Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy
Abstract
1. Introduction
2. Shared and Divergent Immunopathological Mechanisms in Multiple Sclerosis and Allergic Diseases
3. Clinical Associations Between Allergies and Multiple Sclerosis
3.1. Epidemiological Evidence on Allergies and MS Risk
3.2. Impact of Allergies on the Clinical Course of Multiple Sclerosis
4. Hypersensitivity and Immune-Mediated Reactions to Disease-Modifying Treatments in Multiple Sclerosis
4.1. Glatiramer Acetate
4.2. Beta Interferons
4.3. Fumarates
4.4. Teriflunomide
4.5. Cladribine
4.6. Anti-CD20 Monoclonal Antibodies
4.7. Natalizumab
4.8. Sphingosine-1-Phosphate Receptor Modulators
4.9. Alemtuzumab
5. Effects of Allergic Treatments on Multiple Sclerosis
6. Discussion
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Sawcer, S.; Franklin, R.J.M.; Ban, M. Multiple sclerosis genetics. Lancet Neurol. 2014, 13, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Handel, A.E.; Giovannoni, G.; Ebers, G.C.; Ramagopalan, S.V. Environmental factors and their timing in adult-onset multiple sclerosis. Nat. Rev. Neurol. 2010, 6, 156–166. [Google Scholar] [CrossRef]
- Mowry, E.M.; Waubant, E.; McCulloch, C.E.; Okuda, D.T.; Evangelista, A.A.; Lincoln, R.R.; Gourraud, P.; Brenneman, D.; Owen, M.C.; Qualley, P.; et al. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. Ann. Neurol. 2012, 72, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Basic Immunology: Functions and Disorders of the Immune System, 5th ed.; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Bourne, T.; Waltz, M.; Casper, T.C.; Kavak, K.; Aaen, G.; Belman, A.; Benson, L.; Candee, M.; Chitnis, T.; Graves, J.; et al. Evaluating the association of allergies with multiple sclerosis susceptibility risk and disease activity in a pediatric population. J. Neurol. Sci. 2017, 376, 371. [Google Scholar] [CrossRef]
- Okada, H.; Kuhn, C.; Feillet, H.; Bach, J.F. The “hygiene hypothesis” for autoimmune and allergic diseases: An update. Clin. Exp. Immunol. 2010, 160, 1–9. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Murdaca, G.; Colombo, B.M.; Puppo, F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern. Emerg. Med. 2011, 6, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. Immunological tolerance and autoimmunity. Intern. Emerg. Med. 2006, 1, 187–196. [Google Scholar] [CrossRef]
- Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007, 13, 1173–1175. [Google Scholar] [CrossRef]
- Cosmi, L.; Liotta, F.; Maggi, E.; Romagnani, S.; Annunziato, F. Th17 cells: New players in asthma pathogenesis. Allergy 2011, 66, 989–998. [Google Scholar] [CrossRef]
- Zhu, J.; Paul, W.E. CD4 T cells: Fates, functions, and faults. Blood 2008, 112, 1557–1569. [Google Scholar] [CrossRef] [PubMed]
- Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun. Rev. 2020, 19, 102647. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.J. Immunopathology of multiple sclerosis. Neurology 2004, 63 (Suppl. S6), S3–S7. [Google Scholar] [CrossRef]
- Viglietta, V.; Baecher-Allan, C.; Weiner, H.L.; Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004, 199, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.; Hug, A.; Viehöver, A.; Fritzsching, B.; Falk, C.S.; Filser, A.; Vetter, T.; Milkova, L.; Korporal, M.; Fritz, B.; et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 2005, 35, 3343–3352. [Google Scholar] [CrossRef]
- Michel, L.; Touil, H.; Pikor, N.B.; Gommerman, J.L.; Prat, A.; Bar-Or, A. B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Front. Immunol. 2015, 6, 636. [Google Scholar] [CrossRef]
- Zhao, X.; Jacob, C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 6373. [Google Scholar] [CrossRef]
- Lucchinetti, C.; Brück, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000, 47, 707–717. [Google Scholar] [CrossRef]
- Shields, D.C.; Schaecher, K.E.; Saido, T.C.; Banik, N.L. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl. Acad. Sci. USA 1999, 96, 11486–11491. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Lubetzki, C.; Stankoff, B. Demyelination in multiple sclerosis. Handb. Clin. Neurol. 2014, 122, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.; Trapp, B.D. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 2007, 68 (Suppl. S3), S22–S31. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Akdis, M.; Blaser, K.; Akdis, C.A. Mechanisms of allergen specific immunotherapy—T-cell tolerance and more. Allergy 2006, 61, 796–807. [Google Scholar] [CrossRef]
- Seals, M.R.; Moran, M.M.; Leavenworth, J.D.; Leavenworth, J.W. Contribution of dysregulated B-cells and IgE antibody responses to multiple sclerosis. Front. Immunol. 2022, 13, 900117. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 2017, 18, 1076–1083. [Google Scholar] [CrossRef]
- Volonté, C.; Apolloni, S.; Amadio, S. The histamine and multiple sclerosis alliance: Pleiotropic actions and functional validation. Curr. Top. Behav. Neurosci. 2022, 59, 217–239. [Google Scholar] [CrossRef]
- Hirose, S.; Jahani, P.S.; Wang, S.; Jaggi, U.; Tormanen, K.; Yu, J.; Kato, M.; Akbari, O.; Ghiasi, H. Type 2 innate lymphoid cells induce CNS demyelination in an HSV-IL-2 mouse model of multiple sclerosis. iScience 2020, 23, 101549. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.; Herrada, A.A.; Hevia, D.; Goiry, L.G.; Escobedo, N. Role of innate immune cells in multiple sclerosis. Front. Immunol. 2025, 16, 1540263. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Hassanabadi, N.; Broux, B.; Marinović, S.; Gotthardt, D. Innate lymphoid cells—Neglected players in multiple sclerosis. Front. Immunol. 2022, 13, 909275. [Google Scholar] [CrossRef]
- Blázquez, A.B.; Berin, M.C. Microbiome and food allergy. Transl. Res. 2017, 179, 199–203. [Google Scholar] [CrossRef]
- Hoffman, K.; Brownell, Z.; Doyle, W.J.; Ochoa-Repáraz, J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J. Autoimmun. 2022, 137, 102957. [Google Scholar] [CrossRef]
- Kreiner, E.; Waage, J.; Standl, M.; Brix, S.; Pers, T.H.; Couto Alves, A.; Warrington, N.M.; Tiesler, C.M.; Fuertes, E.; Franke, L.; et al. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J. Allergy Clin. Immunol. 2017, 140, 771–781. [Google Scholar] [CrossRef]
- Hafler, D.A.; Compston, A.; Sawcer, S.; Lander, E.S.; Daly, M.J.; De Jager, P.L.; Bakker, P.I.W.D.; Gabriel, S.B.; Mirel, D.B.; Ban, M.; et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 2007, 357, 851–862. [Google Scholar] [CrossRef]
- Santri, I.N.; Irham, L.M.; Djalilah, G.N.; Perwitasari, D.A.; Wardani, Y.; Phiri, Y.V.A.; Adikusuma, W. Identification of hub genes and potential biomarkers for childhood asthma by utilizing an established bioinformatic analysis approach. Biomedicines 2022, 10, 2311. [Google Scholar] [CrossRef]
- Sinha, S.; Singh, J.; Jindal, S.K. Association of interleukin 7 receptor (rs1494555 and rs6897932) gene polymorphisms with asthma in a north Indian population. Allergy Rhinol. 2015, 6, 168–176. [Google Scholar] [CrossRef]
- Perga, S.; Montarolo, F.; Martire, S.; Berchialla, P.; Malucchi, S.; Bertolotto, A. Anti-inflammatory genes associated with multiple sclerosis: A gene expression study. J. Neuroimmunol. 2015, 279, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Van Luijn, M.M.; Kreft, K.L.; Jongsma, M.L.; Mes, S.W.; Wierenga-Wolf, A.F.; Van Meurs, M.; Melief, M.-J.; van der Kant, R.; Janssen, L.; Janssen, H.; et al. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. Brain 2015, 138, 1531–1547. [Google Scholar] [CrossRef] [PubMed]
- Keshari, P.K.; Harbo, H.F.; Myhr, K.M.; Aarseth, J.H.; Bos, S.D.; Berge, T. Allelic imbalance of multiple sclerosis susceptibility genes IKZF3 and IQGAP1 in human peripheral blood. BMC Genet. 2016, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Saulyte, J.; Regueira, C.; Montes-Martínez, A.; Khudyakov, P.; Takkouche, B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: A systematic review and meta-analysis. PLoS Med. 2014, 11, e1001611. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Q.; Zhu, R. Vitamin D and allergic diseases. Front. Immunol. 2024, 15, 1420883. [Google Scholar] [CrossRef]
- Monteiro, L.; Souza-Machado, A.; Menezes, C.; Melo, A. Association between allergies and multiple sclerosis: A systematic review and meta-analysis. Acta Neurol. Scand. 2011, 123, 1–7. [Google Scholar] [CrossRef]
- Pedotti, R.; Farinotti, M.; Falcone, C.; Borgonovo, L.; Confalonieri, P.; Campanella, A.; Mantegazza, R.; Pastorello, E.; Filippini, G. Allergy and multiple sclerosis: A population-based case-control study. Mult. Scler. J. 2009, 15, 899–906. [Google Scholar] [CrossRef]
- Karimi, P.; Modarresi, S.Z.; Sahraian, M.A.; Shoormasti, R.S.; Mahlooji, M.; Kazemnejad, A.; Pourpak, Z. The relation of multiple sclerosis with allergy and atopy: A case-control study. Iran J. Allergy Asthma Immunol. 2013, 12, 182–189. [Google Scholar]
- Krishna, M.T.; Subramanian, A.; Adderley, N.J.; Zemedikun, D.T.; Gkoutos, G.V.; Nirantharakumar, K. Allergic diseases and long-term risk of autoimmune disorders: Longitudinal cohort study and cluster analysis. Eur. Respir. J. 2019, 54, 1900476. [Google Scholar] [CrossRef]
- de Lusignan, S.; Alexander, H.; Broderick, C.; Dennis, J.; McGovern, A.; Feeney, C.; Flohr, C. Atopic dermatitis and risk of autoimmune conditions: Population-based cohort study. J. Allergy Clin. Immunol. 2022, 150, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Ni, H.; Kim, M.; Cooley, K.L.; Valenzuela, R.M.; Asche, C.V. Allergies, antibiotics use, and multiple sclerosis. Curr. Med. Res. Opin. 2017, 33, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Sahraian, M.A.; Jafarian, S.; Sheikhbahaei, S.; Safavi, F. Respiratory tract rather than cutaneous atopic allergy inversely associate with multiple sclerosis: A case-control study. Clin. Neurol. Neurosurg. 2013, 115, 2099–2102. [Google Scholar] [CrossRef]
- Ghoshouni, H.; Rafiei, N.; Yazdan Panah, M.; Dehghani Firouzabadi, D.; Mahmoudi, F.; Asghariahmadabad, M.; Shaygannejad, V.; Mirmosayyeb, O. Asthma and chronic obstructive pulmonary disease (COPD) in people with multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2024, 85, 103037. [Google Scholar] [CrossRef]
- Vitturi, B.K.; Montecucco, A.; Rahmani, A.; Dini, G.; Durando, P. Occupational exposures and risk of multiple sclerosis: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1285103. [Google Scholar] [CrossRef]
- Fakih, R.; Diaz-Cruz, C.; Chua, A.S.; Gonzalez, C.; Healy, B.C.; Sattarnezhad, N.; Glanz, B.I.; Weiner, H.L.; Chitnis, T. Food allergies are associated with increased disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Farez, M.F. Food allergies and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 625. [Google Scholar] [CrossRef]
- Manouchehrinia, A.; Edwards, L.J.; Roshanisefat, H.; Tench, C.R.; Constantinescu, C.S. Multiple sclerosis course and clinical outcomes in patients with comorbid asthma: A survey study. BMJ Open 2015, 5, e007806. [Google Scholar] [CrossRef]
- Albatineh, A.N.; Alroughani, R.; Al-Temaimi, R. Predictors of Multiple Sclerosis Severity Score in Patients with Multiple Sclerosis. Int. J. MS Care 2020, 22, 233–238. [Google Scholar] [CrossRef]
- Chen, J.; Taylor, B.; Winzenberg, T.; Palmer, A.J.; Kirk-Brown, A.; van Dijk, P.; Simpson, S.; Blizzard, L.; van der Mei, I. Comorbidities are prevalent and detrimental for employment outcomes in people of working age with multiple sclerosis. Mult. Scler. J. 2020, 26, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Marco-Martín, G.; Tornero, P.; Prieto, A.; La Rotta, A.; Herrero, T.; Baeza, M.L. Immediate reactions with glatiramer acetate: Diagnosis of allergy and desensitization protocols. Neurol. Clin. Pract. 2020, 10, 170–177. [Google Scholar] [CrossRef]
- La Mantia, L.; Munari, L.M.; Lovati, R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst. Rev. 2010, CD004678. [Google Scholar] [CrossRef]
- Chaki, S.; Amponnawarat, A.; Levenstein, B.; Hui, Y.; Oskeritzian, C.; Ali, H. Glatiramer acetate induces mast cell degranulation via MRGPRX2, implications for local and systemic adverse reactions. Allergy 2024, 79, 758–761. [Google Scholar] [CrossRef]
- Rauschka, H.; Farina, C.; Sator, P.; Gudek, S.; Breier, F.; Schmidbauer, M. Severe anaphylactic reaction to glatiramer acetate with specific IgE. Neurology 2005, 64, 1481–1482. [Google Scholar] [CrossRef]
- Corominas, M.; Postigo, I.; Cardona, V.; Lleonart, R.; Romero-Pinel, L.; Martinez, J. IgE-mediated allergic reactions after the first administration of glatiramer acetate in patients with multiple sclerosis. Int. Arch. Allergy Immunol. 2014, 165, 244–246. [Google Scholar] [CrossRef]
- Wöhrl, S.; Wantke, F.; Hemmer, W. Anaphylaxis to Glatiramer Acetate. Open Allergy J. 2015, 8, 23–25. [Google Scholar] [CrossRef]
- Amsler, E.; Autegarden, J.E.; Gaouar, H.; Frances, C.; Soria, A. Management of immediate hypersensitivity reaction to glatiramer acetate. Eur. J. Dermatol. 2017, 27, 92–95. [Google Scholar] [CrossRef]
- Bains, S.N.; Hsieh, F.H.; Rensel, M.R.; Radojicic, C.; Katz, H.T.; Inamdar, S.R.; Lang, D.M. Glatiramer acetate: Successful desensitization for treatment of multiple sclerosis. Ann. Allergy Asthma Immunol. 2010, 104, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.S.; Posner, M.A. Modified protocol for desensitization to glatiramer acetate. Ann. Allergy Asthma Immunol. 2010, 105, 190. [Google Scholar] [CrossRef] [PubMed]
- Walther, E.U.; Hohlfeld, R. Multiple sclerosis: Side effects of interferon beta therapy and their management. Neurology 1999, 53, 1622–1627. [Google Scholar] [CrossRef] [PubMed]
- Filipi, M.; Jack, S. Interferons in the Treatment of Multiple Sclerosis: A Clinical Efficacy, Safety, and Tolerability Update. Int. J. MS Care 2020, 22, 165–172. [Google Scholar] [CrossRef]
- Bayas, A.; Rieckmann, P. Managing the Adverse Effects of Interferon-Beta Therapy in Multiple Sclerosis. Drug Saf. 2000, 22, 149–159. [Google Scholar] [CrossRef]
- Corona, T.; Leon, C.; Ostrosky-Zeichner, L. Severe Anaphylaxis with Recombinant Interferon Beta. Neurology 1999, 52, 425. [Google Scholar] [CrossRef]
- Mazzeo, L.; Ricciardi, L.; Fazio, M.C.; Fogliani, O.; Fedele, R.; Ferlazzo, E.; Isola, S. Severe Urticaria Due to Recombinant Interferon Beta-1a. Br. J. Dermatol. 2003, 148, 172. [Google Scholar] [CrossRef]
- Corominas, M.; Gastaminza, G.; Lobera, T. Hypersensitivity Reactions to Biological Drugs. J. Investig. Allergol. Clin. Immunol. 2014, 24, 212–225. [Google Scholar] [CrossRef]
- Kalpaklioglu, A.F.; Baccioglu Kavut, A.; Erdemoglu, A.K. Desensitization in Interferon-Beta1a Allergy: A Case Report. Int. Arch. Allergy Immunol. 2009, 149, 178–180. [Google Scholar] [CrossRef]
- Hanson, J.; Gille, A.; Zwykiel, S.; Lukasova, M.; Clausen, B.E.; Ahmed, K.; Tunaru, S.; Wirth, A.; Offermanns, S. Nicotinic Acid- and Monomethyl Fumarate-Induced Flushing Involves GPR109A Expressed by Keratinocytes and COX-2-Dependent Prostanoid Formation in Mice. J. Clin. Investig. 2010, 120, 2910–2919. [Google Scholar] [CrossRef]
- Brown, W.; Suksaranjit, P.; Khor, L.L. Eosinophil-Mediated Cardiac Injury Possibly Due to Dimethyl Fumarate. JACC Cardiovasc. Imaging 2016, 9, 752–753. [Google Scholar] [CrossRef]
- Antolín-Amerigo, D.; Sánchez-González, M.J.; Barbarroja-Escudero, J.; Ayuso-Peralta, L.; Bellón-Heredia, T.; Ortega-Berruezo, M.A.; Alvarez-Mon, M.; Rodríguez-Rodríguez, M. Delayed Hypersensitivity Reaction to Oral Dimethyl Fumarate. J. Investig. Allergol. Clin. Immunol. 2018, 28, 201–203. [Google Scholar] [CrossRef]
- European Medicines Agency. Tecfidera (Dimethyl Fumarate)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/tecfidera-epar-product-information_en.pdf (accessed on 15 April 2025).
- Di Bona, D.; Albanesi, M.; Giliberti, L.A.; Nico, A.; Rossi, M.P.; Caiaffa, M.F.; Macchia, L. Desensitization for Immediate Hypersensitivity to Oral Dimethyl Fumarate (Tecfidera). J. Allergy Clin. Immunol. Pract. 2017, 5, 821–822. [Google Scholar] [CrossRef] [PubMed]
- Purchiaroni, F.; Salvetti, M.; Buscarinu, M.C.; Annibale, B. Eosinophilic Gastroenteritis in a Woman with Multiple Sclerosis on Dimethyl Fumarate. Neurology 2016, 87, 952–953. [Google Scholar] [CrossRef] [PubMed]
- Baglivo, I.; Colantuono, S.; Caruso, C.; De Fino, C.; Gasbarrini, A.; Capone, M.; D’aMore, A.; Peris, K.; Romano, A.; Parronchi, P. Delayed Hypersensitivity to Dimethyl Fumarate: Report of One Case and Literature Review. J. Allergy Clin. Immunol. Pract. 2023, 11, 1562–1563.e2. [Google Scholar] [CrossRef] [PubMed]
- Gelibter, S.; Orrico, M.; Moiola, L.; Dagna, L.; Filippi, M.; Yacoub, M.R. Allergy and Dimethyl Fumarate Treatment in a Patient with Multiple Sclerosis. J. Neurol. Sci. 2020, 418, 117104. [Google Scholar] [CrossRef]
- Khurana, D.; Kaur, G.; Kumaran, M.S.; Choudhary, R.; Ashraf, R.; Thakur, V. Teriflunomide-Induced Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Syndrome. Clin. Exp. Dermatol. 2021, 46, 166–169. [Google Scholar] [CrossRef]
- Gerschenfeld, G.; Servy, A.; Valeyrie-Allanore, L.; De Prost, N.; Cecchini, J. Fatal Toxic Epidermal Necrolysis in a Patient on Teriflunomide Treatment for Relapsing Multiple Sclerosis. Mult. Scler. J. 2015, 21, 1476–1477. [Google Scholar] [CrossRef]
- European Medicines Agency. Aubagio (teriflunomide)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf (accessed on 15 April 2025).
- European Medicines Agency. Mavenclad 10 mg tablets: Summary of product characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/mavenclad-epar-product-information_en.pdf (accessed on 15 April 2025).
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 416–426. [Google Scholar] [CrossRef]
- Haynes, J.; Jackson, M.; Smugar, S.S. Increased risk of severe cutaneous adverse reactions when cladribine is used together with other medications with a propensity for skin reactions. Leuk. Lymphoma 2022, 63, 2965–2974. [Google Scholar] [CrossRef]
- Rolfes, L.; Pfeuffer, S.; Hackert, J.; Pawlitzki, M.; Ruck, T.; Sondermann, W.; Korsen, M.; Wiendl, H.; Meuth, S.G.; Kleinschnitz, C.; et al. Skin reactions in patients with multiple sclerosis receiving cladribine treatment. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e990. [Google Scholar] [CrossRef] [PubMed]
- Meher-Homji, Z.; Tam, C.S.; Siderov, J.; Seymour, J.F.; Holmes, N.E.; Chua, K.Y.L.; Phillips, E.J.; Slavin, M.A.; Trubiano, J.A. High prevalence of antibiotic allergies in cladribine-treated patients with hairy cell leukemia: Lessons for immunopathogenesis and prescribing. Leuk Lymphoma. 2019, 60, 3455–3460. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Casas, M.; Reyes, S.; O’Toole, E.A.; De Trane, S.; Yildiz, O.; Allen-Philbey, K.; Mathews, J.; Baker, D.; Giovannoni, G.; Schmierer, K. Severe skin reactions associated with cladribine in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102140. [Google Scholar] [CrossRef]
- de Sèze, J.; Maillart, E.; Gueguen, A.; Laplaud, D.A.; Michel, L.; Thouvenot, E.; Zephir, H.; Zimmer, L.; Biotti, D.; Liblau, R. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front. Immunol. 2023, 14, 1004795. [Google Scholar] [CrossRef]
- Scavone, C.; Anatriello, A.; Baccari, I.; Cantone, A.; Di Giulio Cesare, D.; Bernardi, F.F.; Moreggia, O.; Liguori, V.; Andreone, V.; Maniscalco, G.T.; et al. Comparison of injective related reactions following ofatumumab and ocrelizumab in patients with multiple sclerosis: Data from the European spontaneous reporting system. Front. Neurol. 2024, 15, 1383910. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.G.; Sgarlata, E.; Arena, S.; Toscano, S.; Luca, M.; Patti, F. Rituximab for the treatment of multiple sclerosis: A review. J Neurol. 2021, 269, 159–171. [Google Scholar] [CrossRef]
- Paul, F.; Cartron, G. Infusion-related reactions to rituximab: Frequency, mechanisms and predictors. Expert Rev. Clin. Immunol. 2019, 15, 383–389. [Google Scholar] [CrossRef]
- Fox, E.; Steinman, L.; Hartung, H.P.; Alvarez, E.; Qian, P.; Wray, S.; Robertson, D.; Huang, D.; Selmaj, K.; Wynn, D.; et al. Infusion-related reactions with ublituximab in patients with relapsing multiple sclerosis: Post hoc analyses from the Phase 3 ULTIMATE I and II studies. Neurology 2022, 98 (Suppl. S18). [Google Scholar] [CrossRef]
- Ng, H.S.; Rosenbult, C.L.; Tremlett, H. Safety profile of ocrelizumab for the treatment of multiple sclerosis: A systematic review. Expert Opin. Drug Saf. 2020, 19, 1069–1094. [Google Scholar] [CrossRef]
- Holmøy, T.; Fogdell-Hahn, A.; Svenningsson, A. Serum sickness following rituximab therapy in multiple sclerosis. Neurol. Clin. Pract. 2019, 9, 519–521. [Google Scholar] [CrossRef]
- Rjeily, N.B.; Nourbakhsh, B.; Mowry, E.M. Serum sickness/serum sickness–like reactions following ocrelizumab infusion in 2 patients with multiple sclerosis. Int. J. MS Care 2023, 25, 196–198. [Google Scholar] [CrossRef]
- Reslan, S.B.; Aoun, R.; Abou-Fayssal, N. Drug eruption after subcutaneous ofatumumab exposure in two patients with relapsing multiple sclerosis (P2-6.009). Neurology 2024, 102 (Suppl. S1). [Google Scholar] [CrossRef]
- Aun, M.V.; Freua, F.; Marussi, V.H.R.; Giavina-Bianchi, P. Case report: Rapid desensitization to ocrelizumab for multiple sclerosis is effective and safe. Front. Immunol. 2022, 13, 840238. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.T.; Long, A. Rituximab hypersensitivity: Evaluation, desensitization, and potential mechanisms. J. Allergy Clin. Immunol. Pract. 2017, 5, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Joubert, M.; Paris, P.; Clavelou, P.; Moisset, X. Ocrelizumab can be used in multiple sclerosis after a rituximab-induced serum sickness: A case report. Rev. Neurol. 2021, 177, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Loonstra, F.C.; van Rossum, J.A.; van Kempen, Z.L.E.; Rispens, T.; Uitdehaag, B.M.J.; Killestein, J. Infusion-related events during natalizumab: No need for post-infusion monitoring. Mult. Scler. J. 2020, 26, 1590. [Google Scholar] [CrossRef]
- Bignardi, D.; Ribizzi, G.; Voltolini, S.; Serrati, C.; Troise, C. Successful desensitization to natalizumab in a skin test–positive patient: A case report. Eur. Ann. Allergy Clin. Immunol. 2012, 44, 26–29. [Google Scholar]
- De La Hera, B.; Urcelay, E.; Brassat, D.; Chan, A.; Vidal-Jordana, A.; Salmen, A.; Villar, L.M.; Álvarez-Cermeño, J.C.; Izquierdo, G.; Fernández, O.; et al. Natalizumab-related anaphylactoid reactions in MS patients are associated with HLA class II alleles. Neurol. Neuroimmunol. Neuroinflamm. 2014, 1, e47. [Google Scholar] [CrossRef] [PubMed]
- Krumbholz, M.; Pellkofer, H.; Gold, R.; Hoffmann, L.A.; Hohlfeld, R.; Kümpfel, T. Delayed allergic reaction to natalizumab associated with early formation of neutralizing antibodies. Arch. Neurol. 2007, 64, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Schimrigk, S.; Fischer, M.; Haghikia, A.; Müller, T.; Chan, A.; Gold, R. Allergic and nonallergic delayed infusion reactions during natalizumab therapy. Arch. Neurol. 2008, 65, 656–658. [Google Scholar] [CrossRef]
- Phillips, J.T.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Polman, C.H.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. Infusion-related hypersensitivity reactions during natalizumab treatment. Neurology 2006, 67, 1717–1718. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Halili, M.; George, R.; Gottesman, M.; Davis-Lorton, M. An approach to natalizumab hypersensitivity: A case series of induction of tolerance. Mult. Scler. J. 2011, 17, 250–253. [Google Scholar] [CrossRef]
- Sutaria, M.; Miro, K.; Mathew, A.; Kister, I.; Feigenbaum, B.A. Special considerations for rapid drug desensitization with natalizumab. J. Allergy Clin. Immunol. 2011, 127 (Suppl. S2), AB196. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Gilenya (Fingolimod) Capsules—Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022527s031lbl.pdf (accessed on 15 April 2025).
- Ruiz Pena, J.L.; Navarro Mascarell, G.; Camino, P.; Perez, S.; Eichau, S.; Pacheco, E.; Damas, F.; Izquierdo Ayuso, G. Skin adverse events occurring during treatment with new oral drugs for multiple sclerosis. Mult. Scler. J. 2015, 23 (Suppl. 11), 557. [Google Scholar] [CrossRef]
- European Medicines Agency. Ponvory (Ponesimod)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/ponvory-epar-product-information_en.pdf (accessed on 15 April 2025).
- European Medicines Agency. Zeposia (Ozanimod)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/zeposia-epar-product-information_en.pdf (accessed on 15 April 2025).
- European Medicines Agency. Mayzent (Siponimod)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/mayzent-epar-product-information_en.pdf (accessed on 15 April 2025).
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef]
- Rauma, I.; Mustonen, T.; Seppä, J.M.; Ukkonen, M.; Männikkö, M.; Verkkoniemi-Ahola, A.; Kartau, M.; Saarinen, J.T.; Luostarinen, L.; Simula, S.; et al. Safety of alemtuzumab in a nationwide cohort of Finnish multiple sclerosis patients. J. Neurol. 2022, 269, 824–835. [Google Scholar] [CrossRef]
- European Medicines Agency. Lemtrada (Alemtuzumab)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/lemtrada-epar-product-information_en.pdf (accessed on 15 April 2025).
- Hu, Y.; Turner, M.J.; Shields, J.; Gale, M.S.; Hutto, E.; Roberts, B.L.; Siders, W.M.; Kaplan, J.M. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 2009, 128, 260–270. [Google Scholar] [CrossRef]
- Gutiérrez-Fernández, D.; Saldaña-Valderas, M.; de la Varga-Martínez, R.; Foncubierta-Fernández, A.; Fernández-Anguita, M.J.; Fernández-Valle Mdel, C.; Medina-Varo, F. Hypersensitivity to alemtuzumab. A safe and effective desensitization protocol: A case report. J. Oncol. Pharm. Pract. 2019, 25, 1016–1020. [Google Scholar] [CrossRef]
- Tunakan Dalgiç, C.; Mete Gökmen, E.N.; Özişik, M.; Alkaya Baklan, M.; Yüceyar, N. Successful rapid drug desensitization with a modified protocol to alemtuzumab in a multiple sclerosis patient with severe immediate-type hypersensitivity reaction. Noro Psikiyatr. Ars. 2022, 59, 237–241. [Google Scholar] [CrossRef]
- McCall, B. Alemtuzumab to be restricted pending review, says EMA. Lancet 2019, 393, 1683. [Google Scholar] [CrossRef]
- Rolla, S.; Maglione, A.; De Mercanti, S.F.; Clerico, M. The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis. Cells 2020, 9, 1396. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Park, E.; Abd-Elrahman, K.S. Enhancing remyelination in multiple sclerosis via M1 muscarinic acetylcholine receptor. Mol Pharmacol. 2025, 107, 100027. [Google Scholar] [CrossRef] [PubMed]
- Green, A.J.; Gelfand, J.M.; Cree, B.A.; Bevan, C.; Boscardin, W.J.; Mei, F.; Inman, J.; Arnow, S.; Devereux, M.; Abounasr, A.; et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): A randomised, controlled, double-blind, crossover trial. Lancet 2017, 390, 2481–2489. [Google Scholar] [CrossRef]
- Nakajima, H.; Ohtsuka, S.; Nishina, T.; Sugino, M.; Kimura, F.; Hanafusa, T.; Ikemoto, T.; Shimizu, A. Multiple sclerosis after allergen-specific immunotherapy and influenza vaccination. Eur. Neurol. 2003, 50, 248–249. [Google Scholar] [CrossRef]
- Linneberg, A.; Madsen, F.; Skaaby, T. Allergen-specific immunotherapy and risk of autoimmune disease. Curr Opin Allergy Clin Immunol. 2012, 12, 635–639. [Google Scholar] [CrossRef]
- Pfaar, O.; Ankermann, T.; Augustin, M.; Bubel, P.; Böing, S.; Brehler, R.; Eng, P.A.; Fischer, P.J.; Gerstlauer, M.; Hamelmann, E.; et al. Guideline on allergen immunotherapy in IgE-mediated allergic diseases. Allergologie 2022, 45, 643–702. [Google Scholar] [CrossRef]
- Bozek, A.; Kołodziejczyk, K.; Bednarski, P. The relationship between autoimmunity and specific immunotherapy for allergic diseases. Hum. Vaccin Immunother. 2015, 11, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, Y.Y.; Ye, Z.Q.; Xiao, Y.; Rasouli, J.; Wu, W.C.; Ye, S.; Guo, X.; Zhu, L.; Rostami, A.; et al. Montelukast alleviates inflammation in experimental autoimmune encephalomyelitis by altering Th17 differentiation in a mouse model. Immunology 2021, 163, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Manuel, A.M.; Gottlieb, A.; Freeman, L.; Zhao, Z. Montelukast as a repurposable additive drug for standard-efficacy multiple sclerosis treatment: Emulating clinical trials with retrospective administrative health claims data. Mult. Scler. J. 2024, 30, 696–704. [Google Scholar] [CrossRef]
- Syrigos, N.; Grapsa, D.; Syrigou, E. Omalizumab for refractory chronic spontaneous urticaria during concurrent immunomodulatory therapy for multiple sclerosis. Eur. Ann. Allergy Clin. Immunol. 2017, 49, 286–287. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Population | Type of Allergic Condition | Specific Manifestation | MS Risk Outcome OR/HR (95% CI) | Key Findings |
---|---|---|---|---|---|---|
Monteiro (2011) [45] | Meta-analysis | Mixed | Any allergy | Combined allergies | Pooled OR 0.91 (0.68–1.23) | No significant association between allergic diseases and MS |
Pedotti (2009) [46] | Case-control | Adults, Italy | Atopic conditions | Atopic allergies; allergic asthma | OR 0.58 (0.38–0.89); OR 0.38 (0.22–0.66) | Significant inverse association, especially for allergic asthma |
Karimi (2023) [47] | Case-control (questionnaire + IgE measure) | Adults, Iran | Any allergy | Rhinitis, conjunctivitis, eczema/urticaria, asthma; total/specific IgE | Not reported (NS) | No differences in allergy prevalence or IgE levels between MS and controls |
Krishna (2019) [48] | Retrospective cohort | All ages, UK | Allergic diseases | Rhinitis/conjunctivitis; eczema; asthma | ORs 1.03–1.07 (all NS) | Increased risk of other autoimmune diseases but not MS |
de Lusignan (2022) [49] | Retrospective cohort | All ages, UK | Atopic dermatitis | Atopic dermatitis | HR 0.95 (0.68–1.35) | No significant association with MS |
Ren (2017) [50] | Case-control database | Adults, USA | Environmental allergies | Respiratory tract allergy | OR 0.29 (0.18–0.49) | Strong inverse association with MS |
Sahraian (2013) [51] | Case-control | Adults, Iran | Combined allergies | Respiratory, food/drug allergies | OR 0.24 (0.13–0.43); OR 0.43 (0.28–0.66) | Significant inverse association for respiratory and food/drug allergies |
Ghoshouni (2024) [52] | Meta-analysis | Adults, mixed | Asthma | Asthma | Pooled OR 1.09 (0.98–1.21) | No association between asthma and MS |
Bourne (2017) [8] | Case-control | Pediatrics, USA | Multiple allergies | Food, environmental, antibiotic allergies | ORs: 0.61, 0.65, 2.05 (NS) | No higher prevalence of allergies in pediatric MS patients |
Vitturi (2023) [53] | Meta-analysis | Adults, mixed | Occupational exposure | Various occupations with sensitizing agents | Hairdressers OR 8.25 (1.02–66.52); pesticides OR 3.17 (2.53–3.99) | Increased MS risk in multiple occupations |
Study | Design | Population | Type of Allergic Condition | Specific Manifestation | Outcome | Key Findings |
---|---|---|---|---|---|---|
Fakih (2019) [54] | Cross-sectional | Adults, USA | Food, environmental, drug allergies | Any food, environmental, or drug allergy | Relapse Ratio 1.27 (95% CI 1.02–1.59); GELs OR 2.53 (95% CI 1.25–4.59) for food allergy | Higher MS activity in adults with food allergies; no differences in disability outcomes |
Bourne (2017) [8] | Case-control | Pediatrics, USA | Multiple allergies | Food, environmental, antibiotic allergies | ARR: 0.14 vs. 0.48 (p = 0.01) for food allergy | Lower MS activity in pediatric food allergies |
Manouchehrinia (2015) [56] | Retrospective cohort | Adults, UK | Asthma | Asthma | HR EDSS 4.0: 1.29 (0.93–1.77); HR EDSS 6.0: 1.33 (0.93–1.89) | Asthma not associated with greater disability; worse mental health scores in asthmatics |
Albatineh (2020) [57] | Cross-sectional | Adults, Kuwait | Food allergy | Food allergy | Not reported (NS) | No association between food allergy and MS severity (MSSS) |
Chen (2020) [58] | Cross-sectional | Adults, Australia | Any allergy | Any allergic condition | Productivity loss: ~35.7 days/year; ~18% with allergies | Allergies linked to higher productivity loss and poorer self-reported health |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervera-Ygual, G.; Delgado-Prada, A.; Gascon-Gimenez, F. Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy. Allergies 2025, 5, 26. https://doi.org/10.3390/allergies5030026
Cervera-Ygual G, Delgado-Prada A, Gascon-Gimenez F. Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy. Allergies. 2025; 5(3):26. https://doi.org/10.3390/allergies5030026
Chicago/Turabian StyleCervera-Ygual, Guillermo, Ana Delgado-Prada, and Francisco Gascon-Gimenez. 2025. "Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy" Allergies 5, no. 3: 26. https://doi.org/10.3390/allergies5030026
APA StyleCervera-Ygual, G., Delgado-Prada, A., & Gascon-Gimenez, F. (2025). Intersections Between Allergic Diseases and Multiple Sclerosis: Mechanisms, Clinical Implications, and Hypersensitivity Reactions to Therapy. Allergies, 5(3), 26. https://doi.org/10.3390/allergies5030026