Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (642)

Search Parameters:
Keywords = surface ruptures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 20743 KB  
Article
Assessing Rural Landscape Change Within the Planning and Management Framework: The Case of Topaktaş Village (Van, Turkiye)
by Feran Aşur, Kübra Karaman, Okan Yeler and Simay Kaskan
Land 2025, 14(10), 1991; https://doi.org/10.3390/land14101991 - 3 Oct 2025
Abstract
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. [...] Read more.
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. Using ArcGIS 10.8 and the Analytic Hierarchy Process (AHP), we integrate DEM, slope, aspect, CORINE land cover Plus, surface-water presence/seasonality, and proximity to hazards (active and surface-rupture faults) and infrastructure (Karasu Stream, highways, village roads). A risk overlay is treated as a hard constraint. We produce suitability maps for settlement, agriculture, recreation, and industry; derive a composite optimum land-use surface; and translate outputs into decision rules (e.g., a 0–100 m fault no-build setback, riparian buffers, and slope thresholds) with an outline for implementation and monitoring. Key findings show legacy footprints at lower elevations, while new footprints cluster near the upper elevation band (DEM range 1642–1735 m). Most of the area exhibits 0–3% slopes, supporting low-impact access where hazards are manageable; however, several newly designated settlement tracts conflict with risk and water-service conditions. Although limited to a single case and available data resolutions, the workflow is transferable: it moves beyond mapping to actionable planning instruments—zoning overlays, buffers, thresholds, and phased management—supporting sustainable, culturally informed post-earthquake reconstruction. Full article
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

14 pages, 11487 KB  
Article
The Role of Voids in the Cracking of Single-Crystalline Composites with Quasicrystal Phase Fraction
by Jacek Krawczyk
Materials 2025, 18(19), 4506; https://doi.org/10.3390/ma18194506 - 28 Sep 2025
Abstract
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The [...] Read more.
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The voids were analyzed using light-optical and scanning electron microscopy to study their nature before and after uniaxial tensile tests. Tension tests were performed on plate-like samples up to rupture. The tensile fracture surfaces were also observed and analyzed. The single-crystallinity and crystalographic parameters of composites were studied using the X-ray Laue diffraction method. It was stated that such new type of composite is characterized by a relatively high void content with a ratio of approximately 2.6%. The composite’s cracking is initiated at voids and progress through the voids and stair steps in the matrix and the reinforcing fibers. Full article
Show Figures

Figure 1

20 pages, 3326 KB  
Article
Analysis and Suppression Method of Drag Torque in Wide-Speed No-Load Wet Clutch
by Rui Liu, Chao Wei, Lei Zhang, Lin Zhang, Siwen Liang and Mao Xue
Actuators 2025, 14(10), 466; https://doi.org/10.3390/act14100466 - 25 Sep 2025
Abstract
Under no-load conditions, the wet clutch of vehicles generates drag torque across a wide speed range, which increases power loss in the transmission system and significantly impacts its efficiency and reliability. To address the clutch drag issue over a wide speed range, this [...] Read more.
Under no-load conditions, the wet clutch of vehicles generates drag torque across a wide speed range, which increases power loss in the transmission system and significantly impacts its efficiency and reliability. To address the clutch drag issue over a wide speed range, this study first establishes a low-speed drag torque model that simultaneously considers the viscous friction effects in both the complete oil film region and the oil film rupture zone of the friction pair clearance. Subsequently, by solving the fluid-structure interaction dynamics model of the friction plates, the collision force between high-speed friction pairs and the resulting friction torque are determined, forming a method for calculating high-speed collision-induced drag torque. Building on this, a unified drag torque model for wet clutches across a wide speed range is developed, integrating both viscous and collision-induced drag torques. The validity of the wide-speed-range drag torque model is verified through experiments. The results indicate that as oil temperature and friction pair clearance increase, the drag torque decreases and the rotational speed corresponding to the peak drag torque is reduced, while the onset of collision phenomena occurs earlier. Conversely, with an increase in oil supply flow rate, the drag torque rises and the rotational speed corresponding to the peak drag torque increases, but the onset of collision phenomena is delayed. Finally, with the optimization objectives of minimizing the peak drag torque in the low-speed range and the total drag torque at the maximum speed in the high-speed range, an optimization design model for the surface grooves of the clutch friction plates is constructed. An optimized groove pattern is obtained, and its effectiveness in suppressing drag torque across a wide speed range is experimentally validated. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

17 pages, 7111 KB  
Article
Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt
by Bingquan Han, Jyr-Ching Hu, Chen Yu, Zhenhong Li and Zhenjiang Liu
Remote Sens. 2025, 17(19), 3264; https://doi.org/10.3390/rs17193264 - 23 Sep 2025
Viewed by 162
Abstract
On 8 June 2025, the Mw 6.4 Paratebueno earthquake struck the eastern foothills of the Eastern Andes, Colombia. The event occurred near the Guaicáramo fault, along the eastern margin of the Eastern Cordillera fold-and-thrust belt. To investigate its rupture characteristics and tectonic implications, [...] Read more.
On 8 June 2025, the Mw 6.4 Paratebueno earthquake struck the eastern foothills of the Eastern Andes, Colombia. The event occurred near the Guaicáramo fault, along the eastern margin of the Eastern Cordillera fold-and-thrust belt. To investigate its rupture characteristics and tectonic implications, we utilized ALOS-2 and Sentinel-1 SAR data to derive coseismic deformation fields. Source geometry and slip distribution were inverted with the Okada dislocation model, and static Coulomb failure stress change were calculated to assess the triggering relationship with the 2023 Mw 6.2 Meta-Cundinamarca earthquake. The results reveal maximum line-of-sight displacements of 43 cm, 23 cm and 32 cm, respectively, caused by a northwest-dipping blind reverse fault (strike ~213°, dip 58°) with ~5 m maximum slip concentrated at depths of 8–12 km, without surface rupture. Combining geological and stratigraphic evidence, including regional structures and sedimentary cover thickness, this event implies a transition from a normal fault to reverse fault due to ongoing shortening of fold-and-thrust belt, consistent with a thick-skinned tectonic origin. Coulomb stress modeling suggests the 2023 event promoted the 2025 rupture, and the combined effect of the two events further increased stress on the southeastern Guaicáramo fault, implying elevated seismic hazard. Full article
Show Figures

Figure 1

33 pages, 8608 KB  
Article
Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method
by Gokhan Basar, Funda Kahraman and Oguzhan Der
Materials 2025, 18(18), 4319; https://doi.org/10.3390/ma18184319 - 15 Sep 2025
Viewed by 356
Abstract
In this study, aluminium matrix hybrid composites reinforced with boron carbide (B4C) and silicon carbide (SiC) were fabricated using the direct hot-pressing technique under 35 MPa pressure at 600 °C for 5 min. Particle size distribution and scanning electron microscope analysis [...] Read more.
In this study, aluminium matrix hybrid composites reinforced with boron carbide (B4C) and silicon carbide (SiC) were fabricated using the direct hot-pressing technique under 35 MPa pressure at 600 °C for 5 min. Particle size distribution and scanning electron microscope analysis were conducted for the input powders. The microstructure, mechanical properties, and drillability of the fabricated composites were examined. As the SiC content increased, the density decreased, hardness improved, and transverse rupture strength declined. Drilling experiments were performed based on the Taguchi L18 orthogonal array. The control factors included cutting speed (25 and 50 m/min), feed rate (0.08, 0.16, and 0.24 mm/rev), point angle (100°, 118°, and 136°), and SiC content (0%, 5%, and 10%). Quality characteristics such as thrust force, torque, surface quality indicators, diameter deviation, and circularity deviation were evaluated. The Taguchi method was applied for single-response optimization, while the Entropy-weighted, Taguchi-based CoCoSo method was used for multi-response optimization. Analysis of Variance was conducted to assess factor significance, and regression analysis was used to model relationships between inputs and responses, yielding high R2 values. The optimal drilling performance was achieved at 50 m/min, 0.08 mm/rev, 136°, and 10% SiC, and the confirmation tests verified these results within the 95% confidence interval. Full article
(This article belongs to the Special Issue Cutting Process of Advanced Materials)
Show Figures

Figure 1

27 pages, 4453 KB  
Article
Multi-Objective Optimization of Wet Clutch Groove Structures Based on Response Surface Methodology and Engagement Thermal–Flow Analysis
by Xiangping Liao, Langxin Sun, Ying Zhao and Xinyang Zhu
Lubricants 2025, 13(9), 402; https://doi.org/10.3390/lubricants13090402 - 10 Sep 2025
Viewed by 488
Abstract
This study addresses the thermal hazards that arise during the initial engagement stage of wet clutches, where rapid heat generation within the transient lubricating film may cause premature film rupture, torque instability, and accelerated wear. To overcome these challenges, a coupled thermo–fluid model [...] Read more.
This study addresses the thermal hazards that arise during the initial engagement stage of wet clutches, where rapid heat generation within the transient lubricating film may cause premature film rupture, torque instability, and accelerated wear. To overcome these challenges, a coupled thermo–fluid model was developed to capture oil film flow, heat transfer, and viscous torque behavior under varying groove structures. A novelty of this work is the first integration of computational fluid dynamics (CFD) with response surface methodology (RSM) to systematically reveal how groove geometry—cross-sectional shape, number, and inclination angle—collectively influences peak temperature and viscous torque during the lubricating film stage. Simulation results show that spiral semi-circular grooves provide superior thermal management, reducing the peak friction plate temperature to 75.5 °C, while the optimized design obtained via RSM (groove depth of 0.89 mm, 19 grooves, and a 5.28° inclination angle) further lowers the maximum temperature to 68.2 °C and sustains torque transmission above 18.5 N·m. These findings demonstrate that rational groove design, guided by multi-objective optimization, can mitigate thermal risks while maintaining torque stability, offering new insights for the high-performance design of wet clutches. Full article
Show Figures

Figure 1

15 pages, 2803 KB  
Article
Utilization of Birch Bark-Derived Suberinic Acid Residues as Additives in High-Density Fiberboard Production
by Julia Dasiewicz, Anita Wronka, Janis Rizikovs and Grzegorz Kowaluk
Materials 2025, 18(17), 4171; https://doi.org/10.3390/ma18174171 - 5 Sep 2025
Viewed by 739
Abstract
This study investigates the use of suberinic acid residues (SARs), derived from birch outer bark, as a bio-based additive in high-density fiberboard (HDF). Boards with target densities of 800 kg m−3 were produced with SAR contents of 0, 1, 5, 10, 20, [...] Read more.
This study investigates the use of suberinic acid residues (SARs), derived from birch outer bark, as a bio-based additive in high-density fiberboard (HDF). Boards with target densities of 800 kg m−3 were produced with SAR contents of 0, 1, 5, 10, 20, and 50%. Standardized tests evaluated mechanical properties: screw withdrawal resistance, modulus of elasticity, modulus of rupture, and internal bond, as well as moisture resistance through surface water absorption, water absorption, and thickness swelling. Density profiles were also analyzed. SAR content influenced HDF performance in a concentration-dependent manner. The most notable improvements in mechanical properties occurred at 5% SAR, where fine particles likely enhanced internal bonding and stiffness. However, higher SAR levels led to reduced mechanical strength, possibly due to an excessive particle surface area exceeding the adhesive’s bonding capacity. Moisture resistance declined with increased SAR, attributed to its hydrophilic nature and process parameters, although SAR-modified boards still outperformed those with other biodegradable additives like starch. SAR also affected the density profile, improving core densification at moderate levels. Overall, SAR shows potential as a renewable additive for enhancing HDF performance, particularly at low concentrations, balancing mechanical strength and environmental benefits. Full article
Show Figures

Figure 1

17 pages, 13580 KB  
Article
Investigation of the Lubrication Performance of Petal-Shaped Micro-Pit Texture on the Surface of Stator Rubber in Screw Pumps
by Xiaoming Wu, Xinfu Liu, Guoqing Han, Xiangzhi Shi, Jiuquan An, Xiaoli Yin and Li Geng
Lubricants 2025, 13(9), 379; https://doi.org/10.3390/lubricants13090379 - 26 Aug 2025
Viewed by 613
Abstract
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the [...] Read more.
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the later stages of oilfield extraction. A geometric model of the petal-shaped micro-pit texture on the stator rubber surface and a mathematical model of the hydrodynamic lubrication flow field based on the Reynolds equation were developed. Computational Fluid Dynamics (CFD) simulations and friction tests were conducted to systematically study the influence of the medium flow direction, texture area ratio, and texture size on the lubrication performance. The obtained results showed that compared with the flow in the x-direction, the load-carrying capacity of the oil film was increased by more than 0.93% when the medium flowed in y-direction, and it reached its optimal value at an area of 10%. When the area ratio reached 60%, the interference effect of the flow field reduced the pressure by 6.98%. The increase of the size of the petals allowed to expand the positive pressure zone and increase the net load-carrying capacity. Furthermore, friction tests demonstrated that the friction coefficient was decreased with the increase of the texture size and increased with the increase of the texture area ratio. The petal-shaped micro-pit texture with size of 350 μm and an area ratio of 10% demonstrated the lowest friction coefficient and highest wear resistance. Full article
Show Figures

Figure 1

13 pages, 5735 KB  
Article
High-Resolution Imaging of Morphological Changes Associated with Apoptosis and Necrosis Using Single-Cell Full-Field Optical Coherence Tomography
by Suyeon Kang, Kyeong Ryeol Kim, Minju Cho, Joonseup Hwang, Joon-Mo Yang, Jun Ki Kim and Woo June Choi
Biosensors 2025, 15(8), 522; https://doi.org/10.3390/bios15080522 - 9 Aug 2025
Viewed by 746
Abstract
Full-field optical coherence tomography (FF-OCT) is a high-resolution interferometric imaging technique that enables label-free visualization of cellular structural changes. In this study, we employed a custom-built time-domain FF-OCT system to monitor morphological alterations in HeLa cells undergoing doxorubicin-induced apoptosis and ethanol-induced necrosis at [...] Read more.
Full-field optical coherence tomography (FF-OCT) is a high-resolution interferometric imaging technique that enables label-free visualization of cellular structural changes. In this study, we employed a custom-built time-domain FF-OCT system to monitor morphological alterations in HeLa cells undergoing doxorubicin-induced apoptosis and ethanol-induced necrosis at the single-cell level. Apoptotic cells showed characteristic features such as echinoid spine formation, cell contraction, membrane blebbing, and filopodia reorganization. In contrast, necrotic cells exhibited rapid membrane rupture, intracellular content leakage, and abrupt loss of adhesion structure. These dynamic events were visualized using high-resolution tomography and three-dimensional surface topography mapping. Furthermore, FF-OCT-based interference reflection microscopy (IRM)-like imaging effectively highlighted changes in cell–substrate adhesion and cell boundary integrity during the cell death process. Our findings suggest that FF-OCT is a powerful imaging platform for distinguishing cell death pathways and assessing dynamic cellular states, with potential applications in drug toxicity testing, anticancer therapy evaluation, and regenerative medicine. Full article
(This article belongs to the Special Issue Optical Sensors for Biological Detection)
Show Figures

Figure 1

24 pages, 6997 KB  
Article
Characteristics of Overlying Rock Breakage and Fissure Evolution in the Mining of Extra-Thick Coal Seams in Anticline Structural Area
by Jun Wang, Shibao Liu, Xin Yu, Haoyuan Gu, Huaidong Liu and Changyou Liu
Appl. Sci. 2025, 15(16), 8812; https://doi.org/10.3390/app15168812 - 9 Aug 2025
Viewed by 454
Abstract
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods [...] Read more.
To reveal the fracture mechanism of overburden aquifers during mining under anticlinal structural zones in western mining areas, this study takes Panel 1309 of the Guojiahe Coal Mine as the engineering background and employs field investigations, physical similarity simulation, and numerical simulation methods to systematically investigate the overburden fracture and crack evolution laws during extra-thick coal seam mining in anticlinal zones. The research results demonstrate the following: (1) The large slope angle of the anticlinal zone and significant elevation difference between slope initiation points and the axis constitute the primary causes of water inrush-induced support failures in working face 1309. The conglomerate of the Yijun Formation serves as the critical aquifer responsible for water inrush, while the coarse sandstone in the Anding Formation acts as the key aquiclude. (2) Influenced by the slope angle, both overburden fractures and maximum bed separation zones during rise mining predominantly develop toward the goaf side. The water-conducting fracture zone initially extends in the advance direction, when its width is greater than its height, and changes to a height greater than its width when the key aquifer fractures and connects to the main aquifer. (3) The height of the collapse zone of the working face is 65 m, and the distribution of broken rock blocks in the collapse zone is disordered; after the fracture of the water-insulating key layer, the upper rock layer is synchronously fractured and activated, and the water-conducting fissure leads to the water-conducting layer of the Yijun Formation. (4) Compared to the periodic ruptures of the main roof, the number of fractures and their propagation speed are greater during the initial ruptures of each stratum. Notably, the key aquiclude’s fracture triggers synchronous collapse of overlying strata, generating the most extensive and rapidly developing fracture networks. (5) The fracture surface on the mining face side and the overlying strata separation zone jointly form a “saddle-shaped” high-porosity area, whose distribution range shows a positive correlation with the working face advance distance. During the mining process, the porosity variation in the key aquiclude undergoes three distinct phases with advancing distance: first remaining stable, then increasing, and finally decreasing, with porosity reaching its peak when the key stratum fractures upon attaining its ultimate caving interval. Full article
(This article belongs to the Special Issue Novel Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

18 pages, 2974 KB  
Article
Histological and Transcriptomic Insights into Rugose Surface Formation in Pepper (Capsicum annuum L.) Fruit
by Yiqi Xie, Haizhou Zhang, Chengshuang Li, Qing Cheng, Liang Sun and Huolin Shen
Plants 2025, 14(15), 2451; https://doi.org/10.3390/plants14152451 - 7 Aug 2025
Viewed by 485
Abstract
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that [...] Read more.
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that disorganized epidermal cell layers contribute to rugosity, with morphological differences emerging around 10 days post-anthesis (DPA). A computer-aided design (CAD)-based rugosity index (RI) was developed and showed strong correlation with sensory rugosity scores (R2 = 0.659, p < 0.001). Texture analysis demonstrated that increasing surface rugosity was associated with reduced rupture force and hardness, as well as elevated pectinase activity. Comparative transcriptome profiling identified 10 differentially expressed genes (DEGs) related to microtubule dynamics (e.g., CA03g18310 and CA09g13510) and phytohormone signaling (e.g., CA03g35180 and CA08g12070), which exhibited distinct spatial and temporal expression patterns. These findings suggest that coordinated cytoskeletal remodeling and hormonal regulation drive epidermal disorganization, leading to surface rugosity and altered fruit texture. The study provides novel insights into the molecular basis of fruit surface morphology and identifies promising targets for breeding high-quality pepper cultivars. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Graphical abstract

19 pages, 7100 KB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 - 6 Aug 2025
Viewed by 356
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 8425 KB  
Article
The Biocorrosion of a Rare Earth Magnesium Alloy in Artificial Seawater Containing Chlorella vulgaris
by Xinran Yao, Qi Fu, Guang-Ling Song and Kai Wang
Materials 2025, 18(15), 3698; https://doi.org/10.3390/ma18153698 - 6 Aug 2025
Viewed by 358
Abstract
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the [...] Read more.
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the surface of Mg alloys, resulting in biocorrosion damage, which is really troublesome in the maritime industry and can even be disastrous to the navy. Currently, there is a lack of research on the biocorrosion of Mg alloys that may find important applications in marine engineering. In this paper, the biocorrosion mechanism of the Mg alloy Mg-3Nd-2Gd-Zn-Zr caused by Chlorella vulgaris (C. vulgaris), a typical marine microalga, was studied. The results showed that the biomineralization process in the artificial seawater containing a low concentration of C. vulgaris cells was accelerated compared with that in the abiotic artificial seawater, leading to the deposition of CaCO3 on the surface to inhibit the localized corrosion of the Mg alloy, whereas a high concentration of C. vulgaris cells produced a high content of organic acids at some sites through photosynthesis to significantly accelerate the surface film rupture at some sites and severe localized corrosion there, but meanwhile, it resulted in the formation of a more protective biomineralized film in the other areas to greatly alleviate the corrosion. The contradictory biocorrosion behaviors on the Mg-3Nd-2Gd-Zn-Zr alloy induced by C. vulgaris were finally explained by a mechanism proposed in the paper. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

18 pages, 6795 KB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 506
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop