Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = surface sandwich assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3279 KiB  
Article
Evaluation of 3D-Printed Microfluidic Structures for Use in AML-Specific Biomarker Detection of PML::RARA
by Benedikt Emde, Karsten Niehaus and Lara Tickenbrock
Int. J. Mol. Sci. 2025, 26(2), 497; https://doi.org/10.3390/ijms26020497 - 9 Jan 2025
Viewed by 1185
Abstract
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic [...] Read more.
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics. Digital light processing (DLP) and stereolithography (SLA) printers as well as different photopolymerizable methacrylate-based resins were tested for fabrication of the fluidics. To assess suitability, both print resolution and various physical properties, serializability, biocompatibility, and functionalization with biological molecules were analyzed. The results show that additively manufactured microfluidics are suitable for application in leukemia diagnostics. This was demonstrated by transferring the microfluidic sandwich enzyme-linked immunosorbent assay (ELISA) for PML::RARA onto the surface of magnetic microparticles from a glass structure to three-dimensional (3D)-printed parts. A comparison with conventional glass microstructures suggests lower sensitivity but highlights the potential of additive manufacturing for prototyping microfluidics. This may contribute to the wider use of microfluidics in biotechnological or medical applications. Full article
(This article belongs to the Special Issue Acute Leukemia: From Basic Research to Clinical Application)
Show Figures

Graphical abstract

19 pages, 1518 KiB  
Article
Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer
by Mahdi Arabnejad, Ibtisam E. Tothill and Iva Chianella
Biosensors 2024, 14(12), 624; https://doi.org/10.3390/bios14120624 - 18 Dec 2024
Cited by 2 | Viewed by 2415
Abstract
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients’ survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including [...] Read more.
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients’ survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA). NSE and CEA are two serum proteins whose elevated levels have been associated with lung cancer. Hence, in this study, impedimetric biosensors (immunosensors) able to quantify NSE and CEA were developed as proof-of-concept devices for lung cancer diagnosis. The sensing platform exploited for the immunosensors comprises a novel combination of a magnetic platform, screen-printed gold electrode (SPGE), and magnetic nanobeads (MB). The MB were functionalized with antibodies to capture the analyte from the sample and to move it over the sensing area. The immunosensors were then developed by immobilizing another set of antibodies for either CEA or NSE on the SPGE through formation of self-assembled monolayer (SAM). The second set of antibodies enabled a sandwich assay to be formed on the surface of the sensor, while MB manipulation was applied during the sensor performance to depict a microfluidic system and increase antigen–antibody complex formation prior to CEA or NSE detection and quantification. The optimized immunosensors were successfully tested to measure various concentrations of CEA and NSE (0–100 ng/mL) in both phosphate buffer and 100% human serum samples. Clinically relevant detection limits of 0.26 ng/mL and 0.18 ng/mL in buffer and 0.76 ng/mL and 0.52 ng/mL in 100% serum for CEA and NSE, respectively, were achieved via electrochemical impedance spectroscopy with the use of potassium ferri/ferrocyanide as a redox probe. Hence, the two immunosensors demonstrated great potential as tools to be implemented for the early detection of lung cancer. Full article
(This article belongs to the Special Issue Immunosensors: Design and Applications)
Show Figures

Graphical abstract

14 pages, 3837 KiB  
Article
Chip-Scale Aptamer Sandwich Assay Using Optical Waveguide-Assisted Surface-Enhanced Raman Spectroscopy
by Megan Makela, Dandan Tu, Zhihai Lin, Gerard Coté and Pao Tai Lin
Nanomaterials 2024, 14(23), 1927; https://doi.org/10.3390/nano14231927 - 29 Nov 2024
Viewed by 1084
Abstract
Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proximity to the waveguide surface. The [...] Read more.
Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proximity to the waveguide surface. The Raman signal was enhanced by plasmon resonance due to the NPs close to the waveguide surface. The optical waveguide mode and the NP-induced field enhancement were calculated using a finite difference method (FDM). The sensing performance of the waveguide-assisted SERS device was experimentally characterized by measuring the Raman scattering from various RRs, including 4-mercaptobenzoic acid (4-MBA), 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB), and malachite green isothiocyanate (MGITC). The observed Raman spectral features were identified and assigned to the complex vibrational modes associated with different reporters. A low detection limit of 1 nM was achieved. In addition, the device sensing method was applied to the detection of the biomarker cardiac troponin I (cTnI) using an aptamer sandwich assay immobilized on the device surface. Overall, the optical waveguides integrated with SERS show a miniaturized sensing platform for the detection of small molecules and large proteins, potentially enabling multiplexed detection for clinically relevant applications. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Metamaterials)
Show Figures

Figure 1

19 pages, 2205 KiB  
Article
The PreS-Based Recombinant Vaccine VVX001 Induces Hepatitis B Virus Neutralizing Antibodies in a Low-Responder to HBsAg-Based HBV Vaccines
by Inna Tulaeva, Felix Lehmann, Nora Goldmann, Alexandra Dubovets, Daria Trifonova, Mikhail Tulaev, Carolin Cornelius, Milena Weber, Margarete Focke-Tejkl, Alexander Karaulov, Rainer Henning, David Niklas Springer, Ursula Wiedermann, Dieter Glebe and Rudolf Valenta
Vaccines 2024, 12(10), 1123; https://doi.org/10.3390/vaccines12101123 - 30 Sep 2024
Viewed by 2743
Abstract
Background: Approximately 10–20% of subjects vaccinated with HBsAg-based hepatitis B virus (HBV) vaccines are non-responders. BM32 is a recombinant grass pollen allergy vaccine containing the HBV-derived preS surface antigen as an immunological carrier protein. PreS includes the binding site of HBV to its [...] Read more.
Background: Approximately 10–20% of subjects vaccinated with HBsAg-based hepatitis B virus (HBV) vaccines are non-responders. BM32 is a recombinant grass pollen allergy vaccine containing the HBV-derived preS surface antigen as an immunological carrier protein. PreS includes the binding site of HBV to its receptor on hepatocytes. We investigated whether immunological non-responsiveness to HBV after repeated HBsAg-based vaccinations could be overcome by immunization with VVX001 (i.e., alum-adsorbed BM325, a component of BM32). Methods: A subject failing to develop protective HBV-specific immunity after HBsAg-based vaccination received five monthly injections of 20 µg VVX001. PreS-specific antibody responses were measured by enzyme-linked immunosorbent assay (ELISA) and micro-array technology. Serum reactivity to subviral particles of different HBV genotypes was determined by sandwich ELISA. PreS-specific T cell responses were monitored by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and subsequent flow cytometry. HBV neutralization was assessed using cultured HBV-infected HepG2 cells. Results: Vaccination with VVX001 induced a strong and sustained preS-specific antibody response composed mainly of the IgG1 subclass. PreS-specific IgG antibodies were primarily directed to the N-terminal part of preS containing the sodium taurocholate co-transporting polypeptide (NTCP) attachment site. IgG reactivity to subviral particles as well as to the N-terminal preS-derived peptides was comparable for HBV genotypes A–H. A pronounced reactivity of CD3+CD4+ lymphocytes specific for preS after the complete injection course remaining up to one year after the last injection was found. Maximal HBV neutralization (98.4%) in vitro was achieved 1 month after the last injection, which correlated with the maximal IgG reactivity to the N-terminal part of preS. Conclusions: Our data suggest that VVX001 may be used as a preventive vaccination against HBV even in non-responders to HBsAg-based HBV vaccines. Full article
(This article belongs to the Special Issue 2nd Edition of Antibody Response to Infection and Vaccination)
Show Figures

Figure 1

14 pages, 2987 KiB  
Article
A Visual Distance-Based Capillary Immunoassay Using Biomimetic Polymer Nanoparticles for Highly Sensitive and Specific C-Reactive Protein Quantification
by Ruodong Huang, Zhenbo Liu, Xinlin Jiang, Junqi Huang, Ping Zhou, Zongxia Mou, Dong Ma and Xin Cui
Int. J. Mol. Sci. 2024, 25(18), 9771; https://doi.org/10.3390/ijms25189771 - 10 Sep 2024
Cited by 1 | Viewed by 1463
Abstract
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop [...] Read more.
The low-cost daily monitoring of C-reactive protein (CRP) levels is crucial for screening acute inflammation or infections as well as managing chronic inflammatory diseases. In this study, we synthesized novel 2-Methacryloyloxy ethyl phosphorylcholine (MPC)-based biomimetic nanoparticles with a large surface area to develop a visual CRP-quantification assay using affordable glass capillaries. The PMPC nanoparticles, synthesized via reflux precipitation polymerization, demonstrated multivalent binding capabilities, enabling rapid and specific CRP capture. In the presence of CRP, PMPC nanoparticles formed sandwich structures with magnetic nanoparticles functionalized with CRP antibodies, thereby enhancing detection sensitivity and specificity. These sandwich complexes were magnetically accumulated into visible and quantifiable stacks within the glass capillaries, allowing for the rapid, sensitive, and specific quantification of CRP concentrations with a detection limit of 57.5 pg/mL and a range spanning from 0 to 5000 ng/mL. The proposed visual distance-based capillary biosensor shows great potential in routine clinical diagnosis as well as point-of-care testing (POCT) in resource-limited settings. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

18 pages, 5697 KiB  
Article
A Glycoprotein-Based Surface-Enhanced Raman Spectroscopy–Lateral Flow Assay Method for Abrin and Ricin Detection
by Lan Xiao, Li Luo, Jia Liu, Luyao Liu, Han Han, Rui Xiao, Lei Guo, Jianwei Xie and Li Tang
Toxins 2024, 16(7), 312; https://doi.org/10.3390/toxins16070312 - 11 Jul 2024
Cited by 2 | Viewed by 1910
Abstract
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is [...] Read more.
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins. Full article
(This article belongs to the Special Issue Natural Toxins Detected via Different Methods)
Show Figures

Figure 1

13 pages, 1579 KiB  
Article
Colorimetric and Electrochemical Dual-Mode Detection of Thioredoxin 1 Based on the Efficient Peroxidase-Mimicking and Electrocatalytic Property of Prussian Blue Nanoparticles
by Jeong Un Kim, Jee Min Kim, Annadurai Thamilselvan, Ki-Hwan Nam and Moon Il Kim
Biosensors 2024, 14(4), 185; https://doi.org/10.3390/bios14040185 - 10 Apr 2024
Cited by 9 | Viewed by 2795
Abstract
As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally [...] Read more.
As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL−1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10–50 ng mL−1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Graphical abstract

18 pages, 2182 KiB  
Article
Highly Effective Synthetic Polymer-Based Blockers of Non-Specific Interactions in Immunochemical Analyses
by Vladimír Šubr, Libor Kostka, Jan Plicka, Ondřej Sedláček and Tomáš Etrych
Polymers 2024, 16(6), 758; https://doi.org/10.3390/polym16060758 - 10 Mar 2024
Cited by 3 | Viewed by 2490
Abstract
In vitro diagnostic methods face non-specific interactions increasing their background level and influencing the efficacy and reproducibility. Currently, the most important and employed blocker of non-specific interactions is bovine serum albumin (BSA), an animal product with some disadvantages like its batch-to-batch variability and [...] Read more.
In vitro diagnostic methods face non-specific interactions increasing their background level and influencing the efficacy and reproducibility. Currently, the most important and employed blocker of non-specific interactions is bovine serum albumin (BSA), an animal product with some disadvantages like its batch-to-batch variability and contamination with RNases. Herein, we developed amphiphilic water-soluble synthetic copolymers based on the highly biocompatible, non-immunogenic and nontoxic N-2-(hydroxypropyl)methacrylamide (HPMA)-based copolymers or poly(oxazoline)s as highly effective synthetic blockers of non-specific interactions and an effective BSA alternative. The highest blocking capacity was observed for HPMA-based polymers containing two hydrophobic anchors taking advantage of the combination of two structurally different hydrophobic molecules. Polymers prepared by free radical polymerisation with broader dispersity were slightly better in terms of surface covering. The sandwich ELISA evaluating human thyroid-stimulating Hormone in patient samples revealed that the designed polymers can fully replace BSA without compromising the assay results. Importantly, as a fully synthetic material, the developed polymers are fully animal pathogen-free; thus, they are highly important materials for further development. Full article
Show Figures

Figure 1

19 pages, 3252 KiB  
Article
Antibody Profiling: Kinetics with Native Biomarkers for Diagnostic Assay and Drug Developments
by Ute Jucknischke, Sebastian Friebe, Markus Rehle, Laura Quast and Sven H. Schmidt
Biosensors 2023, 13(12), 1030; https://doi.org/10.3390/bios13121030 - 14 Dec 2023
Cited by 3 | Viewed by 2372
Abstract
Despite remarkable progress in applied Surface Plasmon Resonance (SPR)-based methods, concise monitoring of kinetic properties for native biomarkers from patient samples is still lacking. Not only are low concentrations of native targets in patient samples, often in the pM range, a limiting and [...] Read more.
Despite remarkable progress in applied Surface Plasmon Resonance (SPR)-based methods, concise monitoring of kinetic properties for native biomarkers from patient samples is still lacking. Not only are low concentrations of native targets in patient samples, often in the pM range, a limiting and challenging factor, but body fluids as complex matrices furthermore complicate measurements. The here-described method enables the determination of kinetic constants and resulting affinities for native antigens from patients’ cerebrospinal fluid (CSF) and sera binding to antibodies. Using a significantly extended target-enrichment step, we modified a common sandwich-assay protocol, based on a primary and secondary antibody. We successfully analyze antibody kinetics of native targets from a variety of origins, with consistent results, independent of their source. Moreover, native neurofilament light chain (NFL) was investigated as an exemplary biomarker. Obtained data reveal antibodies recognizing recombinant NFL with high affinities, while showing no, or only significantly weakened binding to native NFL. The indicated differences for recombinant vs. native material demonstrate another beneficial application. Our assay is highly suitable for gaining valuable insights into characteristics of native biomarkers, thus impacting on the binder development of diagnostic reagents or pharmaceutical drugs. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

18 pages, 2814 KiB  
Article
Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays
by Kira Hallerbach, Khadijeh Khederlou, Lael Wentland, Lana Senten, Steven Brentano, Brian Keefe and Elain Fu
Micromachines 2023, 14(10), 1936; https://doi.org/10.3390/mi14101936 - 16 Oct 2023
Cited by 4 | Viewed by 2787
Abstract
The use of lateral flow assays to detect nucleic acid targets has many applications including point-of-care diagnostics, environmental monitoring, and food safety. A sandwich format, similar to that in protein immunoassays, is often used to capture the target nucleic acid sequence with an [...] Read more.
The use of lateral flow assays to detect nucleic acid targets has many applications including point-of-care diagnostics, environmental monitoring, and food safety. A sandwich format, similar to that in protein immunoassays, is often used to capture the target nucleic acid sequence with an immobilized complementary strand anchored to a substrate, and then to visualize this event using a complementary label nucleic acid bound to a nanoparticle label. A critical component of high-sensitivity nucleic acid detection is to utilize high-density capture surfaces for the effective capture of target nucleic acid. Multiple methods have been reported, including the use of streptavidin-based protein anchors that can be adsorbed to the lateral flow substrate and that can utilize the high-affinity streptavidin–biotin linkage to bind biotinylated nucleic acid capture sequences for subsequent target nucleic acid binding. However, these protein anchors have not been systematically characterized for use in the context of nucleic acid detection. In this work, we characterize several protein-based anchors on nitrocellulose for (i) capturing the robustness of the attachment of the protein anchor, (ii) capturing nucleic acid density, and (iii) targeting nucleic acid capture. Further, we demonstrate the signal gains in target nucleic acid hybridization made by increasing the density of capture nucleic acid on a nitrocellulose substrate using multiple applications of protein loading onto nitrocellulose. Finally, we use our high-density capture surfaces to demonstrate high-sensitivity nucleic acid detection in a lateral flow assay (in the context of a SARS-CoV-2 sequence), achieving a LOD of approximately 0.2 nM. Full article
(This article belongs to the Special Issue Recent Progress of Lab-on-a-Chip Assays)
Show Figures

Figure 1

10 pages, 1346 KiB  
Article
Toward Continuous Molecular Testing Using Gold-Coated Threads as Multi-Target Electrochemical Biosensors
by Martin Hanze, Shirin Khaliliazar, Pedro Réu, Anna Toldrà and Mahiar M. Hamedi
Biosensors 2023, 13(9), 844; https://doi.org/10.3390/bios13090844 - 25 Aug 2023
Cited by 3 | Viewed by 1874
Abstract
Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold [...] Read more.
Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems. To address these challenges, we propose a continuous thread-based device that enables multiple electrochemical readings on a functionalized working electrode Au thread with a single connection point. We demonstrate the possibility of rolling the thread on a spool, which enables easy manipulation in a roll-to-roll architecture for high-throughput applications. As a proof of concept, we have demonstrated the detection of recombinase polymerase amplification (RPA) isothermally amplified DNA from the two toxic microalgae species Ostreopsis cf. ovata and Ostreopsis cf. siamensis by performing a sandwich hybridization assay (SHA) with electrochemical readout. Full article
Show Figures

Figure 1

13 pages, 3590 KiB  
Article
A Metal Organic Framework-Based Light Scattering ELISA for the Detection of Staphylococcal Enterotoxin B
by Kai Mao, Lili Tian, Yujie Luo, Qian Li, Xi Chen, Lei Zhan, Yuanfang Li, Chengzhi Huang and Shujun Zhen
Chemosensors 2023, 11(8), 453; https://doi.org/10.3390/chemosensors11080453 - 13 Aug 2023
Cited by 2 | Viewed by 2020
Abstract
Enzyme-linked immunosorbent assay (ELISA) is one of the most commonly used method for the detection of staphylococcal enterotoxin B (SEB), the main protein toxin causing staphylococcal food poisoning. However, the traditional ELISA reaction needs to be stopped by sulfuric acid to obtain stable [...] Read more.
Enzyme-linked immunosorbent assay (ELISA) is one of the most commonly used method for the detection of staphylococcal enterotoxin B (SEB), the main protein toxin causing staphylococcal food poisoning. However, the traditional ELISA reaction needs to be stopped by sulfuric acid to obtain stable colorimetric signal, and it is easily influenced by a colored sample. In order to address this problem, a new ELISA method using zeolite imidazolate skeleton-8 metal-organic framework (ZIF-8 MOF) as a light scattering (LS) reporter for SEB detection was developed in this work. ZIF-8 MOF has the characteristics of high porosity, large specific surface area, clear pore structure, and adjustable size, which is one of the most representative MOFs constructed from Zn2+ and 2-methylimidazole (2-mIM). The 2-mIM ligand of ZIF-8 exhibited antioxidant activity and can strongly react with H2O2, which could destroy the structure of ZIF-8, resulting in the obvious decrease in LS intensity. We combined this specific reaction with the sandwich immune reaction to construct the LS ELISA method for the successful detection of SEB. This method is more reliable than commercial tests kits for the detection of colored samples, and it is simple, sensitive, and selective, and has great potential in the detection of other toxins by simply changing the corresponding recognition units. Full article
(This article belongs to the Special Issue Nanoprobes for Biosensing and Bioimaging)
Show Figures

Figure 1

12 pages, 2569 KiB  
Article
Wide-Range SPRi Sensors Based on Aptamer/sPD-L1/anti–PD-L1 Sandwich and AuNPs Enhancement for Ultrasensitive Detection of sPD-L1
by Yuyan Peng, Li Jiang, Yifan Li and Xiaoping Yu
Coatings 2023, 13(8), 1400; https://doi.org/10.3390/coatings13081400 - 9 Aug 2023
Cited by 1 | Viewed by 1763
Abstract
Soluble programmed death-ligand 1 (sPD-L1) levels vary widely among different stages of tumor development, so the direct quantification of sPD-L1 as a cancer biomarker is useful in cancer diagnosis, prognosis and therapeutic assessment. There is an urgent need for an sPD-L1 detection method [...] Read more.
Soluble programmed death-ligand 1 (sPD-L1) levels vary widely among different stages of tumor development, so the direct quantification of sPD-L1 as a cancer biomarker is useful in cancer diagnosis, prognosis and therapeutic assessment. There is an urgent need for an sPD-L1 detection method with a broad detection range and high sensitivity for monitoring cancer progression and evaluating the effectiveness of immunotherapy in real time. Herein, we have reported an enzyme-free, label-free surface plasmon resonance imaging (SPRi) sensor based on an aptamer/sPD-L1/anti–PD-L1 sandwich structure with gold nanoparticle (AuNP) signal enhancement for the ultrasensitive quantitative measurement of sPD-L1 for the first time. The gold chip of the SPRi sensing platform was modified by DNA aptamers, sPD-L1 was specifically adsorbed on the surface of a DNA aptamer-modified gold chip and then coupled with anti–PD-L1. Thus, the detection of sPD-L1 at different concentrations was realized through the formation of an aptamer/sPD-L1/anti–PD-L1 sandwich structure. We also enhanced the SPR signal via AuNPs to further improve sensor sensitivity. The SPRi sensor is able to measure sPD-L1 within a linear range of 50 pM–10 nM and 100 fM–50 pM, and the minimum detection limit is 19 fM. The sensor is designed to be widely applicable, with better accuracy and reliability for more application scenarios. The prepared SPRi sensor shows great potential in improving the sensitivity of detecting sPD-L1. The proposed method demonstrates the excellent performance of the SPRi sensor and provides a possibility for the establishment of effective clinical assay methods in the future. Full article
Show Figures

Graphical abstract

14 pages, 3711 KiB  
Article
Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA
by Julia Neumair, Marie Kröger, Evamaria Stütz, Claudia Jerin, Adam M. Chaker, Carsten B. Schmidt-Weber and Michael Seidel
Biosensors 2023, 13(7), 670; https://doi.org/10.3390/bios13070670 - 22 Jun 2023
Cited by 3 | Viewed by 2265
Abstract
Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and [...] Read more.
Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and effective treatment. For the first time, we developed a flow-based chemiluminescence sandwich microarray immunoassay (CL-SMIA) for the quantification of nasal interferon-beta (IFN-β) on the Microarray Chip Reader-Research (MCR-R). Polycarbonate foils are used as a cost-effective surface for immobilizing capture antibodies. By using a commercially available set of anti-human IFN-β antibodies, the CL-SMIA can be compared directly to an enzyme-linked immunosorbent assay (ELISA) performed in microtiter plates concerning the bioanalytical performance and economic issues. Pre-incubation of the sample with detection antibodies facilitates the lower consumption of detection antibodies, as this allows for a longer interaction time between the antibody and the biomarker. The direct injection of pre-incubated samples into the microarray chips eliminates the adsorption of proteins in the tubing as well as the contamination of the tubing and valves of the MCR-R with clinical samples. The small flow cell allows for a low sample volume of 50 μL. The limit of detection of 4.53 pg mL−1 was slightly increased compared to a sandwich ELISA performed on microtiter plates which were 1.60 pg mL−1. The possibility to perform the CL-SMIA in a multiplexed mode makes it a promising assay for the rapid and cost-effective non-invasive detection of biomarkers in nasal secretions. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Healthcare Section)
Show Figures

Figure 1

16 pages, 5276 KiB  
Article
Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes
by Ravi Moreno Araujo Pinheiro Lima, Glaydson Simões dos Reis, Ulla Lassi, Eder Claudio Lima, Guilherme Luiz Dotto and Helinando Pequeno de Oliveira
C 2023, 9(2), 59; https://doi.org/10.3390/c9020059 - 5 Jun 2023
Cited by 20 | Viewed by 4187
Abstract
The synthesis of high-performance carbon-based materials from biomass residues for electrodes has been considered a challenge to achieve in supercapacitor-based production. In this work, activated biochar has been prepared as the active electrode material for supercapacitors (SCs), and an effective method has been [...] Read more.
The synthesis of high-performance carbon-based materials from biomass residues for electrodes has been considered a challenge to achieve in supercapacitor-based production. In this work, activated biochar has been prepared as the active electrode material for supercapacitors (SCs), and an effective method has been explored to boost its capacitive performance by employing polypyrrole (PPy) as a biochar dopant. The results for physicochemical characterization data have demonstrated that PPy doping affects the biochar morphology, specific surface area, pore structure, and incorporation of surface functionalities on modified biochar. Biochar-PPy exhibited a surface area of 87 m2 g−1, while pristine biochar exhibited 1052 m2 g−1. The SCs were assembled employing two electrodes sandwiched with PVA solid-state film electrolyte as a separator. The device was characterized by standard electrochemical assays that indicated an improvement of 34% in areal capacitance. The wood electrodes delivered high areal capacitances of 282 and 370 mF cm−2 at 5 mA cm−2, for pure biochar and biochar doped with PPy, respectively, with typical retention in the capacitive response of 72% at the end of 1000 cycles of operation of the supercapacitor at high current density, indicating that biochar-PPy-based electrode devices exhibited a higher energy density when compared to pure biochar devices. Full article
Show Figures

Figure 1

Back to TopTop