorn wheat (Triticum monococcum spp. monococcum), which possess Sr35 stem rust resistance gene. Three subsequent generations of alloploids were obtained by chromosome doubling followed by self-pollination. The cytogenetic analyses revealed that the amphiploids possess a set of 28 chromosomes (14 of Am-genome and 14 of R-genome). The values of the most important yield-shaping traits for these tetraploid triticale form, including thousand-grain weight, plant height and stem length were higher compared to parental genotypes, as well as standard hexaploid triticale cultivars. This study shows that this tetraploid triticale genetic stock can be an interesting pre-breeding germplasm for triticale improvement or can be developed as a new alternative crop. Full article
(This article belongs to the Special Issue Chromosome Engineering in Plants: Genetics, Breeding, Evolution)
Show Figures

Figure 1

11 pages, 7294 KiB  
Article
Genetic Variation in Common Bunt Resistance in Synthetic Hexaploid Wheat
by Amira M. I. Mourad, Alexey Morgounov, P. Stephen Baenziger and Samar M. Esmail
Plants 2023, 12(1), 2; https://doi.org/10.3390/plants12010002 - 20 Dec 2022
Cited by 3 | Viewed by 2271
Abstract
Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using [...] Read more.
Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using fungicides in organic and low-income fields is forbidden, and planting resistant cultivars are preferred. Due to the highly effective use of fungicides, little effort has been put into breeding resistant genotypes. In addition, the genetic diversity for this trait is low in modern wheat germplasm. Synthetic wheat genotypes were reported as an effective source to increase the diversity in wheat germplasm. Therefore, a set of 25 synthetics that are resistant to the Turkish common bunt race were evaluated against the Nebraska common bunt race. Four genotypes were found to be very resistant to Nebraska’s common bunt race. Using differential lines, four isolines carrying genes, Bt10, Bt11, Bt12, and Btp, were found to provide resistance against both Turkish and Nebraska common bunt races. Genotypes carrying any or all of these four genes could be used as a source of resistance in both countries. No correlation was found between common bunt resistance and some agronomic traits, which suggests that common bunt resistance is an independent trait. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

Back to TopTop