Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review
Abstract
:1. Introduction
2. Polymeric Microneedle Drug Delivery Systems
2.1. Substrate Materials for Polymeric Microneedle Preparation
Material | Hardness | Modulus of Elasticity (Gpa) | Tensile Strength (MPa) | Elongation at Break (%) | Stability | Dissolution Rate | Biocompatibility | Used Routes |
---|---|---|---|---|---|---|---|---|
PLGA | Strong enough to penetrate skin | 1–3 | 50–100 | 50–200 | At temperatures above 100 °C, it converts to the glassy phase [29] | Slow degradation over days to months [30] | Compatible with PMM, CD | Preparation of degradable microneedles for drug release [31] |
PVP | Strong enough to penetrate skin, blended with other polymers to optimize performance, e.g., copolymer PVP-MAA with 1% MAA doubles the mechanical strength of pure PVP microneedles; 25% MAA increases the mechanical strength up to four times [18] | 0.5–1.5 | 30–60 | 100–300 | Melts at 50 °C [32] | Dissolves within 1 min of insertion into skin [33] | Compatible with MAA, PVA [18] | Preparation of soluble microneedles for drug delivery [34] |
PVA | Blending with PVP improves hardness | 1–2 | 40–80 | 50–150 | Prevents denaturation of encapsulated drugs by heating and freezing [20] | PVA needles are microcrystalline cross-linked, do not dissolve in the dermis, and can be withdrawn intact after release [35] | Weak interaction between PVP and PVA [19] | Enhanced mechanical strength of microneedles as a coating material [36] |
PCL | Modification of PCL with gelatin embedding technology increases mechanical strength by up to two times | 0.5–2 | 20–50 | 50–250 | Melting point of 60 °C, glass transition temperature of −60 °C [37] | Microneedle tip remains in the skin 1 h after insertion [14] | PVA/PVP patches are biocompatible with PCL and act as a support array [38] | Preparation of pharmaceutical coatings for non-heat-resistant drugs [39] |
HA | Strong enough to penetrate skin | 0.1–0.5 | 10–30 | 800–1200 | Prevents denaturation of encapsulated drugs by heating and freezing [20] | Penetrates into isolated human skin epidermis and dissolves within 10 min of insertion of tip [40] | Forms PEEK/HA composites with PEEK-based filaments, compatible with most materials [41] | Preparation of soluble microneedles for transdermal drug delivery [42] |
PLA | High hardness at 39 °C | 3–4 | 40–60 | 4–10 | Aging at 39 °C, high stability performance [43] | The degradation rate is constant at 25 μm/h under alkaline conditions [44] | Compatible with PMM, CD | Preparation of soluble microneedles for drug delivery [43] |
2.2. Properties of Polymer Microneedle Systems
3. Skin Tissue Properties at the Site of Stimulation Mediate Microneedle Action
3.1. Transdermal Drug Delivery: Subcutaneous Microcirculatory Oscillations Promote Drug Absorption
3.2. Microneedle Drug Delivery: Acupoint–Target Organ Ganglion Connection Promotes Drug Target Accumulation
4. Application of the Polymeric Microneedle Drug Delivery Systems
4.1. Diabetes
4.2. Oncology
4.3. Pain
4.4. Rheumatoid Arthritis
4.5. Vaccine Delivery
5. Outlook and Conclusions
5.1. Possible Prospective Strategies for Optimizing Stimulation Sites
5.2. Prospects for New Biocompatible Materials with Superior Mechanical Properties
5.3. Consideration of Safety Strategies to Increase Microneedle Drug Loading
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, J.H.; Kim, C.B.; Lee, H.J.; Roh, J.Y.; Lee, J.M.; Kim, H.J.; Park, J.H. Development and clinical study of the use of infrared radiation to accelerate the dissolution rate of a microneedle array patch (MAP). Drug Deliv. Transl. Res. 2020, 3, 791–800. [Google Scholar] [CrossRef] [PubMed]
- McNamee, M.; Wong, S.; Guy, O.; Sharma, S. Microneedle technology for potential SARS-CoV-2 vaccine delivery. Expert Opin. Drug Deliv. 2023, 6, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zada, S.; Yang, L.; Dong, H. Microneedle-Based Device for Biological Analysis. Front. Bioeng. Biotechnol. 2022, 10, 851134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, M.; Li, Z.; Wang, X.; Li, F.; Yang, H.; Chen, Y.; Zhu, Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv. Healthc. Mater. 2024, 17, e2303921. [Google Scholar] [CrossRef]
- Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J. Pharm. Sci. 2017, 2, 423–445. [Google Scholar] [CrossRef]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Nguyen, C.N. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023, 15, 277. [Google Scholar] [CrossRef]
- Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2021, 1, 13–31. [Google Scholar] [CrossRef]
- Qu, F.; Geng, R.; Liu, Y.; Zhu, J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022, 7, 3372–3406. [Google Scholar] [CrossRef]
- Xue, Q.; Xing, Q.; Dong, L.; Guo, M.; Zhang, X.; Wei, X.; Jia, B.; Wang, Y.; Chen, H.; Hu, X.; et al. ST36 acupoint injection with anisodamine for postoperative nausea and vomiting in female patients after bariatric surgery: A prospective, randomized controlled trial. Surg. Endosc. 2023, 8, 5999–6007. [Google Scholar] [CrossRef]
- Hu, R.; Dai, C.; Dong, C.; Ding, L.; Huang, H.; Chen, Y.; Zhang, B. Living Macrophage-Delivered Tetrapod PdH Nanoenzyme for Targeted Atherosclerosis Management by ROS Scavenging, Hydrogen Anti-inflammation, and Autophagy Activation. ACS Nano 2022, 10, 15959–15976. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, Z.; Xiang, L.; Wu, L.; Liu, Y.; Xi, X.; Deng, L.; Cui, W. Transporting Hydrogel via Chinese Acupuncture Needles for Lesion Positioning Therapy. Adv. Sci. 2022, 17, e2200079. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, Y.; Chen, H.; Mei, L.; Zeng, X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J. Pharm. Sci. 2022, 1, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj, S.T.R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 44–76. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.; Chen, Y.; Yang, H.; Fitzgerald, M.; Wang, Q.; Xu, Z.; Huang, N.; Lu, D.; Luo, L. Integration of traditional, complementary, and alternative medicine with modern biomedicine: The scientization, evidence, and challenges for integration of traditional Chinese medicine. Acupunct. Herbal. Med. 2024, 4, 68–78. [Google Scholar] [CrossRef]
- Wei, D.; Sun, Y.; Zhu, H.; Fu, Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS Nano 2023, 23, 23223–23261. [Google Scholar] [CrossRef]
- Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release 2014, 185, 130–138. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Majithiya, R.; Singh, T.R.; Morrow, D.I.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011, 1, 41–57. [Google Scholar] [CrossRef]
- Loh, J.M.; Lim, Y.; Tay, J.T.; Cheng, H.M.; Tey, H.L.; Liang, K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact. Mater. 2024, 32, 222–241. [Google Scholar] [CrossRef]
- Lee, J.W.; Gadiraju, P.; Park, J.H.; Allen, M.G.; Prausnitz, M.R. Microsecond thermal ablation of skin for transdermal drug delivery. J. Control. Release 2011, 1, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.C.; Liao, M.H.; Liu, M.G.; Li, C.Z.; Lai, P.S. Key Transdermal Patch Using Cannabidiol-Loaded Nanocarriers with Better Pharmacokinetics in vivo. Int. J. Nanomed. 2024, 19, 4321–4337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Tan, J.; Feng, S.; Xie, Y.; Li, L. Performance Enhancement of PLA-Based Blend Microneedle Arrays through Shish-Kebab Structuring Strategy in Microinjection Molding. Polymers 2023, 15, 2234. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 23, 2475–2490. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, X.; Lin, Z.; Mao, H.; Qiu, Z.; Xiang, K.; Ke, T.; Li, L.; Lu, L.; Xiao, L. Layered GelMA/PEGDA Hydrogel Microneedle Patch as an Intradermal Delivery System for Hypertrophic Scar Treatment. ACS Appl. Mater. Interfaces 2023, 37, 43309–43320. [Google Scholar] [CrossRef]
- Sartawi, Z.; Blackshields, C.; Faisal, W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release 2022, 348, 186–205. [Google Scholar] [CrossRef]
- Dua, R.; Sharufa, O.; Terry, J.; Dunn, W.; Khurana, I.; Vadivel, J.; Zhang, Y.; Donahue, H.J. Surface modification of Polyether-ether-ketone for enhanced cell response: A chemical etching approach. Front. Bioeng. Biotechnol. 2023, 11, 1202499. [Google Scholar] [CrossRef]
- Senra, M.R.; Marques, M.; Monteiro, S.N. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers 2023, 15, 373. [Google Scholar] [CrossRef]
- Miyano, T.; Tobinaga, Y.; Kanno, T.; Matsuzaki, Y.; Takeda, H.; Wakui, M.; Hanada, K. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 2005, 3, 185–188. [Google Scholar] [CrossRef]
- Kim, M.; Jung, B.; Park, J.H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 2012, 2, 668–678. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, M.; Li, Z.; Lung, P.S.; Chrzanowski, W.; Kwok, C.T.; Lu, J.; Li, Q. Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomater. 2020, 112, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Lin, Z.W.; Ling, M.H. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy. ACS Nano 2016, 1, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.P.; Murthy, N.; Prausnitz, M.R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 2008, 5, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Kirmic, C.S.; Ceylan, T.D. Cyclodextrin-linked PVP/PEG supramolecular hydrogels. Carbohydr. Polym. 2021, 269, 118278. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, F.; Liu, J.; Fan, G.; Welsh, W.; Zhu, H.; Jin, T. Phase-Transition Microneedle Patches for Efficient and Accurate Transdermal Delivery of Insulin. Adv. Funct. Mater. 2015, 29, 4633–4641. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.; Yang, X.; Zhang, D. Preparation, optimization and property of PVA-HA/PAA composite hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 520–529. [Google Scholar] [CrossRef]
- de Luca, A.C.; Terenghi, G.; Downes, S. Chemical surface modification of poly-epsilon-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J. Tissue Eng. Regen. Med. 2014, 2, 153–163. [Google Scholar] [CrossRef]
- Chen, M.C.; Ling, M.H.; Wang, K.W.; Lin, Z.W.; Lai, B.H.; Chen, D.H. Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromolecules 2015, 5, 1598–1607. [Google Scholar] [CrossRef]
- Khorramnezhad, M.; Akbari, B.; Akbari, M.; Kharaziha, M. Effect of surface modification on physical and cellular properties of PCL thin film. Colloids Surf. B Biointerfaces 2021, 200, 111582. [Google Scholar] [CrossRef]
- Monkare, J.; Reza, N.M.; Baccouche, K.; Romeijn, S.; Jiskoot, W.; Bouwstra, J.A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J. Control. Release 2015, 218, 53–62. [Google Scholar] [CrossRef]
- Rodzen, K.; Sharma, P.K.; McIlhagger, A.; Mokhtari, M.; Dave, F.; Tormey, D.; Sherlock, R.; Meenan, B.J.; Boyd, A. The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach. Polymers 2021, 13, 545. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zheng, J.; Hui, Y.; Li, D. Mechanical Properties of 3D-Printed PEEK/HA Composite Filaments. Polymers 2022, 14, 4293. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Barrasa, J.; Tarancon, S.; Pastor, J.Y. Effects of Accelerating the Ageing of 1D PLA Filaments after Fused Filament Fabrication. Polymers 2022, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Shettar, A.; Sharma, P.K.; Repka, M.A.; Murthy, S.N. Development of lysozyme loaded microneedles for dermal applications. Int. J. Pharm. 2021, 593, 120104. [Google Scholar] [CrossRef]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Wang, Y.; Fan, L.; Zhao, Y. Arrowhead Composite Microneedle Patches with Anisotropic Surface Adhesion for Preventing Intrauterine Adhesions. Adv. Sci. 2022, 12, e2104883. [Google Scholar] [CrossRef]
- Mdanda, S.; Ubanako, P.; Kondiah, P.; Kumar, P.; Choonara, Y.E. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers 2021, 13, 2405. [Google Scholar] [CrossRef]
- Kataoka, H.; Washio, T.; Chinzei, K.; Mizuhara, K.; Simone, C.; Okamura, A. Measurement of the tip and friction force acting on a needle during penetration. In Proceedings of the International Conference on Medical Image Computing & Computer-Assisted Intervention, Singapore, 8–12 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 253–260. [Google Scholar]
- Gan, X.; Wang, X.; Huang, Y.; Li, G.; Kang, H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024, 12, 923. [Google Scholar] [CrossRef]
- Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998, 8, 922–925. [Google Scholar] [CrossRef]
- John, D.O.; Smith, J.A.; Williams, R.L. Effect of Microneedle Height on Transepidermal Water Loss and Skin Permeability. J. Dermatol. Sci. 2020, 3, 255–262. [Google Scholar]
- Davis, S.P.; Landis, B.J.; Adams, Z.H.; Allen, M.G.; Prausnitz, M.R. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 2004, 8, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Fung-A-Jou, Z.; Bloemberg, J.; Breedveld, P. Bioinspired medical needles: A review of the scientific literature. Bioinspir. Biomim. 2023, 18, 041002. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, M.R.; Das, D.; Garimella, H.T.; German, C.L.; Przekwas, A.J.; Simon, L. An integrated biophysical model for predicting the clinical pharmacokinetics of transdermally delivered compounds. Eur. J. Pharm. Sci. 2021, 167, 105924. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; He, T.; Xu, Q.; Lin, L.T.; Li, H.; Liu, Y.; Shi, G.X.; Liu, C.Z. What is the Acupoint? A preliminary review of Acupoints. Pain Med. 2015, 10, 1905–1915. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhou, J.; Zhou, Y.M.; Chen, J.; Wu, P.; Lyu, P.R.; Wan, M.; Luo, L.J.; Cai, D.J.; Liang, F.R. Influence of Acupuncture on Microcirculation Perfusion of Pericardium Meridian and Heart in Acute Myocardial Ischemia Model Rats. Chin. J. Integr. Med. 2022, 1, 69–75. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, G.; Lee, K. Pressure stimulus study on acupuncture points with multi-channel multimode-fiber diffuse speckle contrast analysis (MMF-DSCA). Biomed. Opt. Express 2023, 11, 5602–5614. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.F.; Su, Y.S.; Ray, R.S.; Jing, X.H.; Wang, Y.Q.; Ma, Q. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020, 3, 436–450. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, W.W.; Chu, Y.X.; Wang, Y.Q. Acupuncture for Pain Management: Molecular Mechanisms of Action. Am. J. Chin. Med. 2020, 4, 793–811. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, J.; Song, L.; Zhou, Z.; Zhao, Q.; Zhao, Y.; Wang, H.; Tan, Y.; Zhao, B.; Yang, M. Self-Assembled Multilayer-Modified Needles Simulate Acupuncture and Diclofenac Sodium Delivery for Rheumatoid Arthritis. ACS Appl. Mater. Interfaces 2024, 23, 29876–29890. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, W.; Tang, Z.; Tan, Z.; He, Y.; Luo, J.; Wang, X. A reconfigurable integrated smart device for real-time monitoring and synergistic treatment of rheumatoid arthritis. Sci. Adv. 2024, 18, eadj604. [Google Scholar] [CrossRef]
- Sanshita; Singh, I. Dissolvable Microneedles for the Treatment of Rheumatoid Arthritis. Micro Nanosyst. 2023, 4, 15. [Google Scholar] [CrossRef]
- Chi, J.; Zhang, X.; Chen, C.; Shao, C.; Zhao, Y.; Wang, Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact. Mater. 2020, 2, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, X.; Liu, Y.; Fan, L.; Gan, J.; Liu, W.; Zhao, Y.; Sun, L. Polydopamine Decorated Microneedles with Fe-MSC-Derived Nanovesicles Encapsulation for Wound Healing. Adv. Sci. 2022, 13, e2103317. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, T.J.; Kang, L.; Kim, Y.J.; Kang, M.K.; Kim, J.; Ryu, J.H.; Hyeon, T.; Yoon, B.W.; Ko, S.B.; et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials 2020, 243, 119942. [Google Scholar] [CrossRef] [PubMed]
- Grangier, A.; Branchu, J.; Volatron, J.; Piffoux, M.; Gazeau, F.; Wilhelm, C.; Silva, A. Technological advances towards extracellular vesicles mass production. Adv. Drug Deliv. Rev. 2021, 176, 113843. [Google Scholar] [CrossRef] [PubMed]
- Sanshita, S.; Pahal, S.; Ghate, V.; Singh, I. Novel bio-inspired microneedles for wound healing applications. Expert. Opin. Drug Deliv. 2023, 11, 1463–1465. [Google Scholar] [CrossRef]
- Krishnan, V.; Mitragotri, S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv. Drug Deliv. Rev. 2020, 153, 87–108. [Google Scholar] [CrossRef]
- Kuperkar, K.; Atanase, L.I.; Bahadur, A.; Crivei, I.C.; Bahadur, P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef]
- Daraba, O.M.; Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Vochita, G. Antitumoral Drug-Loaded Biocompatible Polymeric Nanoparticles Obtained by Non-Aqueous Emulsion Polymerization. Polymers 2020, 12, 1018. [Google Scholar] [CrossRef]
- Capanema, N.S.V.; Carvalho, I.C.; Mansur, A.A.P.; Carvalho, S.M.; Lage, A.P.; Mansur, H.S. Hybrid Hydrogel Composed of Carboxymethylcellulose–Silver Nanoparticles–Doxorubicin for Anticancer and Antibacterial Therapies against Melanoma Skin Cancer Cells. ACS Appl. Nano Mater. 2019, 11, 7393–7408. [Google Scholar] [CrossRef]
- McHugh, K.J.; Jing, L.; Severt, S.Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H.; Perkinson, C.F.; Larusson, F.; Rose, S.; Tomasic, S.; et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.A.; Maclean, J.D.; Fleckenstein, L.; Greenaway, C. Parenteral administration of ivermectin in a patient with disseminated strongyloidiasis. Am. J. Trop. Med. Hyg. 2005, 5, 911–914. [Google Scholar] [CrossRef]
- Leppert, W.; Malec-Milewska, M.; Zajaczkowska, R.; Wordliczek, J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules 2018, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Ingrole, R.; Azizoglu, E.; Dul, M.; Birchall, J.C.; Gill, H.S.; Prausnitz, M.R. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 2021, 267, 120491. [Google Scholar] [CrossRef] [PubMed]
- Alwan, L.A.; Al-Akkam, E.J. Formulation and evaluation of transdermal dissolved microneedles patches for meloxicam. Int. J. Drug Deliv. Technol. 2021, 11, 656–662. [Google Scholar]
- Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci. 2017, 104, 114–123. [Google Scholar] [CrossRef]
- Kochhar, J.S.; Lim, W.X.; Zou, S.; Foo, W.Y.; Pan, J.; Kang, L. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 2013, 11, 4272–4280. [Google Scholar] [CrossRef]
- Chopra, H.; Priyanka; Choudhary, O.P.; Emran, T.B. Microneedles for ophthalmic drug delivery: Recent developments. Int. J. Surg. 2023, 3, 551–552. [Google Scholar] [CrossRef]
- Nooreen, R.; Nene, S.; Jain, H.; Prasannanjaneyulu, V.; Chitlangya, P.; Otavi, S.; Khatri, D.K.; Raghuvanshi, R.S.; Singh, S.B.; Srivastava, S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J. Control. Release 2022, 348, 397–419. [Google Scholar] [CrossRef]
- Feng, X.; Liu, J.; Xu, W.; Li, G.; Ding, J. Tackling autoimmunity with nanomedicines. Nanomedicine 2020, 16, 1585–1597. [Google Scholar] [CrossRef]
- Du, G.; He, P.; Zhao, J.; He, C.; Jiang, M.; Zhang, Z.; Zhang, Z.; Sun, X. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J. Control. Release 2021, 336, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Tao, C.; Zou, J.; Zheng, H.; Zhu, J.; Zhu, Z.; Zhu, J.; Liu, L.; Li, F.; Song, X. Flexible two-layer dissolving and safing microneedle transdermal of neurotoxin: A biocomfortable attempt to treat Rheumatoid Arthritis. Int. J. Pharm. 2019, 563, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Ahmed, T.; Bhusal, P.; Subedi, R.K.; Salahshoori, I.; Soltani, M.; Hassanzadeganroudsari, M. Microneedle Systems for Vaccine Delivery: The story so far. Expert. Rev. Vaccines 2020, 12, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 2018, 127, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yan, Q.; Yu, Y.; Wu, M.X. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J. Control. Release 2017, 255, 36–44. [Google Scholar] [CrossRef]
- Mikszta, J.A.; Alarcon, J.B.; Brittingham, J.M.; Sutter, D.E.; Pettis, R.J.; Harvey, N.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 2002, 4, 415–419. [Google Scholar] [CrossRef]
- Zhao, B.; Jin, Z.; Yu, Y.; Li, Y.; Wang, J.; Wan, W.; Hu, C.; Li, X.; Li, Y.; Xin, W.; et al. A Thermostable Dissolving Microneedle Vaccine with Recombinant Protein of Botulinum Neurotoxin Serotype A. Toxins 2022, 14, 881. [Google Scholar] [CrossRef]
- Wang, M.; Hu, L.; Xu, C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 2017, 8, 1373–1387. [Google Scholar] [CrossRef]
- Hassan, J.; Haigh, C.; Ahmed, T.; Uddin, M.J.; Das, D.B. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022, 14, 1066. [Google Scholar] [CrossRef]
- Wang, T.; Zhen, Y.; Ma, X.; Wei, B.; Li, S.; Wang, N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf. B Biointerfaces 2015, 126, 520–530. [Google Scholar] [CrossRef]
- Ma, Y.; Boese, S.E.; Luo, Z.; Nitin, N.; Gill, H.S. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: Development and in vitro evaluation. Biomed. Microdevices 2015, 2, 44. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Luo, B.; Zhang, W.; Ge, X.; Yu, J.; Zhang, Y.; Gu, Z. Microneedle-Mediated Vaccination: Innovation and Translation. Adv. Drug Deliv. Rev. 2021, 179, 113919. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Vijayanand, S.; Menon, I.; Gomes, K.B.; Kale, A.; Bagwe, P.; Yacoub, S.; Uddin, M.N.; D’Souza, M.J. Adjuvanted-SARS-CoV-2 Spike Protein-Based Microparticulate Vaccine Delivered by Dissolving Microneedles Induces Humoral, Mucosal, and Cellular Immune Responses in Mice. Pharmaceuticals 2023, 16, 1131. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chen, M.; Sun, Y.; Shi, C.; Wang, W.; Zhao, W.; Wen, T.; Liu, T.; Fu, J.; Lu, C.; et al. Microneedle-assisted vaccination combined with autophagy regulation for antitumor immunotherapy. J. Control. Release 2023, 357, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Daly, S.; Claydon, N.; Newcombe, R.G.; Seong, J.; Addy, M.; West, N.X. Randomised controlled trial of a microneedle patch with a topical anaesthetic for relieving the pain of dental injections. J. Dent. 2021, 107, 103617. [Google Scholar] [CrossRef]
- Li, Q.; Yu, X.; Zheng, X.; Yang, J.; Hui, J.; Fan, D. Rapid dissolution microneedle based on polyvinyl alcohol/chitosan for local oral anesthesia. Int. J. Biol. Macromol. 2024, 257 Pt 2, 128629. [Google Scholar] [CrossRef]
- Lee, B.M.; Lee, C.; Lahiji, S.F.; Jung, U.W.; Chung, G.; Jung, H. Dissolving Microneedles for Rapid and Painless Local Anesthesia. Pharmaceutics 2020, 12, 366. [Google Scholar] [CrossRef]
- Zong, Q.; Guo, R.; Dong, N.; Ling, G.; Zhang, P. Design and development of insulin microneedles for diabetes treatment. Drug Deliv. Transl. Res. 2022, 5, 973–980. [Google Scholar] [CrossRef]
- Chen, Q.; Xiao, Z.; Wang, C.; Chen, G.; Zhang, Y.; Zhang, X.; Han, X.; Wang, J.; Ye, X.; Prausnitz, M.R.; et al. Microneedle Patches Loaded with Nanovesicles for Glucose Transporter-Mediated Insulin Delivery. ACS Nano 2022, 11, 18223–18231. [Google Scholar] [CrossRef]
- Harada, Y.; Murayama, Y.; Takamatsu, T.; Otsuji, E.; Tanaka, H. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int. J. Mol. Sci. 2022, 23, 6478. [Google Scholar] [CrossRef]
- Fujino, M.; Nishio, Y.; Ito, H.; Tanaka, T.; Li, X.K. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int. Immunopharmacol. 2016, 31, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Buchner, A.; Pohla, H.; Pongratz, T.; Ruhm, A.; Zimmermann, W.; Gederaas, O.A.; Zhang, L.; Wang, X.; Stepp, H.; et al. Methadone enhances the effectiveness of 5-aminolevulinic acid-based photodynamic therapy for squamous cell carcinoma and glioblastoma in vitro. J. Biophotonics 2019, 10, e201800468. [Google Scholar] [CrossRef] [PubMed]
- Torezan, L.; Chaves, Y.; Niwa, A.; Sanches, J.J.; Festa-Neto, C.; Szeimies, R.M. A pilot split-face study comparing conventional methyl aminolevulinate-photodynamic therapy (PDT) with microneedling-assisted PDT on actinically damaged skin. Dermatol. Surg. 2013, 8, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Feringa, B.L. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. Adv. Mater. 2023, 10, e2204413. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Zhai, Z.; Huang, X.; Shang, S.; Song, Z. Fast and Reversible Photoresponsive Self-Assembly Behavior of Rosin-Based Amphiphilic Polymers. J. Agric. Food Chem. 2022, 40, 12885–12896. [Google Scholar] [CrossRef] [PubMed]
- Marturano, V.; Abate, F.; Ambrogi, V.; Califano, V.; Cerruti, P.; Pepe, G.P.; Vicari, L.; Ausanio, G. Smart Coatings Prepared via MAPLE Deposition of Polymer Nanocapsules for Light-Induced Release. Molecules 2021, 26, 2736. [Google Scholar] [CrossRef]
- Singh, P.; Youden, B.; Carrier, A.; Oakes, K.; Servos, M.; Jiang, R.; Lin, S.; Nguyen, T.D.; Zhang, X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J. Control. Release 2023, 353, 1050–1067. [Google Scholar] [CrossRef]
- Morrow, D.; Mccarron, P.; Woolfson, A.D.; Donnelly, R.F. Innovative Strategies for Enhancing Topical and Transdermal Drug Delivery. Open Drug Deliv. J. 2007, 1, 36–59. [Google Scholar] [CrossRef]
- Vora, L.K.; Courtenay, A.J.; Tekko, I.A.; Larraneta, E.; Donnelly, R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020, 146, 290–298. [Google Scholar] [CrossRef]
- Liu, R.; Li, A.; Lang, Y.; Cai, H.; Tang, X.; Li, D.; Liu, X.; Liu, J. Stimuli-responsive polymer microneedles: A rising transdermal drug delivery system and Its applications in biomedical. J. Drug Deliv. Sci. Technol. 2023, 88, 104922. [Google Scholar] [CrossRef]
- Kulkarni, D.; Gadade, D.; Chapaitkar, N.; Shelke, S.; Pekamwar, S.; Aher, R.; Ahire, A.; Avhale, M.; Badgule, R.; Bansode, R. Polymeric Microneedles: An Emerging Paradigm for Advanced Biomedical Applications. Sci. Pharm. 2023, 91, 27. [Google Scholar] [CrossRef]
- Desimone; Joseph, M.; Robbins, G.R.; Johnson, A.R. Polymeric Microneedles and Rapid Additive Manufacturing of the Same. US10792857B2, 6 October 2020.
- Sanshita; Monika; Chakraborty, S.; Odeku, O.A.; Singh, I. Ferulic acid’s therapeutic odyssey: Nano formulations, pre-clinical investigations, and patent perspective. Expert. Opin. Drug Deliv. 2024, 3, 479–493. [Google Scholar] [CrossRef]
- Ahmed, S.A.K.; Mahmood, S.; Hamed, A.S.; Reddy, V.J.; Rebhi, H.A.; Azmana, M.; Raman, S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020, 587, 119673. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Wen, X.; Li, Z.; Ling, Z.; Zheng, Y.; Xu, C. Co-delivery of dendritic cell vaccine and anti-PD-1 antibody with cryomicroneedles for combinational immunotherapy. Bioeng. Transl. Med. 2023, 5, e10457. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, G.; Zhang, S.; Li, D.; Wei, G.; Zhao, X.; Liu, Y.; Ding, D.; Zhang, X. Steerable Microneedles Enabling Deep Delivery of Photosensitizers and CRISPR/Cas9 Systems for Effective Combination Cancer Therapy. Nano Lett. 2023, 17, 7990–7999. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sanshita; Singh, I. Therapeutic treatment strategies for the management of onychomycosis: A patent perspective. Expert. Opin. Ther. Pat. 2023, 9, 613–630. [Google Scholar] [CrossRef]
- Kaplan, D.L.; Tsioris, K.; Omenetto, F.G.; Pritchard, E.M. SILK FIBROIN-BASED MICRONEEDLES AND METHODS OF MAKING THE SAME. US2021290829A1, 23 September 2021. [Google Scholar]
- Yuzhakov, V.V. Method of Making Microneedle Array and Device for Applying Microneedle Array to Skin. US8414548, 4 September 2013. [Google Scholar]
- Devin, M.; Mark, P.; Sebastien, H.; Guo, X. Microneedle and Its Manufacturing Method. JP2020073023A, 14 May 2020. [Google Scholar]
- Woolfson, D.A.; Morrow, D.I.; Morrissey, A.; Donnelly, R.F.; Mccarron, P.A. DELIVERY DEVICE AND METHOD. US9549746B2, 24 January 2017. [Google Scholar]
- Chowdhury, D.F.H. Microneedle Transdermal Delivery Device. US10953210B2, 23 March 2021. [Google Scholar]
- Zumbrunn, W.; Imanidis, G.; Dipierro, G. Transdermal Drug Delivery Method and System. US2005238704A1, 27 October 2005. [Google Scholar]
- Dean, K.; Gray, L.B. Microneedle Systems and Apparatus. WO/2009/029572, 25 August 2008. [Google Scholar]
Research Topics | Patent Number | Instrument Description | Application Scenarios/Material Properties |
---|---|---|---|
Microneedle and manufacturing method | US2021290829A1 [119] | A microneedle or microneedle device includes a microneedle body, extending from a base to a penetrating tip formed from a silk fibroin-based material, which is easy to fabricate and highly biocompatible. The silk fibroin microneedles can be fully or partially biodegradable and/or bioerodible. The silk fibroin is highly stable, affords room temperature storage, and is implantable. The silk fibroin structure can be modulated to control the rate of active agent delivery. | Since silk fibroin microneedles are prepared under mild conditions, the stabilizing effect of silk fibroin on incorporated active agents, such as proteins, can be combined with the convenience and self-administration of microneedles to produce drug delivery platforms that are safe and easy to self-administer and can be stored at elevated temperatures. The microneedles can carry antibiotics for the treatment of local infections. |
US20180064920A1 [113] | The invention generally relates to microneedle devices, methods of making them, pharmaceutical compositions comprising them, and methods of treating a disease by administering them. Specifically, the disclosed microneedle devices comprise a plurality of biocompatible microneedles having one or more of the following: (i) a curved, discontinuous, undercut, and/or perforated sidewall; (ii) a sidewall comprising a breakable support; and (iii) a cross-section that is non-circular and non-polygonal. Alternatively, the microneedles may be tiered. This article is intended as a scanning tool with the purpose of searching within the particular art and is not intended to limit the scope of the present invention. | Through a sidewall comprising a breakable support and a cross-section that is non-circular and non-polygonal, this kind of microneedle can be used for the delivery of insulin and vaccines, as well as the delivery of various enzymes and growth hormones, and it can be used to treat autoimmune diseases by providing immunomodulators. Microneedling can also be used to diagnose a variety of conditions, such as diabetes, heart attacks, infectious and bacterial infections, or to perform standard blood tests. | |
US8414548B2 [120] | The microneedle array device includes a substantially planar substrate having an array of apertures, as well as a plurality of microneedles projecting at an angle from the planar substrate. The microneedles have a base portion integrally connected to the substrate, a tip end portion distal to the base portion, and a body portion in between. Each microneedle has at least one channel extending substantially from the base portion through at least a part of the body portion. The channel is open along at least part of the body portion and is in fluid communication with at least one of the apertures in the substrate. | The microneedles have a basic rectangular cross-sectional shape with a tapered tip and are composed of biocompatible metallic materials. This special structure not only reduces the biological barrier of the skin but also improves the delivery rate of the drug. This structure allows the device to deliver a wider variety of vaccines, as well as other drugs. | |
JP7291087B2 [121] | Microneedle arrays are provided to administer medications or other substances into tissue. A method for fabricating an array of microneedles is also provided. The array includes a base substrate, a primary funnel extending from one of the base substrates, two or more medium microneedles extending from the primary funnel portion, and two or more microneedles comprising the desired material. This method provides a non-porous and gas-permeable type, with two or more cavities defining each microneedle; filling the cavity with a fluid material containing the object and liquid vehicle; and removing at least a portion of the liquid vehicle to form multiple microneedles that contain the desired material, including drying the fluid material. The filling is carried out by applying the pressure difference between opposed surfaces of the type. | In microneedle drug delivery embodiments, the substance of interest may be a prophylactic, therapeutic or diagnostic agent useful in medical or veterinary applications; prophylactic or therapeutic substances, referred to herein as APIs, may include representative APIs for administration, such as antibiotics, antivirals, analgesics, antihistamines, anti-inflammatories, anticoagulants, allergens, vitamins, and anti-tumor agents.Microneedle transdermal drug delivery substances include vaccines, such as infectious disease vaccines, cancer treatment vaccines, neurological disease vaccines, allergy vaccines, smoking cessation vaccines, or other addiction vaccines. Examples include anthrax, cervical cancer, dengue, diphtheria, Ebola, hepatitis A, HIV/AIDS, human papillomavirus (HPV). | |
Microneedle delivery device and method | US9549746B2 [122] | A microprotrusion array for transporting a material across a biological barrier, wherein said array comprises a plurality of microprotusions composed of a swellable polymer composition. | These microneedles, comprising a plurality of microprotusions made from a swellable polymer composition, are used for the delivery of beneficial substances across or into the skin or for the monitoring of levels of substances of diagnostic interest in the body. |
US10953210B2 [123] | A drug delivery device that delivers pharmacologically active substances transdermally using microneedles arranged on a belt mounted rotatably about a plurality of rollers, the microneedles having an associated drug reservoir mounted on the belt that is compressed when the needles and belt are brought into contact with the skin. | The microneedles can consist of various suitable materials, such as silicone, stainless steel, and plastic. The microneedle allows a defined amount of drug to be pumped almost simultaneously through the microneedle holes to a defined depth within the skin. The device ensures that the needle is in good contact with the skin at the point of administration and prevents drug reflux by actively forcing the drug through the microneedle holes into the skin. | |
US10716764B2 [124] | The invention concerns a transdermal delivery system for controlled dispensing of an active substance to and through a porous surface. A certain amount of fluid comprising at least one active substance and at least one solvent is dispensed into an administration reservoir. In the administration reservoir at least one solvent is separated from the administration reservoir by a solvent recovery method, allowing the active substance to achieve a certain level on an interface device that is permeable for that active substance. Thus, the active substance is absorbable via diffusion from the interface device through a porous surface to be treated. | Active ingredients which can be administered via the devices of the present invention include pharmaceutical compositions that are capable of transdermal administration. Agents include those which are sufficiently lipophilic or hydrophilic to penetrate the surface of the skin and the stratum corneum. Some of these agents can reach the micro vessels of the skin and are subsequently absorbed and distributed throughout the body. Drugs suitable for transdermal delivery include scopolamine, nitrates such as nitroglycerin, antihypertensive or antiadrenergic drugs such as clonidine, 17-beta-estradiol, and testosterone. In addition to transdermal delivery, the disclosed dispensers can also be used for the topical surface application of drugs such as antibiotics, corticosteroids, minoxidil, or retinoids (e.g., retinol A). | |
US20220040466A1 [125] | A medical system. The medical system includes at least one compartment for a fluid, a fluid path, and at least one microneedle fluidly connected to at least one compartment by the fluid path. A medical infusion system is also disclosed. The system includes a wearable housing, at least one non-pressurized compartment for a fluid contained within the housing, at least one fluid path fluidly connected to the at least one compartment, and at least one microneedle fluidly connected to the at least one compartment by the fluid path, wherein the fluid path extends through the microneedle. | This microneedle can be incorporated as a fluid delivery device for administering fluids such as insulin, chemotherapies, vitamins, painkillers, antibacterials, antimicrobials, or any other therapeutic or nutritive fluid or compound therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Mao, R.; Han, S.; Yu, Z.; Xu, B.; Xu, T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review. Polymers 2024, 16, 2568. https://doi.org/10.3390/polym16182568
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review. Polymers. 2024; 16(18):2568. https://doi.org/10.3390/polym16182568
Chicago/Turabian StyleLiu, Yun, Ruiyue Mao, Shijia Han, Zhi Yu, Bin Xu, and Tiancheng Xu. 2024. "Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review" Polymers 16, no. 18: 2568. https://doi.org/10.3390/polym16182568
APA StyleLiu, Y., Mao, R., Han, S., Yu, Z., Xu, B., & Xu, T. (2024). Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review. Polymers, 16(18), 2568. https://doi.org/10.3390/polym16182568