Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,309)

Search Parameters:
Keywords = suspension optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4463 KB  
Article
A Method for Road Spectrum Identification in Real-Vehicle Tests by Fusing Time-Frequency Domain Features
by Biao Qiu and Chaiyan Jettanasen
Computation 2026, 14(2), 36; https://doi.org/10.3390/computation14020036 - 2 Feb 2026
Abstract
Most unpaved roads are subjectively classified as Class D roads. However, significant variations exist across different sites and environments (e.g., mining areas). A major challenge in the engineering field is how to quickly correct the Power Spectral Density (PSD) of the unpaved road [...] Read more.
Most unpaved roads are subjectively classified as Class D roads. However, significant variations exist across different sites and environments (e.g., mining areas). A major challenge in the engineering field is how to quickly correct the Power Spectral Density (PSD) of the unpaved road in question using existing equipment and limited sensors. To address this issue, this study combines real-vehicle test data with a suspension dynamics simulation model. It employs time-domain reconstruction via Inverse Fast Fourier Transform (IFFT) and wavelet processing methods to construct an optimized model that fuses time-frequency domain features. With the help of a surrogate optimization method, the model achieves the best approximation of the actual road surface, corrects the PSD parameters of the unpaved road, and provides a reliable input basis for vehicle dynamics simulation, fatigue life prediction, and performance evaluation. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

24 pages, 1203 KB  
Article
IPSO-Optimized DE-MFAC Strategy for Suspension Servo Actuators Under Compound-Degradation Faults
by Hao Xiong, Dingxuan Zhao, Haiwu Zheng, Xuechun Wang, Ziqi Huang, Zeguang Hu, Zhuangding Zhou, Liqiang Zhao and Liangpeng Li
Actuators 2026, 15(2), 81; https://doi.org/10.3390/act15020081 - 30 Jan 2026
Viewed by 71
Abstract
The dynamic response accuracy of suspension servo actuators directly determines the vibration-reduction performance of active-suspension systems. However, during long-term service, the system is prone to the influence of compound-degradation faults, such as internal leakage and time delay, leading to a significant decline in [...] Read more.
The dynamic response accuracy of suspension servo actuators directly determines the vibration-reduction performance of active-suspension systems. However, during long-term service, the system is prone to the influence of compound-degradation faults, such as internal leakage and time delay, leading to a significant decline in control performance. To address this issue, this paper proposes a collaborative control framework combining model-free adaptive control with a differential term of tracking error (DE-MFAC) and an improved particle swarm optimization (IPSO) algorithm. Firstly, to overcome the limitations of traditional model-free adaptive control (MFAC), a DE-MFAC strategy is constructed by implicitly handling the time-delay term and introducing the differential term of tracking error and dynamic weight factor into the performance index. Secondly, to enhance the parameter-tuning effect, the traditional particle swarm optimization (PSO) algorithm is improved (IPSO) by incorporating a dynamic inertia weight and an out-of-bounds random reflection mechanism, thereby strengthening the global optimization capability. On this basis, a suspension servo actuator system model incorporating internal leakage and time-delay faults is established based on the co-simulation platform of Simulink and AMESim, and the proposed method is validated. The simulation results show that, compared with the optimized traditional MFAC, the DE-MFAC tuned by IPSO exhibits superior position-tracking accuracy, faster response speed, and stronger overshoot-suppression capability under various compound-fault conditions. Further analysis indicates that the Integral of Absolute Cubic Error (IACE) function, due to its higher sensitivity to large deviations, can more effectively suppress overshoot and is suitable for engineering scenarios with strict requirements on dynamic performance. In addition, the optimization of control parameters using the IPSO algorithm can effectively compensate for the performance degradation caused by degradation faults, providing a feasible technical approach for extending the service life of actuators through adaptive adjustment. Full article
18 pages, 8932 KB  
Article
Polyphenylene Sulfide-Based Compositions with Solid Fillers for Powder Injection Molding
by Dmitry V. Dudka, Azamat L. Slonov, Khasan V. Musov, Aslanbek F. Tlupov, Azamat A. Zhansitov, Svetlana Yu. Khashirova and Alexander Ya. Malkin
Polymers 2026, 18(3), 341; https://doi.org/10.3390/polym18030341 - 28 Jan 2026
Viewed by 143
Abstract
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear [...] Read more.
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear aromatic polymer synthesized in powder form—using PIM technology and investigates the development of PE-based feedstocks with PPS and solid fillers. Regarding the matrix formulation, it was found that using pure paraffin as a binder limited the maximum PPS content to 20%. Consequently, a modified binder system consisting of Low-Density Polyethylene (LDPE) and paraffin in a 70:30 wt.% ratio was utilized, which successfully increased the PPS loading in the feedstock to 50% and enabled stable molding. Following matrix optimization, the study examined composites incorporating various fillers, including chalk, talc, and carbon fibers. Systematic rheological analysis confirmed that these composite suspensions possess characteristics necessary for molding products with complex geometries. Key results indicate that optimal sintering conditions were established to achieve the required mechanical properties. Among the tested fillers, carbon fibers were the most effective reinforcement, increasing the elastic modulus by 33% and flexural strength by 20%. Representative examples of samples successfully manufactured via this approach are presented. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

13 pages, 1220 KB  
Article
Optimized Propagation and Purification Protocols for Large-Scale Production of Rhinovirus C
by Jason Kaiya, Mark K. Devries, James E. Gern and Yury A. Bochkov
Viruses 2026, 18(2), 169; https://doi.org/10.3390/v18020169 - 28 Jan 2026
Viewed by 151
Abstract
Background: Rhinovirus C (RV-C) is one of three species of rhinoviruses (RVs), which cause the common cold, preschool wheezing illnesses and exacerbations of asthma. RV-C types are more virulent, especially in children, but progress in developing treatments is limited by difficulties in generating [...] Read more.
Background: Rhinovirus C (RV-C) is one of three species of rhinoviruses (RVs), which cause the common cold, preschool wheezing illnesses and exacerbations of asthma. RV-C types are more virulent, especially in children, but progress in developing treatments is limited by difficulties in generating high-titer virus preparations. The goals of this study were to optimize methods for large-scale production and purification of RV-C to facilitate structure and immune response studies. Methods: We optimized protocols for the propagation and purification of RV-C15a, a clinical isolate adapted to HeLa-E8 cells stably expressing virus receptor CDHR3. We compared virus yields in adherent and suspension cultures, evaluated the effects of calcium supplementation and infection timing, and tested multiple purification strategies, including ultracentrifugation, dialysis, and lipase treatment. Results: RV-C15a yields were significantly lower in suspension vs. adherent cultures despite comparable virus binding and entry, suggesting post-entry replication limitations in suspended cells. In adherent cultures, infecting soon after cell seeding and calcium supplementation reduced the time of virus production and modestly improved virus progeny yields. Surface CDHR3 expression declined over time, potentially restricting viral spread. Among purification methods, lipase treatment of infected cell lysates followed by ultracentrifugation produced highly pure and concentrated virus preparations suitable for structural and immunological applications, with high yields. Conclusions: We present a robust system for large-scale RV-C15a production in adherent HeLa-E8 cells and recommend a lipase-based purification method as a rapid and effective approach for producing high-quality viral preparations. These advances will support structural studies and accelerate the development of RV-C-targeted therapeutics and vaccines. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 1728 KB  
Article
Co-Spray-Dried Macitentan–Tadalafil with Leucine Microparticles for Inhalable Delivery in Pulmonary Arterial Hypertension
by Chang-Soo Han, Jin-Hyuk Jeong, Hyeon Woo Moon, Yechan Song and Chun-Woong Park
Pharmaceutics 2026, 18(2), 155; https://doi.org/10.3390/pharmaceutics18020155 - 25 Jan 2026
Viewed by 311
Abstract
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared [...] Read more.
Background/Objectives: This study developed a macitentan (MAC)–tadalafil (TAD) dry powder inhalation preparation using suspension-based spray drying to enhance pulmonary delivery and reduce systemic exposure to oral combination therapy in patients with pulmonary arterial hypertension (PAH). Methods: MAC–TAD composite powders were prepared by physically mixing or spray-drying aqueous ethanol suspensions at various MAC:TAD ratios. The lead M2-T8 was co-spray-dried with 5, 25, or 50% (w/w) L-leucine. Results: Spray-dried formulations exhibited narrower and more uniform particle size distributions (Dv50 2–6 µm; Dv90~10 µm) and higher emitted dose values than the physical mixtures. In the M2-T8 spray-dried formulation, TAD exhibited an elevated fine particle dose (FPD) (3073.45 ± 1312.30 μg), demonstrating improved aerosolization relative to the physical mixture, even outperforming the TAD-higher M1-T9 formulation (2896.83 ± 531.38 μg), suggesting that favorable interparticle adhesive interactions were developed during co-drying. The incorporation of 25% L-leucine produced the greatest improvement in dispersibility, increasing the FPD by ~31% for MAC and 17% for TAD, whereas excessive L-leucine (50%) reduced the aerosol performance. Powder X-ray diffraction and differential scanning calorimetry confirmed the retention of the MAC and TAD crystallinities, with L-leucine remaining either amorphous or partially crystalline. Conclusions: Suspension-based spray drying yielded MAC–TAD composite formulations with improved uniformity and aerosol performance. The optimized 2:8 formulation containing 25% L-leucine demonstrated the most efficient pulmonary deposition, supporting its potential as an inhaled combination therapy for the treatment of PAH. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

17 pages, 4517 KB  
Article
Study on Mechanical Response and Structural Combination Design of Steel Bridge Deck Pavement Based on Multi-Scale Finite Element Simulation
by Jiping Wang, Jiaqi Tang, Tianshu Huang, Zhenqiang Han, Zhiyou Zeng and Haitao Ge
Materials 2026, 19(3), 448; https://doi.org/10.3390/ma19030448 - 23 Jan 2026
Viewed by 144
Abstract
Steel bridge deck pavements (SBDPs) are susceptible to complex mechanical and service environmental conditions, yet current design methods often struggle to simultaneously capture global bridge system behavior and local pavement responses. To address this issue, this study develops a multi-scale finite element modeling [...] Read more.
Steel bridge deck pavements (SBDPs) are susceptible to complex mechanical and service environmental conditions, yet current design methods often struggle to simultaneously capture global bridge system behavior and local pavement responses. To address this issue, this study develops a multi-scale finite element modeling framework that integrates a full-bridge model, a refined girder-segment model, and a detailed pavement submodel. The framework is applied to an extra-long suspension bridge to evaluate the mechanical responses of five typical pavement structural configurations—including double-layer SMA, double-layer Epoxy Asphalt (EA), EA-SMA combinations, and a composite scheme with a thin epoxy resin aggregate overlay. By coupling global deformations from a full-bridge model to the local pavement submodel, the proposed method enables a consistent assessment of both bridge-level effects and pavement-level stress concentrations. The analysis reveals that pavement structures significantly alter the stress and strain distributions within the deck system. The results indicate that while the composite configuration with a thin overlay effectively reduces shear stress at the pavement–deck interface, it results in excessive tensile strain, posing a high risk of fatigue cracking. Conversely, the double-layer EA configuration exhibits the lowest fatigue-related strain, demonstrating superior deformation coordination, while the optimized EA-SMA combination offers a robust balance between fatigue control and interfacial stress distribution. These findings validate the effectiveness of the multi-scale approach for SBDP analysis and highlight that rational structural configuration selection—specifically balancing layer stiffness and thickness—is critical for enhancing the durability and long-term performance of steel bridge deck pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

20 pages, 5007 KB  
Article
Longitudinal, Lateral, and Vertical Coordinated Control of Active Hydro-Pneumatic Suspension System Based on Model Predictive Control for Mining Dump Truck
by Lin Yang, Guangjia Wang, Hao Cui, Wei Liu and Lanchun Zhang
Machines 2026, 14(1), 133; https://doi.org/10.3390/machines14010133 - 22 Jan 2026
Viewed by 102
Abstract
Considering the variability of driving conditions in mining areas, existing control strategies are difficult to meet the comprehensive performance requirements of mining dump trucks in the longitudinal, lateral, and vertical directions. Longitudinal, lateral, and vertical (LLV) coordinated control of active hydro-pneumatic suspension system [...] Read more.
Considering the variability of driving conditions in mining areas, existing control strategies are difficult to meet the comprehensive performance requirements of mining dump trucks in the longitudinal, lateral, and vertical directions. Longitudinal, lateral, and vertical (LLV) coordinated control of active hydro-pneumatic suspension system based on model predictive control (MPC) is constructed in this paper. The vehicle dynamic response under random road surface input based on wheelbase characteristics is established, and the rationality of the active hydro-pneumatic suspension LLV coordinated control strategy based on MPC is analyzed. Handling stability is taken as the overall control objective for active hydro-pneumatic suspension on C-class road surfaces. The dynamic tire loads of the six wheels of the mining dump truck are reduced by 25.8%, 29.1%, 30.6%, 27.6%, 29.9%, and 28.1%, respectively, in the unloaded state, while the longitudinal, lateral, and vertical body accelerations have not deteriorated. Under the E-class road surface, the overall control objective of the mining dump truck is comfort, and the longitudinal, lateral, and vertical accelerations in the unloaded state have been optimized by 34.6%, 31.4%, and 34.1%, respectively. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 5745 KB  
Article
Graph-Based Design Languages for Engineering Automation: A Formula Student Race Car Case Study
by Julian Borowski and Stephan Rudolph
Vehicles 2026, 8(1), 24; https://doi.org/10.3390/vehicles8010024 - 22 Jan 2026
Viewed by 136
Abstract
The development of modern vehicles faces an increase in complexity, as well as a need for shorter development cycles and a seamless cross-domain integration. In order to meet these challenges, a graph-based design language which formalizes and automates engineering workflows is presented and [...] Read more.
The development of modern vehicles faces an increase in complexity, as well as a need for shorter development cycles and a seamless cross-domain integration. In order to meet these challenges, a graph-based design language which formalizes and automates engineering workflows is presented and applied in a design case study to a Formula Student race car suspension system. The proposed method uses an ontology-based vocabulary definition and executable model transformations to compile design knowledge into a central and consistent design graph. This graph enables the automatic generation of consistent 3D CAD models, domain-specific simulations and suspension kinematic analyses, replacing manual and error-prone tool and data handover processes. The design language captures both the structural and dynamic behavior of the suspension, supports variant exploration and allows for integrated validation, such as 3D collision detection. The study illustrates how graph-based design languages can serve as ‘digital DNA’ for knowledge-based product development, offering a scalable, reusable platform for engineering automation. This approach enhances the digital consistency of data, the digital continuity of processes and the digital interoperability of tools across all relevant engineering disciplines in order to support the validation of early-stage designs and the optimization of complex systems. Full article
(This article belongs to the Special Issue Vehicle Design Processes, 3rd Edition)
Show Figures

Figure 1

28 pages, 1659 KB  
Review
Research Progress in Chemical Control of Pine Wilt Disease
by Die Gu, Taosheng Liu, Zhenhong Chen, Yanzhi Yuan, Lu Yu, Shan Han, Yonghong Li, Xiangchen Cheng, Yu Liang, Laifa Wang and Xizhuo Wang
Forests 2026, 17(1), 137; https://doi.org/10.3390/f17010137 - 20 Jan 2026
Viewed by 272
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is [...] Read more.
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is constrained by strong regional regulatory and practical differences. In Europe (e.g., Portugal and Spain), field chemical control is generally not practiced; post-harvest phytosanitary treatments for wood and wood packaging rely mainly on heat treatment, and among ISPMs only sulfuryl fluoride is listed for wood treatment with limited use. This review focuses on recent progress in PWD chemical control, summarizing advances in nematicide discovery and modes of action, greener formulations and delivery technologies, and evidence-based, scenario-oriented applications (standing-tree protection, vector suppression, and infested-wood/inoculum management). Recent studies highlight accelerated development of target-oriented nematicides acting on key pathways such as neural transmission and mitochondrial energy metabolism, with structure–activity relationship (SAR) efforts enabling lead optimization. Formulation innovations (water-based and low-solvent products, microemulsions and suspensions) improve stability and operational safety, while controlled-release delivery systems (e.g., micro/nanocapsules) enhance penetration and persistence. Application technologies such as trunk injection, aerial/Unmanned aerial vehicle (UAV) operations, and fumigation/treatment approaches further strengthen scenario compatibility and operational efficiency. Future research should prioritize robust target–mechanism evidence, resistance risk management and rotation strategies, greener formulations with smart delivery, and scenario-based exposure and compliance evaluation to support precise, green, and sustainable integrated control together with biological and other sustainable approaches. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

27 pages, 16684 KB  
Article
pH-Sensitive Dextrin-Based Nanosponges Crosslinked with Pyromellitic Dianhydride and Citric Acid: Swelling, Rheological Behavior, Mucoadhesion, and In Vitro Drug Release
by Gjylije Hoti, Sara Er-Rahmani, Alessia Gatti, Ibrahim Hussein, Monica Argenziano, Roberta Cavalli, Anastasia Anceschi, Adrián Matencio, Francesco Trotta and Fabrizio Caldera
Gels 2026, 12(1), 90; https://doi.org/10.3390/gels12010090 - 19 Jan 2026
Viewed by 227
Abstract
Dextrin-based nanosponges (D-NS) are promising candidates for oral drug delivery due to their biocompatibility, mucoadhesive properties, and tunable swelling behavior. In this study, pH-sensitive nanosponges were synthesized using β-cyclodextrin (β-CD), GluciDex®2 (GLU2), and KLEPTOSE® Linecaps (LC) as building blocks, crosslinked [...] Read more.
Dextrin-based nanosponges (D-NS) are promising candidates for oral drug delivery due to their biocompatibility, mucoadhesive properties, and tunable swelling behavior. In this study, pH-sensitive nanosponges were synthesized using β-cyclodextrin (β-CD), GluciDex®2 (GLU2), and KLEPTOSE® Linecaps (LC) as building blocks, crosslinked with pyromellitic dianhydride (PMDA) and citric acid (CA). The nanosponges were mechanically size-reduced via homogenization and ball milling, and characterized by FTIR, TGA, dynamic light scattering (DLS), and zeta potential measurements. Swelling kinetics, cross-linking density (determined using Flory–Rehner theory), rheological behavior, and mucoadhesion were evaluated under simulated gastric and intestinal conditions. The β-CD:PMDA 1:4 NS was selected for drug studies due to its optimal balance of structural stability, swelling capacity (~863% at pH 6.8), and highest apomorphine (APO) loading (8.23%) with 90.58% encapsulation efficiency. All nanosuspensions showed favorable polydispersity index values (0.11–0.30), homogeneous size distribution, and stable zeta potentials, confirming suspension stability. Storage at 4 °C for six months revealed no changes in physicochemical properties or apomorphine (APO) degradation, indicating protection by the nanosponge matrix. D-NS exhibited tunable swelling, pH-responsive behavior, and mucoadhesive properties, with nanoparticle–mucin interactions quantified by the rheological synergism parameter (∆G′ = 53.45, ∆G″ = −36.26 at pH 6.8). In vitro release studies demonstrated slow, sustained release of APO from D-NS in simulated intestinal fluid compared to free drug diffusion, highlighting the potential of D-NS as pH-responsive, mucoadhesive carriers with controlled drug release and defined nanoparticle–mucin interactions. Full article
Show Figures

Graphical abstract

16 pages, 1998 KB  
Article
Identification and Characterization of Botryosphaeria dothidea Associated with Sweet Cherry (Prunus avium L.) Branch Dieback Disease in Greenhouses of Liaoning, China
by Qidong Dai, Qijing Zhang, Yao Chen, Feng Cai, Mingli He and Jiayin Ai
Biology 2026, 15(2), 183; https://doi.org/10.3390/biology15020183 - 19 Jan 2026
Viewed by 246
Abstract
Between 2022 and 2024, a severe branch dieback disease was observed affecting over 6% of sweet cherry trees of the ‘Tieton’ cultivar in commercial greenhouses in southern Liaoning Province, China. Symptoms primarily occurred at the top of young branches. At the early stage [...] Read more.
Between 2022 and 2024, a severe branch dieback disease was observed affecting over 6% of sweet cherry trees of the ‘Tieton’ cultivar in commercial greenhouses in southern Liaoning Province, China. Symptoms primarily occurred at the top of young branches. At the early stage of disease onset, the lesions appeared as dark brown, irregularly shaped areas with a moist surface; as the disease progressed, these lesions turned dry and rotten, leading to tree decline symptoms in sweet cherry trees. Disease diagnosis was carried out in sweet cherry greenhouses across Liaoning Province, where 24 diseased samples were collected and 14 fungal isolates were obtained therefrom. Based on morphological traits, cultural characteristics, and multi-locus phylogenetic analyses of the internal transcribed spacer (ITS) region, beta-tubulin (TUB2) gene, and translation elongation factor 1-α (TEF1) gene, these isolates were identified as Botryosphaeria dothidea. Two representative isolates, namely zdcy-1 and zdcy-2, were selected for pathogenicity assays. Both mycelial plug and spore suspension inoculation methods confirmed the pathogenicity of the pathogen. The biological characteristic assays revealed that the optimal temperature range for the pathogen’s mycelial growth on PDA medium was 25–28 °C, and the optimal pH range was 6.0–8.0. This study improves the understanding of branch dieback disease in sweet cherry orchards in China, enriches the knowledge regarding the geographical distribution, host range, and infection sites of the pathogen, and provides novel insights for the management of sweet cherry diseases. Full article
Show Figures

Figure 1

13 pages, 916 KB  
Article
Development of an Indirect ELISA for REV gp90 Antibody Detection Using the gp90 Protein Expressed in Suspended Cells
by Erjing Ke, Mengmeng Huang, Guodong Wang, Jingzhe Han, Yulong Zhang, Runhang Liu, Hangbo Yu, Ziwen Wu, Dan Ling, Xianyun Liu, Tengfei Xu, Suyan Wang, Yuntong Chen, Yongzhen Liu, Yanping Zhang, Hongyu Cui, Yulu Duan, Liuan Li, Xiaoxue Yu, Yulong Gao and Xiaole Qiadd Show full author list remove Hide full author list
Viruses 2026, 18(1), 124; https://doi.org/10.3390/v18010124 - 17 Jan 2026
Viewed by 272
Abstract
Reticuloendotheliosis virus (REV) is an immunosuppressive virus in poultry that can cause acute reticular neoplasms, chronic lymphoid tumors, stunting syndrome, and secondary infections. In many countries, the lack of effective vaccines has resulted in a high prevalence of REV infections and substantial economic [...] Read more.
Reticuloendotheliosis virus (REV) is an immunosuppressive virus in poultry that can cause acute reticular neoplasms, chronic lymphoid tumors, stunting syndrome, and secondary infections. In many countries, the lack of effective vaccines has resulted in a high prevalence of REV infections and substantial economic losses. Enzyme-linked immunosorbent assay (ELISA)-based antibody detection is an important tool for monitoring the REV prevalence in poultry farms. ELISA coating antigens generally consist of either whole virus or viral protein; however, most commercially available REV antibody ELISA detection kits use whole virus as the coating antigen, which limits their applicability in certain diagnostic and research settings. In this study, the gp90 protein from a dominant REV strain was expressed and purified using 293F suspension cell eukaryotic expression system. Using recombinant gp90 protein as the coating antigen, an indirect ELISA for detecting gp90 antibodies (gp90-ELISA) was developed. After optimization, the optimal conditions were as follows: coating antigen concentration of 4 µg/mL with overnight incubation at 4 °C; blocking with 5% skim milk at 37 °C for 1.5 h; serum dilution of 1:200 with incubation at 37 °C for 45 min; secondary antibody dilution of 1:1000 with incubation at 37 °C for 30 min; and color development using TMB substrate at room temperature in the dark for 10 min. The cut-off value was defined as an OD450 ≥ 0.22 for positive samples and <0.22 for negative samples. The developed gp90-ELISA specifically detected REV-positive sera at a maximum serum dilution ratio of 1:3200. Intra- and inter-assay variation coefficients were ≤10%, indicating that the gp90-ELISA had good specificity, sensitivity, and reproducibility. Laboratory serum testing showed that the gp90-ELISA successfully detected sera from chickens immunized with the gp90 protein or infected with REV. Furthermore, analysis of clinical serum samples demonstrated 100% concordance between the gp90-ELISA results and a commercial whole-virus-coated ELISA kit. These results indicate that the gp90-ELISA is a reliable supplementary method to whole-virus-coated ELISA and has potential utility in disease surveillance and evaluation of immune responses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

22 pages, 3961 KB  
Article
IDeS + TRIZ: Sustainability Applied to DfAM for Polymer-Based Automotive Components
by Christian Leon-Cardenas, Giampiero Donnici, Alfredo Liverani and Leonardo Frizziero
Polymers 2026, 18(2), 239; https://doi.org/10.3390/polym18020239 - 16 Jan 2026
Viewed by 190
Abstract
This study aims to gather a sustainable understanding of additive manufacturing and other Manufacturing 4.0 approaches like horizontal and vertical integration and cloud computing techniques with a focus on industrial applications. The DfAM will apply 4.0 tools to gather product feasibility and execution, [...] Read more.
This study aims to gather a sustainable understanding of additive manufacturing and other Manufacturing 4.0 approaches like horizontal and vertical integration and cloud computing techniques with a focus on industrial applications. The DfAM will apply 4.0 tools to gather product feasibility and execution, with CAE—FEM analysis and CAM. This publication focuses on the redesign of a vehicle suspension arm. The main objective is to apply innovative design techniques that optimize component performance while minimizing cost and time. The IDeS method and TRIZ methodology were used, resulting in a composite element, aiming to make the FDM-sourced process a viable option, with a weight reduction of more than 80%, with less material consumption and, hence, less vehicle energy consumption. The part obtained is holistically sustainable as it was obtained by reducing the overall labor used and material/scrap generated, and the IDES data sharing minimized rework and optimized the overall production time. Full article
Show Figures

Figure 1

19 pages, 10479 KB  
Article
Design and Investigation of Powertrain with In-Wheel Motor for Permanent Magnet Electrodynamic Suspension Maglev Car
by Zhentao Ding, Jingguo Bi, Siyi Wu, Chong Lv, Maoru Chi and Zigang Deng
Actuators 2026, 15(1), 58; https://doi.org/10.3390/act15010058 - 16 Jan 2026
Viewed by 196
Abstract
A new type of transportation vehicle, the maglev car, is gaining attention in the automotive and maglev industries due to its potential to meet personalized urban mobility and future travel needs. To optimize the chassis layout of maglev cars, this paper proposes a [...] Read more.
A new type of transportation vehicle, the maglev car, is gaining attention in the automotive and maglev industries due to its potential to meet personalized urban mobility and future travel needs. To optimize the chassis layout of maglev cars, this paper proposes a compact powertrain integrating electrodynamic suspension with in-wheel motor technology, in which a permanent magnet electrodynamic in-wheel motor (PMEIM) enables integrated propulsion and levitation. First, the PMEIM external magnetic field distribution is characterized by analytical and finite element (FEM) approaches, revealing the magnetic field distortion of the contactless powertrain. Subsequently, the steady-state electromagnetic force is modeled and the operating states of the PMEIM powertrain are calculated and determined. Next, the PMEIM electromagnetic design is conducted, and its electromagnetic structure rationality is verified through magnetic circuit and parametric analysis. Finally, an equivalent prototype is constructed, and the non-contact electromagnetic forces of the PMEIM are measured in bench testing. Results indicate that the PMEIM powertrain performs propulsion and levitation functions, demonstrating 14.2 N propulsion force and 45.8 N levitation force under the rated condition, with a levitation–weight ratio of 2.52, which hold promise as a compact and flexible drivetrain solution for maglev cars. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

14 pages, 1414 KB  
Article
Sustainable Photocatalytic Degradation of Ibuprofen Using Se-Doped SnO2 Nanoparticles Under UV–Visible Irradiation
by Luis Alamo-Nole and Cristhian Castro-Cedeño
AppliedChem 2026, 6(1), 7; https://doi.org/10.3390/appliedchem6010007 - 15 Jan 2026
Viewed by 141
Abstract
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to [...] Read more.
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to evaluate their photocatalytic performance in the degradation of ibuprofen under ultraviolet (UV) and visible light. Optimal synthesis parameters were determined at pH 7.5–8.0 and 130 °C, yielding stable, dark-brown colloidal suspensions. HRTEM analysis revealed a coexistence of one-dimensional (1D) nanowires and zero-dimensional (0D) quantum dots, confirming nanoscale morphology with crystallite sizes between 8 and 100 nm. EDS analysis confirmed the presence of Sn, O, and trace Se (0.1 wt%), indicating Se incorporation as a dopant. UV–Vis spectroscopy showed strong absorption near 324 nm and slight band-gap narrowing in the Se-doped samples, suggesting enhanced visible-light responsiveness. Photocatalytic experiments demonstrated an ibuprofen degradation efficiency of ~60% under visible light and 80% under UV irradiation with aeration, compared to only 5% removal using commercial SnO2. The enhanced performance was attributed to Se-induced band-gap modulation, effective charge-carrier separation, and singlet oxygen generation. Full article
Show Figures

Figure 1

Back to TopTop