Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,859)

Search Parameters:
Keywords = synergies effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1972 KiB  
Article
Novel Adaptive Intelligent Control System Design
by Worrawat Duanyai, Weon Keun Song, Min-Ho Ka, Dong-Wook Lee and Supun Dissanayaka
Electronics 2025, 14(15), 3157; https://doi.org/10.3390/electronics14153157 (registering DOI) - 7 Aug 2025
Abstract
A novel adaptive intelligent control system (AICS) with learning-while-controlling capability is developed for a highly nonlinear single-input single-output plant by redesigning the conventional model reference adaptive control (MRAC) framework, originally based on first-order Lyapunov stability, and employing customized neural networks. The AICS is [...] Read more.
A novel adaptive intelligent control system (AICS) with learning-while-controlling capability is developed for a highly nonlinear single-input single-output plant by redesigning the conventional model reference adaptive control (MRAC) framework, originally based on first-order Lyapunov stability, and employing customized neural networks. The AICS is designed with a simple structure, consisting of two main subsystems: a meta-learning-triggered mechanism-based physics-informed neural network (MLTM-PINN) for plant identification and a self-tuning neural network controller (STNNC). This structure, featuring the triggered mechanism, facilitates a balance between high controllability and control efficiency. The MLTM-PINN incorporates the following: (I) a single self-supervised physics-informed neural network (PINN) without the need for labelled data, enabling online learning in control; (II) a meta-learning-triggered mechanism to ensure consistent control performance; (III) transfer learning combined with meta-learning for finely tailored initialization and quick adaptation to input changes. To resolve the conflict between streamlining the AICS’s structure and enhancing its controllability, the STNNC functionally integrates the nonlinear controller and adaptation laws from the MRAC system. Three STNNC design scenarios are tested with transfer learning and/or hyperparameter optimization (HPO) using a Gaussian process tailored for Bayesian optimization (GP-BO): (scenario 1) applying transfer learning in the absence of the HPO; (scenario 2) optimizing a learning rate in combination with transfer learning; and (scenario 3) optimizing both a learning rate and the number of neurons in hidden layers without applying transfer learning. Unlike scenario 1, no quick adaptation effect in the MLTM-PINN is observed in the other scenarios, as these struggle with the issue of dynamic input evolution due to the HPO-based STNNC design. Scenario 2 demonstrates the best synergy in controllability (best control response) and efficiency (minimal activation frequency of meta-learning and fewer trials for the HPO) in control. Full article
(This article belongs to the Special Issue Nonlinear Intelligent Control: Theory, Models, and Applications)
16 pages, 755 KiB  
Article
Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows
by Rong Zhao, Jiajin Sun, Yitong Lin, Haichao Yan, Shiyue Zhang, Wenjie Huo, Lei Chen, Qiang Liu, Cong Wang and Gang Guo
Microorganisms 2025, 13(8), 1848; https://doi.org/10.3390/microorganisms13081848 (registering DOI) - 7 Aug 2025
Abstract
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given [...] Read more.
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given four dietary treatments: (1) control (basal diet); (2) T (basal diet + 0.4% DM tannic acid); (3) TP (basal diet + 0.4% DM tea polyphenols); and (4) T+TP (basal diet + 0.2% DM tannic acid + 0.2% DM tea polyphenols). We comprehensively analyzed rumen fermentation, methane production, nutrient digestibility, milk parameters, and microbiota dynamics. Compared with the control group, all diets supplemented with additives significantly reduced enteric methane production (13.68% for T, 11.40% for TP, and 10.89% for T+TP) and significantly increased milk protein yield. The crude protein digestibility significantly increased in the T group versus control. The results did not impair rumen health or fiber digestion. Critically, microbiota analysis revealed treatment-specific modulation: the T group showed decreased Ruminococcus flavefaciens abundance, while all tannin treatments reduced abundances of Ruminococcus albus and total methanogens. These microbial shifts corresponded with functional outcomes—most notably, the T+TP synergy drove the largest reductions in rumen ammonia-N (34.5%) and milk urea nitrogen (21.1%). Supplementation at 0.4% DM, particularly the T+TP combination, effectively enhances nitrogen efficiency and milk protein synthesis while reducing methane emissions through targeted modulation of key rumen microbiota populations, suggesting potential sustainability benefits linked to altered rumen fermentation. Full article
(This article belongs to the Section Veterinary Microbiology)
18 pages, 3363 KiB  
Article
Spatial Heterogeneity of Heavy Metals in Arid Oasis Soils and Its Irrigation Input–Soil Nutrient Coupling Mechanism
by Jiang Liu, Chongbo Li, Jing Wang, Liangliang Li, Junling He and Funian Zhao
Sustainability 2025, 17(15), 7156; https://doi.org/10.3390/su17157156 (registering DOI) - 7 Aug 2025
Abstract
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi [...] Read more.
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi gar oasis, Xinjiang, (2) quantify the driving effect of irrigation water, and (3) elucidate interactions between HMs, soil properties, and land use types. Using 591 soil and 12 irrigation water samples, spatial patterns were mapped via inverse distance weighting interpolation, with drivers and interactions analyzed through correlation and land use comparisons. Results revealed significant spatial heterogeneity in HMs with no consistent regional trend: As peaked in arable land (5.27–40.20 μg/g) influenced by parent material and agriculture, Cd posed high ecological risk in gardens (max 0.29 μg/g), and Zn reached exceptional levels (412.00 μg/g) in gardens linked to industry/fertilizers. Irrigation water impacts were HM-specific: water contributed to soil As enrichment, whereas high water Cr did not elevate soil Cr (indicating industrial dominance), and Cd/Cu showed no significant link. Interactions with soil properties were regulated by land use: in arable land, As correlated positively with EC/TN and negatively with pH; in gardens, HMs generally decreased with pH, enhancing mobility risk; in forests, SOM adsorption immobilized HMs; in construction land, Hg correlated with SOM/TP, suggesting industrial-organic synergy. This study advances understanding by demonstrating that HM enrichment arises from natural and anthropogenic factors, with the spatial heterogeneity of irrigation water’s driving effect critically regulated by land use type, providing a spatially explicit basis for targeted pollution control and sustainable oasis management. Full article
Show Figures

Figure 1

25 pages, 3114 KiB  
Article
Design and Experiment of DEM-Based Layered Cutting–Throwing Perimeter Drainage Ditcher for Rapeseed Fields
by Xiaohu Jiang, Zijian Kang, Mingliang Wu, Zhihao Zhao, Zhuo Peng, Yiti Ouyang, Haifeng Luo and Wei Quan
Agriculture 2025, 15(15), 1706; https://doi.org/10.3390/agriculture15151706 (registering DOI) - 7 Aug 2025
Abstract
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss [...] Read more.
To address compacted soils with high power consumption and waterlogging risks in rice–rapeseed rotation areas of the Yangtze River, this study designed a ditching machine combining a stepped cutter head and trapezoidal cleaning blade, where the mechanical synergy between components minimizes energy loss during soil-cutting and -throwing processes. We mathematically modeled soil cutting–throwing dynamics and blade traction forces, integrating soil rheological properties to refine parameter interactions. Discrete Element Method (DEM) simulations and single-factor experiments analyzed impacts of the inner/outer blade widths, blade group distance, and blade opening on power consumption. Results indicated that increasing the inner/outer blade widths (200–300 mm) by expanding the direct cutting area significantly reduced the cutter torque by 32% and traction resistance by 48.6% from reduced soil-blockage drag; larger blade group distance (0–300 mm) initially decreased but later increased power consumption due to soil backflow interference, with peak efficiency at 200 mm spacing; the optimal blade opening (586 mm) minimized the soil accumulation-induced power loss, validated by DEM trajectory analysis showing continuous soil flow. Box–Behnken experiments and genetic algorithm optimization determined the optimal parameters: inner blade width: 200 mm; outer blade width: 300 mm; blade group distance: 200 mm; and blade opening: 586 mm, yielding a simulated power consumption of 27.07 kW. Field tests under typical 18.7% soil moisture conditions confirmed a <10% error between simulated and actual power consumption (28.73 kW), with a 17.3 ± 0.5% reduction versus controls. Stability coefficients for the ditch depth, top/bottom widths exceeded 90%, and the backfill rate was 4.5 ± 0.3%, ensuring effective drainage for rapeseed cultivation. This provides practical theoretical and technical support for efficient ditching equipment in rice–rapeseed rotations, enabling resource-saving design for clay loam soils. Full article
(This article belongs to the Section Agricultural Technology)
14 pages, 6774 KiB  
Article
Antimicrobial Activities of Propolis Nanoparticles in Combination with Ampicillin Sodium Against Methicillin-Resistant Staphylococcus aureus
by Kaiyue Feng, He Sang, Han Jin, Peng Song, Wei Xu, Hongzhuan Xuan and Fei Wang
Microorganisms 2025, 13(8), 1844; https://doi.org/10.3390/microorganisms13081844 - 7 Aug 2025
Abstract
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their [...] Read more.
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their antibacterial and anti-biofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) in combination with ampicillin sodium (AS) were analyzed. The PNPs had an average particle diameter of 118.0 nm, a polydispersity index of 0.129, and a zeta potential of −28.2 mV. The fractional inhibitory concentration indices of PNPs and AS against tested MRSA strains highlighted this synergy, ranging between 0.375 and 0.5. Crystal violet staining showed that combined PNPs and AS significantly inhibited biofilm formation and reduced existing biofilm biomass. We then discovered that PNPs inhibited bacterial adhesion, extracellular polysaccharide synthesis, and mecR1, mecA, blaZ, and icaADBC gene expression. These results indicated that PNPs exerted a synergistic antibacterial effect with AS by inhibiting mecR1, mecA, and blaZ gene expressions to reduce the drug resistance of MRSA. Meanwhile, PNPs weakened bacterial adhesion and aggregation by suppressing icaADBC gene expression, allowing antibiotics to penetrate the biofilm, and exhibiting significant synergistic anti-biofilm activity. In summary, PNPs are promising candidates for combating MRSA-related diseases. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance, Second Edition)
Show Figures

Figure 1

42 pages, 1287 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
Show Figures

Figure 1

18 pages, 313 KiB  
Article
Sustainability and Profitability of Large Manufacturing Companies
by Iveta Mietule, Rasa Subaciene, Jelena Liksnina and Evalds Viskers
J. Risk Financial Manag. 2025, 18(8), 439; https://doi.org/10.3390/jrfm18080439 - 6 Aug 2025
Abstract
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, [...] Read more.
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, this study applies a mixed-method approach (that consists of two analytical stages) suited to the limited availability and reliability of ESG-related data in the Latvian manufacturing sector. Financial indicators from three large firms—AS MADARA COSMETICS, AS Latvijas Finieris, and AS Valmiera Glass Grupa—are compared with industry averages over the 2019–2023 period using independent sample T-tests. ESG integration is evaluated through a six-stage conceptual schema ranging from symbolic compliance to performance-driven sustainability. The results show that AS MADARA COSMETICS, which demonstrates advanced ESG integration aligned with international standards, significantly outperforms its industry in all profitability metrics. In contrast, the other two companies remain at earlier ESG maturity stages and show weaker financial performance, with sustainability disclosures limited to general statements and outdated indicators. These findings support the synergy hypothesis in contexts where sustainability is internalized and operationalized, while also highlighting structural constraints—such as resource scarcity and fragmented data—that may limit ESG-financial alignment in post-transition economies. This study offers practical guidance for firms seeking competitive advantage through strategic ESG integration and recommends policy actions to enhance ESG transparency and performance in Latvia, including performance-based reporting mandates, ESG data infrastructure, and regulatory alignment with EU directives. These insights contribute to the growing empirical literature on ESG effectiveness under constrained institutional and economic conditions. Full article
(This article belongs to the Section Business and Entrepreneurship)
16 pages, 1469 KiB  
Article
P3MA: A Promising Mycobacteriophage Infecting Mycobacterium abscessus
by Antonio Broncano-Lavado, John Jairo Aguilera-Correa, Françoise Roquet-Banères, Laurent Kremer, Aránzazu Mediero, Mateo Seoane-Blanco, Mark J. van Raaij, Israel Pagán, Jaime Esteban and Meritxell García-Quintanilla
Antibiotics 2025, 14(8), 801; https://doi.org/10.3390/antibiotics14080801 - 6 Aug 2025
Abstract
Background/Objectives: Mycobacterium abscessus is an opportunistic pathogen causing infections mainly in patients with immunosuppression and chronic pulmonary pathologies. Extended treatment periods are needed to tackle this pathogen, bacterial eradication is rare, and recurrence can take place with time. New alternative treatments are being [...] Read more.
Background/Objectives: Mycobacterium abscessus is an opportunistic pathogen causing infections mainly in patients with immunosuppression and chronic pulmonary pathologies. Extended treatment periods are needed to tackle this pathogen, bacterial eradication is rare, and recurrence can take place with time. New alternative treatments are being investigated, such as bacteriophage therapy. This work describes the characterization of the mycobacteriophage P3MA, showing its ability to infect clinical and standard M. abscessus strains. Methods: Phylogenetic analysis, electron microscopy, growth curves, biofilm assays, checkerboard, and granuloma-like medium studies were performed. Results: P3MA inhibited the growth of clinical samples in both planktonic and biofilm states as well as in a granuloma-like model. The study of the interaction with antibiotics revealed that P3MA exhibited an antagonistic effect combined with clarithromycin, indifference with amikacin, and synergy with imipenem. Conclusions: All these results suggest that, after genetic engineering, P3MA could be a promising candidate for phage therapy in combination with imipenem, including lung infections. Full article
Show Figures

Graphical abstract

12 pages, 2722 KiB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Graphical abstract

33 pages, 3495 KiB  
Review
Harnessing an Algae–Bacteria Symbiosis System: Innovative Strategies for Enhancing Complex Wastewater Matrices Treatment
by Wantong Zhao, Kun Tian, Lan Zhang, Ye Tang, Ruihuan Chen, Xiangyong Zheng and Min Zhao
Sustainability 2025, 17(15), 7104; https://doi.org/10.3390/su17157104 - 5 Aug 2025
Abstract
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. [...] Read more.
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. The ABS system demonstrates 10–30% higher removal efficiency than conventional biological/physicochemical methods under identical conditions, especially at low C/N ratios. Recent advances in biology techniques and big data analytics have deepened our understanding of the synergistic mechanisms involved. Despite the system’s considerable promise, challenges persist concerning complex pollution scenarios and scaling it for industrial applications, particularly regarding system design, environmental adaptability, and stable operation. In this review, we explore the current forms and operational modes of ABS systems, discussing relevant mechanisms in various wastewater treatment contexts. Furthermore, we examine the advantages and limitations of ABS systems in treating complex wastewater matrices, highlighting challenges and proposing future directions. Full article
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

19 pages, 4418 KiB  
Article
Interfacial Shrinkage Properties and Mechanism Analysis of Light-Conductive Resin–Cement-Based Materials
by Shengtian Zhai, Ran Hai, Zhihang Yu, Jianjun Ma, Chao Hou, Jiufu Zhang, Shaohua Du and Xingang Wang
Buildings 2025, 15(15), 2754; https://doi.org/10.3390/buildings15152754 - 5 Aug 2025
Abstract
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined [...] Read more.
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined with ABAQUS numerical simulations, was employed to facilitate this analysis. The results revealed that the interfacial shrinkage strain followed a characteristic distribution—higher at both ends and lower in the middle region—as the temperature increased. The experimental data showed a strong agreement with the simulation outcomes. A comparative analysis indicated that the pre-cast cement method reduced the interfacial shrinkage strain by 16% compared to the pre-cast resin method. Furthermore, treatment with a coupling agent resulted in a 31% reduction in the strain, while combining a serrated surface modification with a coupling agent treatment achieved a maximum reduction of 43.5%. Microscopic characterization confirmed that the synergy between the coupling agent and surface roughening significantly enhanced interfacial bonding by filling microcracks, improving adhesion, and increasing mechanical interlocking. This synergistic effect effectively suppressed the relative slippage caused by asynchronous shrinkage between dissimilar materials, thereby mitigating the interfacial cracking issue in optical resin–cement-based composites. These findings provide theoretical insights for optimizing the interface design in organic–inorganic composite systems. Full article
Show Figures

Figure 1

22 pages, 769 KiB  
Review
Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy
by Guillermo Cervera-Ygual, Ana Delgado-Prada and Francisco Gascon-Gimenez
Allergies 2025, 5(3), 26; https://doi.org/10.3390/allergies5030026 - 5 Aug 2025
Abstract
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement [...] Read more.
Multiple sclerosis (MS) and allergic diseases, traditionally considered immunologically opposing entities, may share pathogenic mechanisms rooted in immune dysregulation. While MS is predominantly mediated by Th1 and Th17 responses and allergies by Th2 responses, emerging evidence suggests overlapping immunological pathways, including the involvement of histamine, regulatory T cells, and innate lymphoid cells. This review synthesizes current knowledge on the epidemiological and immunopathological associations between MS and allergies. Epidemiological studies have yielded inconsistent results, with some suggesting a protective role for respiratory and food allergies against MS onset, while others find no significant correlation. Clinical studies indicate that food allergies in adults may be associated with increased MS inflammatory activity, whereas childhood atopy might exert a protective effect. In addition, we review hypersensitivity reactions to disease-modifying treatments for MS, detailing their immunological mechanisms, clinical presentation, and management, including desensitization protocols where applicable. Finally, we explore how treatments for allergic diseases—such as clemastine, allergen immunotherapy, montelukast, and omalizumab—may modulate MS pathophysiology, offering potential therapeutic synergies. Understanding the interplay between allergic and autoimmune processes is critical for optimizing care and developing innovative treatment approaches in MS. Full article
(This article belongs to the Section Physiopathology)
Show Figures

Figure 1

26 pages, 5455 KiB  
Article
Features of Thermal Stabilization of PVC Modified with Microstructured Titanium Phosphate
by Irina N. Vikhareva, Anton Abramian, Dragan Manojlović and Oleg Bol’shakov
Polymers 2025, 17(15), 2140; https://doi.org/10.3390/polym17152140 - 5 Aug 2025
Viewed by 46
Abstract
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of [...] Read more.
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of plasticized PVC, focusing on the effect of morphology and Ti/P ratio on their stabilizing efficiency. The thermal stability of the compositions was studied by thermogravimetric analysis (TGA) in both inert (Ar) and oxidizing (air) atmospheres. The effect of TiP concentration and its synergy with industrial stabilizers was analyzed. An assessment of the key degradation parameters is given: the temperature of degradation onset, the rate of decomposition, exothermic effects, and the carbon residue yield. In an inert environment, TiPMSI/TiPMSII microspheres demonstrated an optimal balance by increasing the temperature of degradation onset and the residual yield while suppressing the rate of decomposition. In an oxidizing environment, TiPR rods and TiPMSII microspheres provided maximum stability, enhancing resistance to degradation onset and reducing the degradation rate by 10–15%. Key factors of effectiveness include ordered morphology (spheres, rods); the Ti-deficient Ti/P ratio (~0.86), which enhances HCl binding; and crystallinity. The stabilization mechanism of titanium phosphates is attributed to their high affinity for hydrogen chloride (HCl), which catalyzes PVC chain scission, a catalyst for the destruction of the PVC chain. The unique microstructure of titanium phosphate provides a high specific surface area and, as a result, greater activity in the HCl neutralization reaction. The formation of a sol–phosphate framework creates a barrier to heat and oxygen. An additional contribution comes from the inhibition of oxidative processes and the possible interaction with unstable chlorallyl groups in PVC macromolecules. Thus, hierarchically structured titanium phosphates have shown high potential as multifunctional PVC thermostabilizers for modern polymer materials. Potential applications include the development of environmentally friendly PVC formulations with partial or complete replacement of toxic stabilizers, the optimization of thermal stabilization for products used in aggressive environments, and the use of hierarchical TiP structures in flame-resistant and halogen-free PVC-based compositions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Viewed by 182
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

Back to TopTop