Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (165)

Search Parameters:
Keywords = sustainable multimodal transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

38 pages, 2159 KiB  
Review
Leveraging Big Data and AI for Sustainable Urban Mobility Solutions
by Oluwaleke Yusuf, Adil Rasheed and Frank Lindseth
Urban Sci. 2025, 9(8), 301; https://doi.org/10.3390/urbansci9080301 - 4 Aug 2025
Viewed by 11
Abstract
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts [...] Read more.
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts remains underexplored. This meta-review comprised three complementary studies: a broad analysis of sustainable mobility with Norwegian case studies, and systematic literature reviews on digital twins and Big Data/AI applications in urban mobility, covering the period of 2019–2024. Using structured criteria, we synthesised findings from 72 relevant articles to identify major trends, limitations, and opportunities. The findings show that mobility policies often prioritise technocentric solutions that unintentionally hinder sustainability goals. Digital twins show potential for traffic simulation, urban planning, and public engagement, while machine learning techniques support traffic forecasting and multimodal integration. However, persistent challenges include data interoperability, model validation, and insufficient stakeholder engagement. We identify a hierarchy of mobility modes where public transit and active mobility outperform private vehicles in sustainability and user satisfaction. Integrating electrification and automation and sharing models with data-informed governance can enhance urban liveability. We propose actionable pathways leveraging Big Data and AI, outlining the roles of various stakeholders in advancing sustainable urban mobility futures. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 195
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

15 pages, 2337 KiB  
Article
A Vulnerability Index for Multimodal Transportation Networks: The Case of Korea
by Ki-Han Song, Ha-Jeong Lee and Wonho Suh
Appl. Sci. 2025, 15(15), 8201; https://doi.org/10.3390/app15158201 - 23 Jul 2025
Viewed by 145
Abstract
This study aimed to assess the vulnerability of transportation networks and identify critical nodes and regions within a multimodal transportation system. While previous research has predominantly focused on centrality measures to evaluate node importance from an accessibility perspective, this study emphasizes the need [...] Read more.
This study aimed to assess the vulnerability of transportation networks and identify critical nodes and regions within a multimodal transportation system. While previous research has predominantly focused on centrality measures to evaluate node importance from an accessibility perspective, this study emphasizes the need to evaluate network vulnerability comprehensively in response to rapid socioeconomic changes. We propose a vulnerability function that integrates network topology and connectivity. First, we defined the vulnerability of individual nodes and regional clusters. Second, we developed a methodology to evaluate the defined vulnerabilities systematically. Finally, we applied the framework to Korea’s multimodal transportation network, conducting a case study to validate the effectiveness and applicability of the proposed function. Conclusively, this study presents a comprehensive vulnerability assessment framework for multimodal transportation networks, offering valuable insights to support robust decision making for enhancing sustainable and efficient transportation systems. Full article
Show Figures

Figure 1

16 pages, 3775 KiB  
Article
Optimizing Energy Efficiency in Last-Mile Delivery: A Collaborative Approach with Public Transportation System and Drones
by Pierre Romet, Charbel Hage, El-Hassane Aglzim, Tonino Sophy and Franck Gechter
Drones 2025, 9(8), 513; https://doi.org/10.3390/drones9080513 - 22 Jul 2025
Viewed by 324
Abstract
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission [...] Read more.
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission profiles, limiting their applicability to realistic, scalable drone-based logistics. In this paper, we propose a physically-grounded and scenario-aware energy sizing methodology for UAVs operating as part of a last-mile delivery system integrated with a city’s bus network. The model incorporates detailed physical dynamics—including lift, drag, thrust, and payload variations—and considers real-time mission constraints such as delivery execution windows and infrastructure interactions. To enhance the realism of the energy estimation, we integrate computational fluid dynamics (CFD) simulations that quantify the impact of surrounding structures and moving buses on UAV thrust efficiency. Four mission scenarios of increasing complexity are defined to evaluate the effects of delivery delays, obstacle-induced aerodynamic perturbations, and early return strategies on energy consumption. The methodology is applied to a real-world transport network in Belfort, France, using a graph-based digital twin. Results show that environmental and operational constraints can lead to up to 16% additional energy consumption compared to idealized mission models. The proposed framework provides a robust foundation for UAV battery sizing, mission planning, and sustainable integration of aerial delivery into multimodal urban transport systems. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

29 pages, 5923 KiB  
Article
Activity Spaces in Multimodal Transportation Networks: A Nonlinear and Spatial Analysis Perspective
by Kuang Guo, Rui Tang, Haixiao Pan, Dongming Zhang, Yang Liu and Zhuangbin Shi
ISPRS Int. J. Geo-Inf. 2025, 14(8), 281; https://doi.org/10.3390/ijgi14080281 - 22 Jul 2025
Viewed by 336
Abstract
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces [...] Read more.
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces in Hangzhou using 2023 smart card data. Multimodal travel chains are extracted, and residents’ activity spaces are quantified using 95% confidence ellipses. By applying the XGBoost and GeoShapley models, this study reveals the nonlinear effects and geospatial heterogeneity in how built environment and socioeconomic factors influence activity spaces. The key findings show that the distance to the nearest metro station, commercial POIs, and GDP significantly shape activity spaces through nonlinear relationships. Moreover, the interaction between the distance to the nearest metro station and geographical location generates pronounced geospatial effects. The results highlight the importance of multimodal integration in urban transport planning and provide empirical insights for enhancing system efficiency and sustainability. Full article
Show Figures

Figure 1

21 pages, 2699 KiB  
Article
Urban Sustainability of Quito Through Its Food System: Spatial and Social Interactions
by María Magdalena Benalcázar Jarrín, Diana Patricia Zuleta Mediavilla, Ramon Rispoli and Daniele Rocchio
Sustainability 2025, 17(14), 6613; https://doi.org/10.3390/su17146613 - 19 Jul 2025
Viewed by 424
Abstract
This study explores the spatial and social implications of urban food systems in Quito, Ecuador, focusing on how food access inequalities reflect and reinforce broader urban disparities. The research addresses a critical problem in contemporary urbanization: the disconnection between food provisioning and spatial [...] Read more.
This study explores the spatial and social implications of urban food systems in Quito, Ecuador, focusing on how food access inequalities reflect and reinforce broader urban disparities. The research addresses a critical problem in contemporary urbanization: the disconnection between food provisioning and spatial equity in rapidly growing cities. The objective is to assess and map disparities in food accessibility using a mixed-methods approach that includes field observation, participatory mapping, value chain analysis, and statistical modeling. Five traditional and emerging food markets were studied in diverse districts across the city. A synthetic accessibility function F(x) was constructed to model food access levels, integrating variables such as income, infrastructure, transport availability, and travel time. These variables were subjected to Principal Component Analysis (PCA) and hierarchical clustering to generate three typologies of territorial vulnerability. The results reveal that peripheral areas exhibit lower F(x) values and weaker integration with the formal food system, leading to higher consumer costs and limited fresh food options. In contrast, central districts benefit from multimodal infrastructure and greater diversity of supply. This study concludes that food systems should be treated as critical urban infrastructure. Integrating food equity into land use and mobility planning is essential to promote inclusive, sustainable, and resilient urban development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

23 pages, 2032 KiB  
Article
Factors Influencing Nighttime Tourists’ Satisfaction of Urban Lakes: A Case Study of the Daming Lake Scenic Area, China
by Huying Zhu and Mengru Li
Sustainability 2025, 17(14), 6596; https://doi.org/10.3390/su17146596 - 19 Jul 2025
Viewed by 449
Abstract
Tourist satisfaction of nighttime urban lakes as scenic areas, such as the Daming Lake, is influenced by multiple factors, which are crucial for tourists’ experiences and the sustainable development of these areas. This paper explores the factors impacting nighttime visitor satisfaction at the [...] Read more.
Tourist satisfaction of nighttime urban lakes as scenic areas, such as the Daming Lake, is influenced by multiple factors, which are crucial for tourists’ experiences and the sustainable development of these areas. This paper explores the factors impacting nighttime visitor satisfaction at the Daming Lake Scenic Area. Basing our studies on analysis of the literature and questionnaire surveys, the study constructs a visitor satisfaction evaluation index system based on the Expectancy-Disconfirmation Theory. Utilizing the revised importance-performance analysis method, the study identifies several significant influencing factors including the distinctive features of nighttime shopping products, the rich variety of nighttime tourscape and entertainment products, the aesthetically pleasing design of nighttime lighting products, the affordable price of nighttime dining products, and the diverse methods, reasonable pricing, and multimodal transit options of nighttime transportation. Furthermore, it finds the main factors that reduce tourists’ satisfaction in nighttime urban lakes include: premium pricing of nighttime shopping and dining products, transport infrastructure deficiencies, the cultural connotation of tourism products, and the safety of nighttime tourscape and entertainment products. This research provides insights to enhance satisfaction in urban lake scenic areas and expands the application of the tourist satisfaction theory. Full article
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment
by Bandar Aldhubiab and Rashed M. Almuqbil
Pharmaceuticals 2025, 18(7), 1057; https://doi.org/10.3390/ph18071057 - 18 Jul 2025
Viewed by 443
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) [...] Read more.
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) has emerged as an advanced, selective and more controlled therapeutic approach, which has minimal systemic toxicity and fewer side effects. PDT is a less invasive therapy that targets all cells or tissues that possess the photosensitizer (PS) itself, without affecting the surrounding healthy tissues. Polymeric NPs (PNPs) as carriers can improve the targeting ability and stability of PSs and co-deliver various anticancer agents to achieve combined cancer therapy. Because of their versatile tuneable features, these PNPs have the capacity to open tight junctions of the blood–brain barrier (BBB), easily transport drugs across the BBB, protect against enzymatic degradation, prolong the systemic circulation, and sustainably release the drug. Conjugated polymer NPs, poly(lactic-co-glycolic acid)-based NPs, lipid–polymer hybrid NPs, and polyethylene-glycolated PNPs have demonstrated great potential in PDT owing to their unique biocompatibility and optical properties. Although the combination of PDT and PNPs has great potential and can provide several benefits over conventional cancer therapies, there are several limitations that are hindering its translation into clinical use. This review aims to summarize the recent advances in the combined use of PNPs and PDT in the case of glioblastoma treatment. By evaluating various types of PDT and PNPs, this review emphasizes how these innovative approaches can play an important role in overcoming glioblastoma-associated critical challenges, including BBB and tumour heterogeneity. Furthermore, this review also discusses the challenges and future directions for PNPs and PDT, which provides insight into the potential solutions to various problems that are hindering their clinical translation in glioblastoma treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

26 pages, 2215 KiB  
Article
Smart Routing for Sustainable Supply Chain Networks: An AI and Knowledge Graph Driven Approach
by Manuel Felder, Matteo De Marchi, Patrick Dallasega and Erwin Rauch
Appl. Sci. 2025, 15(14), 8001; https://doi.org/10.3390/app15148001 - 18 Jul 2025
Viewed by 445
Abstract
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and [...] Read more.
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and benchmarking of transport emissions in lifecycle assessments (LCAs) time-consuming and difficult to scale. This paper introduces a novel hybrid AI-supported knowledge graph (KG) which combines large language models (LLMs) with graph-based optimization to automate industrial supply chain route enrichment, completion, and emissions analysis. The proposed solution automatically resolves transportation gaps through generative AI and programming interfaces to create optimal routes for cost, time, and emission determination. The application merges separate routes into a single multi-modal network which allows users to evaluate sustainability against operational performance. A case study shows the capabilities in simplifying data collection for emissions reporting, therefore reducing manual effort and empowering SMEs to align logistics decisions with Industry 5.0 sustainability goals. Full article
Show Figures

Figure 1

16 pages, 1107 KiB  
Article
Pricing Strategy for High-Speed Rail Freight Services: Considering Perspectives of High-Speed Rail and Logistics Companies
by Guoyong Yue, Mingxuan Zhao, Su Zhao, Liwei Xie and Jia Feng
Sustainability 2025, 17(14), 6555; https://doi.org/10.3390/su17146555 - 18 Jul 2025
Viewed by 306
Abstract
It is well known that there is a significant conflict of interest between high-speed rail (HSR) operators and logistics companies. This study proposes an HSR freight pricing strategy based on a multi-objective optimization framework and a freight mode splitting model based on the [...] Read more.
It is well known that there is a significant conflict of interest between high-speed rail (HSR) operators and logistics companies. This study proposes an HSR freight pricing strategy based on a multi-objective optimization framework and a freight mode splitting model based on the Logit model. A utility function was constructed to quantify the comprehensive utility of different modes of transportation by integrating five key influencing factors: economy, speed, convenience, stability, and environmental sustainability. A bi-objective optimization model was developed to balance the cost of the logistics with the benefits of high-speed rail operators to achieve a win–win situation. The model is solved by the TOPSIS method, and its effectiveness is verified by the freight case of the Zhengzhou–Chongqing high-speed railway in China. The results of this study showed that (1) HSR has advantages in medium-distance freight transportation; (2) increasing government subsidies can help improve the market competitiveness of high-speed rail in freight transportation. This research provides theoretical foundations and methodological support for optimizing HSR freight pricing mechanisms and improving multimodal transport efficiency. Full article
Show Figures

Figure 1

22 pages, 1402 KiB  
Article
Fleet Coalitions: A Collaborative Planning Model Balancing Economic and Environmental Costs for Sustainable Multimodal Transport
by Anna Laura Pala and Giuseppe Stecca
Logistics 2025, 9(3), 91; https://doi.org/10.3390/logistics9030091 - 10 Jul 2025
Viewed by 305
Abstract
Background: Sustainability is a critical concern in transportation, notably in light of governmental initiatives such as cap-and-trade systems and eco-label regulations aimed at reducing emissions. In this context, collaborative approaches among carriers, which involve the exchange of shipment requests, are increasingly recognized as [...] Read more.
Background: Sustainability is a critical concern in transportation, notably in light of governmental initiatives such as cap-and-trade systems and eco-label regulations aimed at reducing emissions. In this context, collaborative approaches among carriers, which involve the exchange of shipment requests, are increasingly recognized as effective strategies to enhance efficiency and reduce environmental impact. Methods: This research proposes a novel collaborative planning model for multimodal transport designed to minimize the total costs associated with freight movements, including both transportation and CO2 emissions costs. Transshipments of freight between vehicles are modeled in the proposed formulation, promoting carrier coalitions. This study incorporated eco-labels, representing different emission ranges, to capture shipper sustainability preferences and integrated authority-imposed low-emission zones as constraints. A bi-objective approach was adopted, combining transportation and emission costs through a weighted sum method. Results: A case study on the Naples Bypass network (Italy) is presented, highlighting the model’s applicability in a real-world setting and demonstrating the effectiveness of collaborative transport planning. In addition, the model quantified the benefits of collaboration under low-emission zone (LEZ) constraints, showing notable reductions in both total costs and emissions. Conclusions: Overall, the proposed approach offers a valuable decision support tool for both carriers and policymakers, enabling sustainable freight transportation planning. Full article
Show Figures

Figure 1

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 2 | Viewed by 652
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

21 pages, 21979 KiB  
Article
Modal Transportation Shifting from Road to Coastal-Waterways in the UK: Finding Optimal Capacity for Sustainable Freight Transport Through Swarming of Zero-Emission Barge Fleets
by Amin Nazemian, Evangelos Boulougouris and Myo Zin Aung
J. Mar. Sci. Eng. 2025, 13(7), 1215; https://doi.org/10.3390/jmse13071215 - 23 Jun 2025
Viewed by 408
Abstract
This paper examines the feasibility of transitioning road cargo to waterborne transport in the UK, aiming to reduce emissions and alleviate road congestion. Key objectives include (1) developing a modal shift technology to establish freight highways across the UK, (2) designing a small, [...] Read more.
This paper examines the feasibility of transitioning road cargo to waterborne transport in the UK, aiming to reduce emissions and alleviate road congestion. Key objectives include (1) developing a modal shift technology to establish freight highways across the UK, (2) designing a small, decarbonized barge vessel concept that complements the logistics framework, and (3) assessing the economic and environmental viability of a multimodal logistics network. Using discrete event simulation (DES), four transportation scenarios were analyzed to evaluate the efficiency and sustainability of integrating coastal and inland waterways into the logistics framework. Results indicate that waterborne transport is more cost-effective and environmentally sustainable than road transport. A sweeping design study was conducted to optimize time, cost, and emissions. This model was applied to a case study, providing insights into optimal pathways for transitioning to waterborne freight by finding the optimized number of TEUs. Consequently, our study identified 96 TEUs as the optimal capacity to initiate barge design, balancing cost, time, and emissions, while 126 TEUs emerged as the best option for scalability. Findings offer critical guidance for supporting the UK’s climate goals and governmental policies by advancing sustainable transportation solutions. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

Back to TopTop