Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,978)

Search Parameters:
Keywords = synthetic aperture radar (SAR) imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2352 KB  
Technical Note
Airborne SAR Imaging Algorithm for Ocean Waves Oriented to Sea Spike Suppression
by Yawei Zhao, Yongsheng Xu, Yanlei Du and Jinsong Chong
Remote Sens. 2026, 18(3), 397; https://doi.org/10.3390/rs18030397 - 24 Jan 2026
Viewed by 43
Abstract
Synthetic aperture radar (SAR) is widely used in the field of ocean remote sensing. However, SAR images are usually affected by sea spikes, which appear as strong echo and azimuth defocus characteristics. The texture features of ocean waves in SAR images are submerged [...] Read more.
Synthetic aperture radar (SAR) is widely used in the field of ocean remote sensing. However, SAR images are usually affected by sea spikes, which appear as strong echo and azimuth defocus characteristics. The texture features of ocean waves in SAR images are submerged by sea spikes, making them weak or even invisible. This seriously affects the further applications of SAR technology in ocean remote sensing. To address this issue, an airborne SAR imaging algorithm for ocean waves oriented to sea spike suppression is proposed in this paper. The non-stationary characteristics of sea spikes are taken into account in the proposed algorithm. The SAR echo data is transformed into the time–frequency domain by short-time Fourier transform (STFT). And the echo signals of sea spikes are suppressed in the time–frequency domain. Then, the ocean waves are imaged in focus by applying focus settings. In order to verify the effectiveness of the proposed algorithm, airborne SAR data was processed using the proposed algorithm, including SAR data with completely invisible waves and other data with weakly visible waves under sea spike influence. Through analyzing the ocean wave spectrum and imaging quality, it is confirmed that the proposed algorithm can significantly suppress sea spikes and improve the texture features of ocean waves in SAR images. Full article
(This article belongs to the Special Issue Microwave Remote Sensing on Ocean Observation)
51 pages, 1843 KB  
Systematic Review
Remote Sensing of Woody Plant Encroachment: A Global Systematic Review of Drivers, Ecological Impacts, Methods, and Emerging Innovations
by Abdullah Toqeer, Andrew Hall, Ana Horta and Skye Wassens
Remote Sens. 2026, 18(3), 390; https://doi.org/10.3390/rs18030390 - 23 Jan 2026
Viewed by 81
Abstract
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified [...] Read more.
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified through a PRISMA-guided systematic literature review to evaluate the drivers of WPE, its ecological impacts, and the remote sensing (RS) approaches used to monitor it. The drivers of WPE are multifaceted, involving interactions among climate variability, topographic and edaphic conditions, hydrological change, land use transitions, and altered fire and grazing regimes, while its impacts are similarly diverse, influencing land cover structure, water and nutrient cycles, carbon and nitrogen dynamics, and broader implications for ecosystem resilience. Over the past two decades, RS has become central to WPE monitoring, with studies employing classification techniques, spectral mixture analysis, object-based image analysis, change detection, thresholding, landscape pattern and fragmentation metrics, and increasingly, machine learning and deep learning methods. Looking forward, emerging advances such as multi-sensor fusion (optical– synthetic aperture radar (SAR), Light Detection and Ranging (LiDAR)–hyperspectral), cloud-based platforms including Google Earth Engine, Microsoft Planetary Computer, and Digital Earth, and geospatial foundation models offer new opportunities for scalable, automated, and long-term monitoring. Despite these innovations, challenges remain in detecting early-stage encroachment, subcanopy woody growth, and species-specific patterns across heterogeneous landscapes. Key knowledge gaps highlighted in this review include the need for long-term monitoring frameworks, improved socio-ecological integration, species- and ecosystem-specific RS approaches, better utilization of SAR, and broader adoption of analysis-ready data and open-source platforms. Addressing these gaps will enable more effective, context-specific strategies to monitor, manage, and mitigate WPE in rapidly changing environments. Full article
27 pages, 16408 KB  
Article
A SNR-Based Adaptive Goldstein Filter for Ionospheric Faraday Rotation Estimation Using Spaceborne Full-Polarimetric SAR Data
by Zelin Wang, Xun Wang, Dong Li and Yunhua Zhang
Remote Sens. 2026, 18(2), 378; https://doi.org/10.3390/rs18020378 - 22 Jan 2026
Viewed by 60
Abstract
The spaceborne full-polarimetric (FP) synthetic aperture radar (SAR) is an advanced sensor for high-resolution Earth observation. However, FP data acquired by such a system are prone to distortions induced by ionospheric Faraday rotation (FR). From the perspective of exploiting these distortions, this enables [...] Read more.
The spaceborne full-polarimetric (FP) synthetic aperture radar (SAR) is an advanced sensor for high-resolution Earth observation. However, FP data acquired by such a system are prone to distortions induced by ionospheric Faraday rotation (FR). From the perspective of exploiting these distortions, this enables the estimation of the ionospheric FR angle (FRA), and consequently the total electron content, across most global regions (including the extensive ocean areas) using spaceborne FP SAR measurements. The accuracy of FRA estimation, however, is highly sensitive to noise interference. This study addresses denoising in FRA retrieval based on the Bickel–Bates estimator, with a specific focus on noise reduction methods built upon the adaptive Goldstein filter (AGF) that was originally designed for radar interferometric processing. For the first time, three signal-to-noise ratio (SNR)-based AGFs suitable for FRA estimation are investigated. A key feature of these filters is that their SNRs are all defined using the amplitude of the Bickel–Bates estimator signal rather than the FRA estimates themselves. Accordingly, these AGFs are applied to the estimator signal instead of the estimated FRAs. Two of the three AGFs are developed by adopting the mathematical forms of SNRs and filter parameters consistent with the existing SNR-based AGFs for interferogram. The third AGF is newly proposed by utilizing more general mathematical forms of SNR and filter parameter that differ from the first two. Specifically, its SNR definition aligns with that widely used in image processing, and its filter parameter is derived as a function of the defined SNR plus an additionally introduced adjustable factor. The three SNR-based AGFs tailored for FRA estimation are tested and evaluated against existing AGF variants and classical image denoising methods using three sets of FP SAR Datasets acquired by the L-band ALOS PALSAR sensor, encompassing an ocean-only scene, a plain land–ocean combined scene, and a more complex land–ocean combined scene. Experimental results demonstrate that all three filters can effectively mitigate noise, with the newly proposed AGF achieving the best performance among all denoising methods included in the comparison. Full article
Show Figures

Figure 1

28 pages, 20318 KB  
Article
Hyper-ISTA-GHD: An Adaptive Hyperparameter Selection Framework for Highly Squinted Mode Sparse SAR Imaging
by Tiancheng Chen, Bailing Ding, Heli Gao, Lei Liu, Bingchen Zhang and Yirong Wu
Remote Sens. 2026, 18(2), 369; https://doi.org/10.3390/rs18020369 - 22 Jan 2026
Viewed by 28
Abstract
The highly squinted mode, as an operational configuration of synthetic aperture radar (SAR), fulfills specific remote sensing demands. Under equivalent conditions, it necessitates a higher pulse repetition frequency (PRF) than the side-looking mode but produces inferior imaging quality, thereby constraining its widespread application. [...] Read more.
The highly squinted mode, as an operational configuration of synthetic aperture radar (SAR), fulfills specific remote sensing demands. Under equivalent conditions, it necessitates a higher pulse repetition frequency (PRF) than the side-looking mode but produces inferior imaging quality, thereby constraining its widespread application. By applying the sparse SAR imaging method to highly squinted SAR systems, imaging quality can be enhanced while simultaneously reducing PRF requirements and expanding swath. Hyperparameters in sparse SAR imaging critically influence reconstruction quality and computational efficiency, making hyperparameter optimization (HPO) a persistent research focus. Inspired by HPO techniques in the deep unfolding network (DUN), we modified the iterative soft-thresholding algorithm (ISTA) employed in fast sparse SAR reconstruction based on approximate observation operators. Our adaptation enables adaptive regularization parameter tuning during iterations while accelerating convergence. To improve the robustness of this enhanced algorithm under realistic SAR echoes with noise, we integrated hypergradient descent (HD) to automatically adjust the ISTA step size after regularization parameter convergence, thereby mitigating overfitting. The proposed method, named Hyper-ISTA-GHD, adaptively selects regularization parameters and step sizes. It achieves high-precision, rapid imaging for highly squinted SAR. Owing to its training-free iterative minimization framework, this approach exhibits superior generalization capabilities compared to existing DUN methods and demonstrates broad applicability across diverse SAR imaging modes and scene characteristics. Simulations show that the hyperparameter selection and reconstruction results of the proposed method are almost consistent with the optimal values of traditional methods under different signal-to-noise ratios and sampling rates, but the time consumption is only one-tenth of that of traditional methods. Comparative experiments on the generalization performance with DUN show that the generalization performance of the proposed method is significantly better than DUN in extremely sparse scenarios. Full article
Show Figures

Figure 1

3 pages, 144 KB  
Correction
Correction: Xu et al. MC-ASFF-ShipYOLO: Improved Algorithm for Small-Target and Multi-Scale Ship Detection for Synthetic Aperture Radar (SAR) Images. Sensors 2025, 25, 2940
by Yubin Xu, Haiyan Pan, Lingqun Wang and Ran Zou
Sensors 2026, 26(2), 696; https://doi.org/10.3390/s26020696 - 21 Jan 2026
Viewed by 91
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
22 pages, 13053 KB  
Article
Lightweight Complex-Valued Siamese Network for Few-Shot PolSAR Image Classification
by Yinyin Jiang, Rongzhen Du, Wanying Song, Peng Zhang, Lei Liu and Zhenxi Zhang
Remote Sens. 2026, 18(2), 344; https://doi.org/10.3390/rs18020344 - 20 Jan 2026
Viewed by 76
Abstract
Complex-valued convolutional neural networks (CVCNNs) have demonstrated strong capabilities for polarimetric synthetic aperture radar (PolSAR) image classification by effectively integrating both amplitude and phase information inherent in polarimetric data. However, their practical deployment faces significant challenges due to high computational costs and performance [...] Read more.
Complex-valued convolutional neural networks (CVCNNs) have demonstrated strong capabilities for polarimetric synthetic aperture radar (PolSAR) image classification by effectively integrating both amplitude and phase information inherent in polarimetric data. However, their practical deployment faces significant challenges due to high computational costs and performance degradation caused by extremely limited labeled samples. To address these challenges, a lightweight CV Siamese network (LCVSNet) is proposed for few-shot PolSAR image classification. Considering the constraints of limited hardware resources in practical applications, simple one-dimensional (1D) CV convolutions along the scattering dimension are combined with two-dimensional (2D) lightweight CV convolutions. In this way, the inter-element dependencies of polarimetric coherency matrix and the spatial correlations between neighboring units can be captured effectively, while simultaneously reducing computational costs. Furthermore, LCVSNet incorporates a contrastive learning (CL) projection head to explicitly optimize the feature space. This optimization can effectively enhance the feature discriminability, leading to accurate classification with a limited number of labeled samples. Experiments on three real PolSAR datasets demonstrate the effectiveness and practical utility of LCVSNet for PolSAR image classification with a small number of labeled samples. Full article
Show Figures

Figure 1

27 pages, 27172 KB  
Article
Shadow Spatiotemporal Track-Before-Detect Approach for Distributed UAV-Borne Video SAR
by Liwu Wen, Ming Ke, Ming Jiang, Jinshan Ding and Xuejun Huang
Remote Sens. 2026, 18(2), 343; https://doi.org/10.3390/rs18020343 - 20 Jan 2026
Viewed by 267
Abstract
Shadow detection has become a key technology for ground-based moving target indication in video synthetic aperture radar (SAR). However, single-platform video SAR faces the issue of moving-target shadows being occluded. This paper proposes a new dynamic programming-based spatiotemporal track-before-detect (DP-ST-TBD) algorithm for moving-target [...] Read more.
Shadow detection has become a key technology for ground-based moving target indication in video synthetic aperture radar (SAR). However, single-platform video SAR faces the issue of moving-target shadows being occluded. This paper proposes a new dynamic programming-based spatiotemporal track-before-detect (DP-ST-TBD) algorithm for moving-target shadow indication based on a distributed unmanned aerial vehicle (UAV)-borne video SAR system. First, this approach establishes a spatiotemporal cooperative shadow detection model, which extends the temporal accumulation of traditional DP-TBD to spatiotemporal accumulation by state temporal transition and spatial mapping. Second, an adaptive state transition method is proposed to address the challenge in which the fixed-state transition of traditional DP-TBD struggles with maneuvering target detection. It utilizes target’s Doppler features from heterogeneous-view range-Doppler (RD) spectra to assist in target’s shadow search within the image domain. Finally, a state shrinking–sparseness strategy is used to reduce the computational burden caused by dense states in spatiotemporal search; thus, multi-platform, multi-frame accumulation of moving-target shadows can be realized based on sparse states. The comparative experiments demonstrate that the proposed DP-ST-TBD improves shadow-detection performance through heterogeneous-view measurements while reducing the required number of frames for reliable detection compared to the conventional two-step detection method (single-platform shadow detection followed by multi-platform track fusion). Full article
Show Figures

Figure 1

23 pages, 5986 KB  
Article
Modulation and Perturbation in Frequency Domain for SAR Ship Detection
by Mengqin Fu, Wencong Zhang, Xiaochen Quan, Dahu Shi, Luowei Tan, Jia Zhang, Yinghui Xing and Shizhou Zhang
Remote Sens. 2026, 18(2), 338; https://doi.org/10.3390/rs18020338 - 20 Jan 2026
Viewed by 96
Abstract
Synthetic Aperture Radar (SAR) has unique advantages in ship monitoring at sea due to its all-weather imaging capability. However, its unique imaging mechanism presents two major challenges. First, speckle noise in the frequency domain reduces the contrast between the target and the background. [...] Read more.
Synthetic Aperture Radar (SAR) has unique advantages in ship monitoring at sea due to its all-weather imaging capability. However, its unique imaging mechanism presents two major challenges. First, speckle noise in the frequency domain reduces the contrast between the target and the background. Second, side-lobe scattering blurs the ship outline, especially in nearshore complex scenes, and strong scattering characteristics make it difficult to separate the target from the background. The above two challenges significantly limit the performance of tailored CNN-based detection models in optical images when applied directly to SAR images. To address these challenges, this paper proposes a modulation and perturbation mechanism in the frequency domain based on a lightweight CNN detector. Specifically, the wavelet transform is firstly used to extract high-frequency features in different directions, and feature expression is dynamically adjusted according to the global statistical information to realize the selective enhancement of the ship edge and detail information. In terms of frequency-domain perturbation, a perturbation mechanism guided by frequency-domain weight is introduced to effectively suppress background interference while maintaining key target characteristics, which improves the robustness of the model in complex scenes. Extensive experiments on four widely adopted benchmark datasets, namely LS-SSDD-v1.0, SSDD, SAR-Ship-Dataset, and AIR-SARShip-2.0, demonstrate that our FMP-Net significantly outperforms 18 existing state-of-the-art methods, especially in complex nearshore scenes and sea surface interference scenes. Full article
Show Figures

Figure 1

24 pages, 5196 KB  
Article
An Optical–SAR Remote Sensing Image Automatic Registration Model Based on Multi-Constraint Optimization
by Yaqi Zhang, Shengbo Chen, Xitong Xu, Jiaqi Yang, Yuqiao Suo, Jinchen Zhu, Menghan Wu, Aonan Zhang and Qiqi Li
Remote Sens. 2026, 18(2), 333; https://doi.org/10.3390/rs18020333 - 19 Jan 2026
Viewed by 174
Abstract
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric [...] Read more.
Accurate registration of optical and synthetic aperture radar (SAR) images is a fundamental prerequisite for multi-source remote sensing data fusion and analysis. However, due to the substantial differences in imaging mechanisms, optical–SAR image pairs often exhibit significant radiometric discrepancies and spatially varying geometric inconsistencies, which severely limit the robustness of traditional feature or region-based registration methods in cross-modal scenarios. To address these challenges, this paper proposes an end-to-end Optical–SAR Registration Network (OSR-Net) based on multi-constraint joint optimization. The proposed framework explicitly decouples cross-modal feature alignment and geometric correction, enabling robust registration under large appearance variation. Specifically, a multi-modal feature extraction module constructs a shared high-level representation, while a multi-scale channel attention mechanism adaptively enhances cross-modal feature consistency. A multi-scale affine transformation prediction module provides a coarse-to-fine geometric initialization, which stabilizes parameter estimation under complex imaging conditions. Furthermore, an improved spatial transformer network is introduced to perform structure-preserving geometric refinement, mitigating spatial distortion induced by modality discrepancies. In addition, a multi-constraint loss formulation is designed to jointly enforce geometric accuracy, structural consistency, and physical plausibility. By employing a dynamic weighting strategy, the optimization process progressively shifts from global alignment to local structural refinement, effectively preventing degenerate solutions and improving robustness. Extensive experiments on public optical–SAR datasets demonstrate that the proposed method achieves accurate and stable registration across diverse scenes, providing a reliable geometric foundation for subsequent multi-source remote sensing data fusion. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

19 pages, 14577 KB  
Article
The Sequential Joint-Scatterer InSAR for Sentinel-1 Long-Term Deformation Estimation
by Jinbao Zhang, Wei Duan, Huihua Hu, Huiming Chai, Ye Yun and Xiaolei Lv
Remote Sens. 2026, 18(2), 329; https://doi.org/10.3390/rs18020329 - 19 Jan 2026
Viewed by 171
Abstract
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques have received rapid advance in recent years, and the Multi-temporal InSAR (MT-InSAR) has been widely applied in various earth observations. Distributed scatterer (DS) InSAR is one of the most advanced MT-InSAR methods, and has [...] Read more.
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques have received rapid advance in recent years, and the Multi-temporal InSAR (MT-InSAR) has been widely applied in various earth observations. Distributed scatterer (DS) InSAR is one of the most advanced MT-InSAR methods, and has overcome the limitation of the lack of enough measurement points in the low coherent regions for traditional methods. While the Joint-Scatterer InSAR (JS-InSAR) is the extension of DS InSAR method, which exploited the overall information of Joint Scatterers to carry out DS identification and phase optimization. And it can avoid the inaccuracy caused by the offset errors between scatterers in complex terrain areas. However, the intensive computation and low efficiency have severely restricted the application of JS-InSAR, especially when dealing with massive and long historical SAR images. As the sequential estimator has proven to successfully improve the efficiency of MT-InAR and obtain near-time deformation time series, in this work, we proposed the sequential-based JS-InSAR (S-JSInSAR) method with flexible batches. This method has adaptively divided large single look complex (SLC) stack into different batches with flexible number and certain overlaps. Then, the JS-InSAR processing is performed on each batch, respectively, and these estimated results are integrated into the final deformation time series based on the connection mode. Thus, S-JSInSAR can efficiently process large InSAR dataset, and mitigate the decorrelation effect caused by long temporal baselines. To demonstrate the effectiveness of the S-JSInSAR, a multi-year of 145 Sentinel-1 ascending SAR images in Tangshan, China, were collected to estimate the long deformation time series. And the results compared with other methods have shown the processing time has substantially decreased without the loss of deformation accuracy, and obtain deformation spatial distribution with more details in local regions, which have well validated the efficiency and reliability of the proposed method. Full article
Show Figures

Figure 1

23 pages, 40663 KB  
Article
Time Series Analysis of Fucheng-1 Interferometric SAR for Potential Landslide Monitoring and Synergistic Evaluation with Sentinel-1 and ALOS-2
by Guangmin Tang, Keren Dai, Feng Yang, Weijia Ren, Yakun Han, Chenwen Guo, Tianxiang Liu, Shumin Feng, Chen Liu, Hao Wang, Chenwei Zhang and Rui Zhang
Remote Sens. 2026, 18(2), 304; https://doi.org/10.3390/rs18020304 - 16 Jan 2026
Viewed by 117
Abstract
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series [...] Read more.
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series monitoring capability, is still lacking. This study applies the Small Baseline Subset (SBAS-InSAR) method to conduct the first systematic processing and evaluation of 22 Fucheng-1 images acquired between 2023 and 2024. A total of 45 potential landslides were identified and subsequently validated through field investigations and UAV-based LiDAR data. Comparative analysis with Sentinel-1 and ALOS-2 indicates that Fucheng-1 demonstrates superior performance in small-scale deformation identification, temporal-variation characterization, and maintaining a high density of coherent pixels. Specifically, in the time-series InSAR-based potential landslide identification, Fucheng-1 identified 13 small-scale potential landslides, whereas Sentinel-1 identified none; the number of identifications is approximately 2.17 times that of ALOS-2. For time-series subsidence monitoring, the deformation magnitudes retrieved from Fucheng-1 are generally larger than those from Sentinel-1, mainly attributable to finer spatial sampling enabled by its higher spatial resolution and a higher maximum detectable deformation gradient. Moreover, as landslide size decreases, the advantages of Fucheng-1 in deformation identification and subsidence estimation become increasingly evident. Interferometric results further show that the number of high-coherence pixels for Fucheng-1 is 7–8 times that of co-temporal Sentinel-1 and 1.1–1.4 times that of ALOS-2, providing more high-quality observations for time-series inversion and thereby supporting a more detailed and spatially continuous reconstruction of deformation fields. Meanwhile, the orbital stability of Fucheng-1 is comparable to that of Sentinel-1, and its maximum detectable deformation gradient in mountainous terrain reaches twice that of Sentinel-1. Overall, this study provides the first systematic validation of the time-series InSAR capability of Fucheng-1 under complex terrain conditions, offering essential support and a solid foundation for the operational deployment of InSAR technologies based on China’s domestic SAR satellite constellation. Full article
Show Figures

Graphical abstract

30 pages, 6462 KB  
Article
High Frame Rate ViSAR Based on OAM Beams: Imaging Model and Imaging Algorithm
by Xiaopeng Li, Liying Xu, Yongfei Mao, Weisong Li, Yinwei Li, Hongqiang Wang and Yiming Zhu
Remote Sens. 2026, 18(2), 294; https://doi.org/10.3390/rs18020294 - 15 Jan 2026
Viewed by 266
Abstract
High frame rate imaging of synthetic aperture radar (SAR), also known as video SAR (ViSAR), has attracted extensive research in recent years. When ViSAR system parameters are fixed, there is a technical trade-off between high frame rates and high resolution. In traditional ViSAR, [...] Read more.
High frame rate imaging of synthetic aperture radar (SAR), also known as video SAR (ViSAR), has attracted extensive research in recent years. When ViSAR system parameters are fixed, there is a technical trade-off between high frame rates and high resolution. In traditional ViSAR, the frame rate is usually increased by increasing the carrier frequency to increase the azimuth modulation frequency and reducing the synthetic aperture time. This paper attempts to propose a strip non-overlapping mode ViSAR based on Orbital Angular Momentum (OAM) beams, which uses the topological charge of vortex electromagnetic wave (VEW) to improve the azimuth modulation frequency, to improve the frame rate. By introducing the concept of VEW frame splitting, a corresponding time-varying topological charge mode is designed for ViSAR imaging. This design successfully introduces an additional azimuth modulation frequency while maintaining the original imaging resolution, thus significantly improving the frame rate performance of the ViSAR system. However, the Bessel function term in VEW causes amplitude modulation in the echo signal, while the additional frequency modulation causes the traditional matching filter to fail. To address these problems, an improved Range-Doppler algorithm (RDA) is proposed in this paper. By employing the range cell center approximation method, the negative effect of the Bessel function on imaging is reduced effectively. Furthermore, for the introduction of tuning frequency, the azimuth matched filter is specially improved, which effectively prevents the defocusing issues caused by the mismatch of tuning frequency. Finally, the computer simulation results prove that the ViSAR system and imaging algorithm based on VEW can effectively improve the frame rate of ViSAR and maintain the imaging resolution, which provides a research direction for the development of ViSAR technology. Full article
Show Figures

Figure 1

22 pages, 15950 KB  
Article
An Automatic Identification Method for Large-Scale Landslide Hazard Potential Integrating InSAR and CRF-Faster RCNN: A Case Study of Ahai Reservoir Area in Jinsha River Basin
by Yujuan Dong, Yongfa Li, Xiaoqing Zuo, Na Liu, Xiaona Gu, Haoyi Shi, Rukun Jiang, Fangzhen Guo, Zhengxiong Gu and Yongzhi Chen
Remote Sens. 2026, 18(2), 283; https://doi.org/10.3390/rs18020283 - 15 Jan 2026
Viewed by 203
Abstract
Currently, the manual delineation of landslide anomalies from Interferometric Synthetic Aperture Radar(InSAR )deformation data is labor-intensive and time-consuming, creating a major bottleneck for operational large-scale landslide mapping. This study proposes an automated approach for large-scale landslide identification by integrating InSAR technology with an [...] Read more.
Currently, the manual delineation of landslide anomalies from Interferometric Synthetic Aperture Radar(InSAR )deformation data is labor-intensive and time-consuming, creating a major bottleneck for operational large-scale landslide mapping. This study proposes an automated approach for large-scale landslide identification by integrating InSAR technology with an improved Faster Regional Convolutional Neural Network (Faster R-CNN). First, surface deformation over the study area was obtained using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique. An enhanced CRF-Faster R-CNN model was then developed by incorporating a Residual Network with 50 layers (ResNet-50)-based backbone, strengthened with a Convolutional Block Attention Module (CBAM), within a Feature Pyramid Network (FPN) framework. This model was applied to deformation velocity maps for the automated detection of landslide-prone areas. Preliminary results were subsequently validated and refined using optical images to produce a final landslide inventory. The proposed method was evaluated in the Ahai Reservoir area of the Jinsha River Basin using 248 ascending and descending Sentinel-1A images acquired between January 2019 and December 2021. Its performance was compared with that of the standard Faster R-CNN model. The results indicate that the CRF-Faster R-CNN model outperforms the conventional approach in terms of landslide anomaly detection, convergence speed, and overall accuracy. A total of 38 potential landslide hazards were identified in the Ahai Reservoir area, with an 84% validation accuracy confirmed through field investigations. This study provides crucial technical support for the rapid identification and operational application of large-scale potential landslide hazards. Full article
Show Figures

Figure 1

32 pages, 51773 KB  
Article
SAR Radio Frequency Interference Suppression Based on Kurtosis-Guided Attention Network
by Jiajun Wu, Jiayuan Shen, Bing Han, Di Yin and Jiaxin Wan
Remote Sens. 2026, 18(2), 255; https://doi.org/10.3390/rs18020255 - 13 Jan 2026
Viewed by 151
Abstract
Radio-frequency interference (RFI) severely degrades the imaging quality of synthetic aperture radar (SAR), especially when the interference energy is strongly coupled with ground backscatter in both the time and frequency domains. Existing algorithms typically rely on energy contrast or component decomposition in transform [...] Read more.
Radio-frequency interference (RFI) severely degrades the imaging quality of synthetic aperture radar (SAR), especially when the interference energy is strongly coupled with ground backscatter in both the time and frequency domains. Existing algorithms typically rely on energy contrast or component decomposition in transform domains, which limits their ability to cleanly separate complex RFI from high-power echoes. Exploiting the fact that kurtosis is insensitive to ground clutter and background noise, this paper proposes an interference suppression network based on the temporal kurtosis guidance mechanism. Specifically, a statistical prior vector capturing the non-Gaussian characteristics of RFI is constructed using kurtosis in the time–frequency domain and is integrated into a multi-scale attention mechanism, allowing the network to more effectively concentrate on interfered regions. Meanwhile, a systematic framework is established for the quantitative assessment of phase fidelity in the reconstruction of complex-valued SAR echoes. On this basis, by exploiting the strong generalization capability and high processing efficiency of data-driven models, the proposed network achieves improved RFI separation and enhanced reconstruction accuracy of underlying scene features. Ablation experiments validated that the design of a kurtosis-guided module can reduce the mean square error (MSE) loss by 14.87% compared to the basic model. Furthermore, regarding the phase fidelity, the correlation coefficient between the suppressed signal and the original true signal reached 0.99. Finally, GF-3 satellite data are used to further demonstrate the effectiveness and practicality of the proposed method. Full article
Show Figures

Graphical abstract

29 pages, 2164 KB  
Article
Electromagnetic Scattering Characteristic-Enhanced Dual-Branch Network with Simulated Image Guidance for SAR Ship Classification
by Yanlin Feng, Xikai Fu, Shangchen Feng, Xiaolei Lv and Yiyi Wang
Remote Sens. 2026, 18(2), 252; https://doi.org/10.3390/rs18020252 - 13 Jan 2026
Viewed by 173
Abstract
Synthetic aperture radar (SAR), with its unique imaging principle and technical characteristics, has significant advantages in surface observation and thus has been widely applied in tasks such as object detection and target classification. However, limited by the lack of labeled SAR image datasets, [...] Read more.
Synthetic aperture radar (SAR), with its unique imaging principle and technical characteristics, has significant advantages in surface observation and thus has been widely applied in tasks such as object detection and target classification. However, limited by the lack of labeled SAR image datasets, the accuracy and generalization ability of the existing models in practical applications still need to be improved. In order to solve this problem, this paper proposes a spaceborne SAR image simulation technology and innovatively introduces the concept of bounce number map (BNM), establishing a high-resolution, parameterized simulated data support system for target recognition and classification tasks. In addition, an electromagnetic scattering characteristic-enhanced dual-branch network with simulated image guidance for SAR ship classification (SeDSG) was designed in this paper. It adopts a multi-source data utilization strategy, taking SAR images as the main branch input to capture the global features of real scenes, and using simulated data as the auxiliary branch input to excavate the electromagnetic scattering characteristics and detailed structural features. Through feature fusion, the advantages of the two branches are integrated to improve the adaptability and stability of the model to complex scenes. Experimental results show that the classification accuracy of the proposed network is improved on the OpenSARShip and FUSAR-Ship datasets. Meanwhile, the transfer learning classification results based on the SRSDD dataset verify the enhanced generalization and adaptive capabilities of the network, providing a new approach for data classification tasks with an insufficient number of samples. Full article
Show Figures

Figure 1

Back to TopTop