Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = synergy compliance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 313 KiB  
Article
Sustainability and Profitability of Large Manufacturing Companies
by Iveta Mietule, Rasa Subaciene, Jelena Liksnina and Evalds Viskers
J. Risk Financial Manag. 2025, 18(8), 439; https://doi.org/10.3390/jrfm18080439 - 6 Aug 2025
Abstract
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, [...] Read more.
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, this study applies a mixed-method approach (that consists of two analytical stages) suited to the limited availability and reliability of ESG-related data in the Latvian manufacturing sector. Financial indicators from three large firms—AS MADARA COSMETICS, AS Latvijas Finieris, and AS Valmiera Glass Grupa—are compared with industry averages over the 2019–2023 period using independent sample T-tests. ESG integration is evaluated through a six-stage conceptual schema ranging from symbolic compliance to performance-driven sustainability. The results show that AS MADARA COSMETICS, which demonstrates advanced ESG integration aligned with international standards, significantly outperforms its industry in all profitability metrics. In contrast, the other two companies remain at earlier ESG maturity stages and show weaker financial performance, with sustainability disclosures limited to general statements and outdated indicators. These findings support the synergy hypothesis in contexts where sustainability is internalized and operationalized, while also highlighting structural constraints—such as resource scarcity and fragmented data—that may limit ESG-financial alignment in post-transition economies. This study offers practical guidance for firms seeking competitive advantage through strategic ESG integration and recommends policy actions to enhance ESG transparency and performance in Latvia, including performance-based reporting mandates, ESG data infrastructure, and regulatory alignment with EU directives. These insights contribute to the growing empirical literature on ESG effectiveness under constrained institutional and economic conditions. Full article
(This article belongs to the Section Business and Entrepreneurship)
16 pages, 3177 KiB  
Article
Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
by Zhonggen Li, Qingfeng Wang, Li Tang, Liangliang Yang and Guangyi Sun
Toxics 2025, 13(7), 593; https://doi.org/10.3390/toxics13070593 - 15 Jul 2025
Viewed by 373
Abstract
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, [...] Read more.
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, and Ni concentrations in MSWI-FA from 11 representative facilities across China and assessed the efficacy of a three-stage water washing process for Cl and heavy metal removal. The results revealed significant regional variations in heavy metal content that were strongly correlated with surface soil levels, with Zn, Pb, and Cu exhibiting the highest concentrations. Elemental correlations, such as Cu-Pb and Zn-Cd synergies and Cd-Ni antagonism, suggest common waste sources and temperature-dependent volatilization during incineration. The washing process (solid–liquid ratio = 1:10) achieved 97.1 ± 2.0% Cl removal, reducing residual Cl to 0.45 ± 0.32%, but demonstrated limited heavy metal elimination (10.28–19.38% efficiency), resulting in elevated concentrations (32.5–60.8% increase) due to 43.4 ± 9.2% mass loss. Notably, the washing effluents exceeded municipal wastewater discharge limits by up to 52-fold for Pb and 38-fold for Cd, underscoring the need for advanced effluent treatment. To mitigate environmental risks, the addition of washed MSWI-FA in cement kilns should be restricted to ≤0.5%, with Cd content prioritized in pre-disposal assessments. This study provides actionable insights for optimizing MSWI-FA co-processing while ensuring compliance with ecological safety standards. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Graphical abstract

20 pages, 20845 KiB  
Article
Research on Active Disturbance Rejection Control of Rigid–Flexible Coupled Constant Force Actuator
by Chuanxing Jiang, Zhijun Yang, Jun Zheng, Bangshang Fu and Youdun Bai
Actuators 2025, 14(7), 325; https://doi.org/10.3390/act14070325 - 30 Jun 2025
Viewed by 292
Abstract
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude ( [...] Read more.
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude (106103 N/m), facilitating effective force management through millimeter-scale placement (0.1∼1 mm) and inherently mitigating high-frequency disturbances. The ADRC framework, augmented by an Extended State Observer (ESO), dynamically assesses and compensates for internal nonlinearities (such as friction hysteresis) and external disturbances without necessitating accurate system models. Experimental results indicate enhanced performance compared to PID control: under dynamic disturbances, force deviations are limited to ±0.2 N with a 98.5% reduction in mean absolute error, a 96.3% increase in settling speed, and 99% suppression of oscillations. The co-design of mechanical compliance with model-free control addresses the constraints of traditional high-stiffness systems, providing a scalable solution for industrial robots, compliant material processing, and medical device operations. Validation of the prototype under sinusoidal perturbations demonstrates reliable force regulation (settling time <0.56 s, errors <0.5 N), underscoring its relevance in dynamic situations. This study integrates theoretical innovation with experimental precision, enhancing intelligent manufacturing systems via adaptive control and structural synergy. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

21 pages, 1905 KiB  
Article
Monitoring and Evaluation of Water Quality from Chirita Lake, Romania
by Madalina Elena Abalasei, Daniel Toma and Carmen Teodosiu
Water 2025, 17(13), 1844; https://doi.org/10.3390/w17131844 - 20 Jun 2025
Cited by 1 | Viewed by 528
Abstract
Water management is a significant challenge, stimulating synergies between scientists and practitioners to create new tools and approaches to streamline decision making in this field. The assessment and monitoring of freshwater quality in surface water bodies are crucial for sustainable and safe water [...] Read more.
Water management is a significant challenge, stimulating synergies between scientists and practitioners to create new tools and approaches to streamline decision making in this field. The assessment and monitoring of freshwater quality in surface water bodies are crucial for sustainable and safe water management. The main objectives of this study were to analyze the characteristics and properties of Chirita lake, assess seasonal variations in water quality, determine compliance with national environmental legislation, and perform a comparison with monitoring systems in other European lakes. The study used data that determined water quality indicators for a five-year period, from 2020 to 2024, considering temperature, turbidity, pH, conductivity, alkalinity, hardness, organic matter, nitrates, nitrites, ammonium, and chlorides. The statistical analysis technique based on the Pearson correlation coefficient was used to evaluate the seasonal correlations of water quality parameters in Chirita lake and to extract the essential parameters for assessing seasonal variations in river water quality. The results obtained indicated that the indicators considered important for water quality variation in one season may not be important in another season, except for organic matter and conductivity, which showed a significant contribution to water quality variation throughout the four seasons. This study demonstrated that lake water is classified as first class, according to national regulations. These results provide valuable support for local authorities to develop effective strategies for water quality management and the prevention of eutrophication processes in reservoirs. Full article
Show Figures

Figure 1

23 pages, 3205 KiB  
Article
The Dynamic Bidirectional Causality Between Carbon Pricing and Green Technology Innovation in China: A Sub-Sample Time-Varying Approach
by Yumei Guan, Chiwei Su and Tao Guan
Sustainability 2025, 17(12), 5371; https://doi.org/10.3390/su17125371 - 11 Jun 2025
Viewed by 484
Abstract
This study examined the dynamic relationship between China’s carbon pricing (CP) and green technology innovation (GTI) using monthly data from August 2013 to February 2025 through sub-sample rolling-window Granger causality tests. The results revealed a time-varying bidirectional relationship where CP significantly promotes GTI [...] Read more.
This study examined the dynamic relationship between China’s carbon pricing (CP) and green technology innovation (GTI) using monthly data from August 2013 to February 2025 through sub-sample rolling-window Granger causality tests. The results revealed a time-varying bidirectional relationship where CP significantly promotes GTI during periods when innovation offset effects dominate (such as from July to October 2021 and October 2023 to March 2024), but inhibits GTI when compliance cost effects prevail (as observed from February to June 2022). Conversely, GTI alternately suppressed CP from June to November 2017 and enhanced it from February to July 2024. These patterns demonstrate that the interaction between CP and GTI is critically shaped by three key factors: policy synergy between carbon markets and complementary environmental regulations, international competitive pressures from carbon border mechanisms, and financial market capacity to support green investments. Based on these findings, we propose a comprehensive policy framework that includes expanding emissions trading to heavy industries, implementing dynamic CP stabilization mechanisms, introducing innovation-linked quota incentives with 1.1 to 1.5 multipliers, and developing integrated green financial instruments. This framework can effectively align CP with GTI to accelerate China’s low-carbon transition while maintaining industrial competitiveness. Full article
Show Figures

Figure 1

30 pages, 1170 KiB  
Review
Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability
by Tao Liu, Miaoxin He, Rui Shi, Hui Yin and Wen Luo
Fermentation 2025, 11(6), 312; https://doi.org/10.3390/fermentation11060312 - 30 May 2025
Viewed by 1012
Abstract
Global demands for sustainable energy and advanced therapeutics necessitate innovative interdisciplinary solutions. Integrated biorefining emerges as a strategic response, enabling the co-production of biofuels and pharmaceutical compounds through biomass valorization. This integrated model holds promise in enhancing resource utilization efficiency while ensuring economic [...] Read more.
Global demands for sustainable energy and advanced therapeutics necessitate innovative interdisciplinary solutions. Integrated biorefining emerges as a strategic response, enabling the co-production of biofuels and pharmaceutical compounds through biomass valorization. This integrated model holds promise in enhancing resource utilization efficiency while ensuring economic viability. Our critical review methodically evaluates seven pivotal methodologies: seven key strategies: microbial metabolites, synthetic biology platforms, biorefinery waste extraction, nanocatalysts, computer-aided design, extremophiles, and plant secondary metabolites. Through systematic integration of these approaches, we reveal pivotal synergies and potential technological innovations that can propel multi-product biorefinery systems. Persistent challenges, particularly in reconciling complex metabolic flux balancing with regulatory compliance requirements, are analyzed. Nevertheless, advancements in systems biology, next-generation bioprocess engineering, and artificial intelligence-enhanced computational modeling present viable pathways for overcoming these obstacles. This comprehensive analysis substantiates the transformative capacity of integrated biorefining in establishing a circular bioeconomy framework, while underscoring the imperative of transdisciplinary cooperation to address existing technical and policy constraints. Full article
(This article belongs to the Special Issue Biofuels and Green Technology)
Show Figures

Figure 1

31 pages, 6518 KiB  
Review
A Review of Industrial Load Flexibility Enhancement for Demand-Response Interaction
by Jiubo Zhang, Bowen Zhou, Zhile Yang, Yuanjun Guo, Chen Lv, Xiaofeng Xu and Jichun Liu
Sustainability 2025, 17(11), 4938; https://doi.org/10.3390/su17114938 - 27 May 2025
Viewed by 738
Abstract
The global transition toward low-carbon energy systems necessitates fundamental innovations in demand-side flexibility, particularly in industrial load regulation. This study presents a systematic review and critical analysis of 90 key research works (2015–2025) to establish a comprehensive framework for industrial load flexibility enhancement. [...] Read more.
The global transition toward low-carbon energy systems necessitates fundamental innovations in demand-side flexibility, particularly in industrial load regulation. This study presents a systematic review and critical analysis of 90 key research works (2015–2025) to establish a comprehensive framework for industrial load flexibility enhancement. We rigorously examined the tripartite interdependencies among the following: (1) Multi-energy flow physical coupling, addressing temporal-scale disparities in electricity-thermal-gas coordination under renewable penetration; (2) Uncertainty quantification, integrating data-driven and physics-informed modeling for robust decision-making; (3) Market mechanism synergy, analyzing demand response, carbon-P2P hybrid markets, and regulatory policy impacts. Our analysis reveals three fundamental challenges: the accuracy-stability trade-off in cross-timescale optimization, the policy-model disconnect in carbon-aware scheduling, and the computational complexity barrier for real-time industrial applications. The paper further proposes a roadmap for next-generation industrial load regulation systems, emphasizing co-optimization of technical feasibility, economic viability, and policy compliance. These findings advance both academic research and practical implementations for carbon-neutral power systems. Full article
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 708
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

37 pages, 5718 KiB  
Review
Survey of Blockchain-Based Applications for IoT
by Ahmad Enaya, Xavier Fernando and Rasha Kashef
Appl. Sci. 2025, 15(8), 4562; https://doi.org/10.3390/app15084562 - 21 Apr 2025
Viewed by 4378
Abstract
The rapid growth of the Internet of Things (IoT) has introduced critical challenges related to security, scalability, and data integrity. Blockchain technology, with its decentralized, immutable, and tamper-resistant framework, presents a transformative solution to address these challenges. This study explores blockchain applications in [...] Read more.
The rapid growth of the Internet of Things (IoT) has introduced critical challenges related to security, scalability, and data integrity. Blockchain technology, with its decentralized, immutable, and tamper-resistant framework, presents a transformative solution to address these challenges. This study explores blockchain applications in the IoT, focusing on security, automation, scalability, and data sharing. Industry-specific applications, including supply chain management, smart cities, and healthcare, highlight the potential of blockchains to optimize operations, ensure compliance, and foster innovation. Additionally, blockchain technology enables robust audit trails, enhances accountability, and reduces fraud in sensitive IoT applications, such as finance and healthcare. The synergy between blockchains and the IoT creates a secure and transparent platform for managing device interoperability and data exchange, fostering seamless communication between diverse IoT components. Furthermore, this paper discusses layer 2 scaling techniques and tokenization to address scalability, ownership, monetization, and cost challenges, providing practical solutions for real-world deployments. Future directions emphasize integrating blockchain systems with artificial intelligence (AI), machine learning (ML), and edge computing, offering groundbreaking capabilities to further revolutionize IoT ecosystems. By merging these advanced technologies, organizations can build secure, scalable, and intelligent systems to drive innovation and trust. Full article
(This article belongs to the Special Issue Recent Advances in AI-Enabled Wireless Communications and Networks)
Show Figures

Figure 1

17 pages, 3569 KiB  
Article
Incorporating Recycled Textile Fibers into Stone Mastic Asphalt
by Carlos Alonso-Troyano, David Llopis-Castelló and Blanca Olaso-Cerveró
Buildings 2025, 15(8), 1310; https://doi.org/10.3390/buildings15081310 - 16 Apr 2025
Cited by 2 | Viewed by 599
Abstract
The increasing environmental impact of industrial waste, particularly from the textile sector, has driven efforts to integrate alternative materials into road construction. This study explores the feasibility of incorporating recycled cotton textile fibers into Stone Mastic Asphalt (SMA) mixtures to enhance their mechanical [...] Read more.
The increasing environmental impact of industrial waste, particularly from the textile sector, has driven efforts to integrate alternative materials into road construction. This study explores the feasibility of incorporating recycled cotton textile fibers into Stone Mastic Asphalt (SMA) mixtures to enhance their mechanical performance and sustainability. The bituminous mixture SMA 11 surf 35/50 was designed with 0.3% textile fibers, a dosage optimized to prevent binder drainage while maintaining adequate structural properties. Laboratory tests were conducted to evaluate bulk and maximum density, air void content, water sensitivity, and resistance to permanent deformation. The results demonstrated that the inclusion of 0.3% textile fibers significantly reduced binder drainage, improved moisture resistance with an ITSR of 96.30%, and enhanced stability under traffic loads. Although the WTSAIR value of 0.12 mm/1000 cycles did not fully comply with PG-3 requirements for T2 traffic, slight adjustments in binder content or composition could optimize performance. Beyond technical benefits, this study highlights the environmental and economic advantages of repurposing locally generated textile waste, reducing landfill accumulation, and fostering synergies between industries. Future research should focus on optimizing bitumen content, conducting fatigue and aging tests, and validating field performance under real traffic and environmental conditions to ensure long-term durability and compliance with road specifications. Full article
(This article belongs to the Special Issue Advances in Road Pavements)
Show Figures

Figure 1

16 pages, 2327 KiB  
Article
A Computational Model of Hybrid Trunk-like Robots for Synergy Formation in Anticipation of Physical Interaction
by Pietro Morasso
Biomimetics 2025, 10(1), 21; https://doi.org/10.3390/biomimetics10010021 - 2 Jan 2025
Cited by 1 | Viewed by 826
Abstract
Trunk-like robots have attracted a lot of attention in the community of researchers interested in the general field of bio-inspired soft robotics, because trunk-like soft arms may offer high dexterity and adaptability very similar to elephants and potentially quite superior to traditional articulated [...] Read more.
Trunk-like robots have attracted a lot of attention in the community of researchers interested in the general field of bio-inspired soft robotics, because trunk-like soft arms may offer high dexterity and adaptability very similar to elephants and potentially quite superior to traditional articulated manipulators. In view of the practical applications, the integration of a soft hydrostatic segment with a hard-articulated segment, i.e., a hybrid kinematic structure similar to the elephant’s body, is probably the best design framework. It is proposed that this integration should occur at the conceptual/cognitive level before being implemented in specific soft technologies, including the related control paradigms. The proposed modeling approach is based on the passive motion paradigm (PMP), originally conceived for addressing the degrees of freedom problem of highly redundant, articulated structures. It is shown that this approach can be naturally extended from highly redundant to hyper-redundant structures, including hybrid structures that include a hard and a soft component. The PMP model is force-based, not motion-based, and it is characterized by two main computational modules: the Jacobian matrix of the hybrid kinematic chain and a compliance matrix that maps generalized force fields into coordinated gestures of the whole-body model. It is shown how the modulation of the compliance matrix can be used for the synergy formation process, which coordinates the hyper-redundant nature of the hybrid body model and, at the same time, for the preparation of the trunk tip in view of a stable physical interaction of the body with the environment, in agreement with the general impedance–control concept. Full article
Show Figures

Figure 1

23 pages, 934 KiB  
Article
Cyber Resilience Limitations in Space Systems Design Process: Insights from Space Designers
by Syed Shahzad, Keith Joiner, Li Qiao, Felicity Deane and Jo Plested
Systems 2024, 12(10), 434; https://doi.org/10.3390/systems12100434 - 15 Oct 2024
Viewed by 2623
Abstract
Space technology is integral to modern critical systems, including navigation, communication, weather, financial services, and defence. Despite its significance, space infrastructure faces unique cyber resilience challenges exacerbated by the size, isolation, cost, persistence of legacy systems, and lack of comprehensive cyber resilience engineering [...] Read more.
Space technology is integral to modern critical systems, including navigation, communication, weather, financial services, and defence. Despite its significance, space infrastructure faces unique cyber resilience challenges exacerbated by the size, isolation, cost, persistence of legacy systems, and lack of comprehensive cyber resilience engineering standards. This paper examines the engineering challenges associated with incorporating cyber resilience into space design, drawing on insights and experiences from industry experts. Through qualitative interviews with engineers, cybersecurity specialists, project managers, and testers, we identified key themes in engineering methodologies, cybersecurity awareness, and the challenges of integrating cyber resilience into space projects. Participants emphasised the importance of incorporating cybersecurity considerations from the earliest stages of design, advocating for principles such as zero-trust architecture and security by design. Our findings reveal that experts favour Model-Based Systems Engineering (MBSE) and Agile methodologies, highlighting their synergy in developing flexible and resilient systems. The study also underscores the tension between principles-based standards, which offer flexibility but can lead to inconsistent implementation, and compliance-based approaches, which provide clear measures but may struggle to adapt to evolving threats. Additionally, the research recognises significant barriers to achieving cyber resilience, including insider threats, the complexity of testing and validation, and budget constraints. Effective stakeholder engagement and innovative funding models are crucial for fostering a culture of cybersecurity awareness and investment in necessary technologies. This study highlights the need for a comprehensive cyber resilience framework that integrates diverse engineering methodologies and proactive security measures, ensuring the resilience of space infrastructure against emerging cyber threats. Full article
(This article belongs to the Special Issue Cyber Security Challenges in Complex Systems)
Show Figures

Figure 1

19 pages, 299 KiB  
Review
Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review
by Yun Liu, Ruiyue Mao, Shijia Han, Zhi Yu, Bin Xu and Tiancheng Xu
Polymers 2024, 16(18), 2568; https://doi.org/10.3390/polym16182568 - 11 Sep 2024
Cited by 7 | Viewed by 6091
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their [...] Read more.
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint–target organ–ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems’ promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
12 pages, 261 KiB  
Article
Comparison of Dual VET Models in Spain: Analysing Educational Quality from the Perspective of Educational Centres
by Carolina Fernández-Salinero, Sara Rodríguez-Pérez, María Aránzazu Carrasco-Temiño and Héctor Fernández-Sequi
Educ. Sci. 2024, 14(7), 779; https://doi.org/10.3390/educsci14070779 - 17 Jul 2024
Cited by 3 | Viewed by 1630
Abstract
In Spain, dual vocational training has recently become a fundamental pillar to train the working population. This article focuses on two objectives: to evaluate the quality of two models of dual VET in Spain and to identify their differences in terms of the [...] Read more.
In Spain, dual vocational training has recently become a fundamental pillar to train the working population. This article focuses on two objectives: to evaluate the quality of two models of dual VET in Spain and to identify their differences in terms of the following dimensions: Teaching Team, Process, Evaluation and Synergies. To achieve these objectives, a quantitative methodology and a cross-sectional design were used to collect data using an ad hoc questionnaire (37 items) developed based on a literature review and the 14 European quality criteria. The sample consisted of 263 educational institutions. Regarding the results for the first objective, Model B implemented EQAVET with higher quality. With regards to the second, researchers observed that all dimensions received a high or very high compliance of 70%. However, discrepancies were primarily found in the training of tutors in training centres, quality certification of dual VET and links, and support and cooperation between training centres and companies. This study provides empirical evidence regarding the factors that lead to higher quality dual VET in schools, based on the manner in which the criteria of the European Framework for Quality and Effective Vocational Education and Training (EQAVET) are implemented. Full article
28 pages, 1831 KiB  
Review
Chemopreventive and Biological Strategies in the Management of Oral Potentially Malignant and Malignant Disorders
by Gaia Viglianisi, Alessandro Polizzi, Cristina Grippaudo, Salvatore Cocuzza, Rosalia Leonardi and Gaetano Isola
Bioengineering 2024, 11(1), 65; https://doi.org/10.3390/bioengineering11010065 - 9 Jan 2024
Cited by 3 | Viewed by 4329
Abstract
Oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) represent a significant global health burden due to their potential for malignant transformation and the challenges associated with their diagnosis and treatment. Chemoprevention, an innovative approach aimed at halting or reversing the [...] Read more.
Oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) represent a significant global health burden due to their potential for malignant transformation and the challenges associated with their diagnosis and treatment. Chemoprevention, an innovative approach aimed at halting or reversing the neoplastic process before full malignancy, has emerged as a promising avenue for mitigating the impact of OPMD and OSCC. The pivotal role of chemopreventive strategies is underscored by the need for effective interventions that go beyond traditional therapies. In this regard, chemopreventive agents offer a unique opportunity to intercept disease progression by targeting the molecular pathways implicated in carcinogenesis. Natural compounds, such as curcumin, green tea polyphenols, and resveratrol, exhibit anti-inflammatory, antioxidant, and anti-cancer properties that could make them potential candidates for curtailing the transformation of OPMD to OSCC. Moreover, targeted therapies directed at specific molecular alterations hold promise in disrupting the signaling cascades driving OSCC growth. Immunomodulatory agents, like immune checkpoint inhibitors, are gaining attention for their potential to harness the body’s immune response against early malignancies, thus impeding OSCC advancement. Additionally, nutritional interventions and topical formulations of chemopreventive agents offer localized strategies for preventing carcinogenesis in the oral cavity. The challenge lies in optimizing these strategies for efficacy, safety, and patient compliance. This review presents an up to date on the dynamic interplay between molecular insights, clinical interventions, and the broader goal of reducing the burden of oral malignancies. As research progresses, the synergy between early diagnosis, non-invasive biomarker identification, and chemopreventive therapy is poised to reshape the landscape of OPMD and OSCC management, offering a glimpse of a future where these diseases are no longer insurmountable challenges but rather preventable and manageable conditions. Full article
Show Figures

Graphical abstract

Back to TopTop