Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = surface reaction rate constant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5065 KB  
Article
Performance Evaluation of Field Concretes: Surface Hardener and Algal Growth Effect of Pyrite
by Zafer Kurt, Ilker Ustabas, Muhammet Emin Aydin, Kenan Mert Oksuz and Ceren Ilknur Ustabas
Buildings 2025, 15(24), 4494; https://doi.org/10.3390/buildings15244494 - 12 Dec 2025
Abstract
This study presents the effects of using pyrite aggregate in field concretes on the mechanical, surface performance, and algal growth tendency of concrete. The substitution of pyrite influences the process of hydration, as the gradual release of its iron- and sulfur-bearing components shifts [...] Read more.
This study presents the effects of using pyrite aggregate in field concretes on the mechanical, surface performance, and algal growth tendency of concrete. The substitution of pyrite influences the process of hydration, as the gradual release of its iron- and sulfur-bearing components shifts the reaction mechanism, leading to differences in phase formation and some modification in the pore structure of the cement matrix. Three different concrete mixes (PB0, PB2.5%, and PB7.5%) were designed by replacing 0%, 2.5%, and 7.5% of the total weight of sand and crushed sand with ground pyrite as a fine aggregate. Prismatic specimens of 80 × 100 × 200 mm were produced from these mixtures and mechanical properties such as flexural, splitting tensile, and abrasion were investigated after 28 days of curing. Then, to determine the effect of pyrite on concrete surface properties, pyrite was substituted on the surface of three concrete specimens produced in 50 × 240 × 500 mm dimensions at rates of 0, 1, and 3 kg/m2. These specimens were divided into two groups: one group was exposed to clean water drops at a constant flow rate in a closed environment, and the other group was exposed to dirty water in an open environment, and observed for 2 months. At the end of the process, sections of 50 × 80 × 200 cm3 were taken from the specimens and friction, abrasion and flexural tests were carried out. The results of the study demonstrate that a 7.5% pyrite substitution improves both flexural and shear strength by 38%. At the same time, pyrite substitution prevented algal growth on the surface of field concrete under clean water and delayed its formation in those under contaminated water. Finally, it was observed that pyrite, when used in concrete mix and surface applications, optimizes mechanical performance and environmental durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 3015 KB  
Article
Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture
by Yu Gao, Xu Zhao, Yilin Xie, Shiyu Yan, Lichun Xiao, Kairong Ding, Jing Cai and Qina Sun
Coatings 2025, 15(12), 1430; https://doi.org/10.3390/coatings15121430 - 5 Dec 2025
Viewed by 191
Abstract
In this study, a novel hybrid adsorbent polydopamine-based nano-zirconium phosphate coated resin (DPZrP) was successfully synthesized, where zirconium phosphate (ZrP) was surface-anchored onto a polystyrene ion-exchange resin (D001) via polydopamine (PDA) mediation. Characterization results indicated that PDA, acting as an interfacial bridge, not [...] Read more.
In this study, a novel hybrid adsorbent polydopamine-based nano-zirconium phosphate coated resin (DPZrP) was successfully synthesized, where zirconium phosphate (ZrP) was surface-anchored onto a polystyrene ion-exchange resin (D001) via polydopamine (PDA) mediation. Characterization results indicated that PDA, acting as an interfacial bridge, not only achieved the stable loading of ZrP but also exerted a spatial confinement effect on ZrP through its polymeric cross-linked structure, thereby effectively suppressing the agglomeration of nanoparticles. Compared with pristine D001 and pure ZrP, the hybrid material DPZrP exhibited superior adsorption performance for Cs+. The adsorption capacity of DPZrP for Cs+ reached a theoretical maximum of 921.99 mg/g at 333 K. Adsorption kinetic studies indicated that adsorption equilibrium was reached within 120 min, and the reaction rate constant was 1.55 times that of DZrP. The pH effect experiment showed that DPZrP maintained Cs+ removal rates of 73.4% and 58.1% under strongly acidic (pH = 2) and strongly alkaline (pH = 12) conditions, respectively. When the molar ratio of Ca2+ to Cs+ was as high as 64, the Cs+ removal rate of DPZrP was 19.3% and 30.4% higher than those of DZrP and D001, respectively. Dynamic column experiments revealed that after treating 2000 bed volumes of simulated wastewater ([Cs+]0 = 2.5 mg/L), the Cs+ concentration in the effluent remained below 0.5 μg/L, with breakthrough occurring at 3000 BV. After five consecutive adsorption–desorption cycles, the Cs+ removal rate of DPZrP remained at 88.4%. These studies confirmed the dispersion effect of PDA on ZrP, and the synthesized DPZrP possessed both rapid capture ability and high adsorption capacity for Cs+. Thus, it provides an efficient adsorbent for the safe purification of nuclear waste liquids. Full article
Show Figures

Figure 1

14 pages, 3246 KB  
Article
Surface Characterization of Chalcopyrite Dissolution in Hypochlorite Medium
by Oscar Benavente, María-Cecilia Hernández, Evelyn Melo, Víctor Quezada, Joan Vignals and Antoni Roca
Minerals 2025, 15(12), 1268; https://doi.org/10.3390/min15121268 - 29 Nov 2025
Viewed by 243
Abstract
The surface of chalcopyrite was studied by XPS characterization for an unleached chalcopyrite, and, after being leached in an alkaline oxidant medium at room temperature, pH 12.5, and [ClO] 0.34 M, the reaction of enargite presented high selectivity with respect to [...] Read more.
The surface of chalcopyrite was studied by XPS characterization for an unleached chalcopyrite, and, after being leached in an alkaline oxidant medium at room temperature, pH 12.5, and [ClO] 0.34 M, the reaction of enargite presented high selectivity with respect to chalcopyrite, allowing the removal of arsenic from copper concentrates with high arsenic content prior to smelting. Based on the XPS analysis, the original chalcopyrite is composed of a combination of its constituents in different oxidation states, and chalcopyrite has the following stoichiometric formula: Cu(I)0.85Cu(II)0.15Fe(II)0.65Fe(III)0.35S2−1.5S22−0.17Sn0.082−. The unleached chalcopyrite on its surface presents an iron deficiency, which raises the ratio Cu/Fe up to 2, reaching the chalcopyrite Cu/Fe rate in the fifth cycle. The Cu/S ratio of chalcopyrite, 0.5, remains constant at the surface as after the peeling. Surface sulfur shows a decrease in monosulfides, increasing the Sn2−/S2− y S22−/S2− ratio. Chalcopyrite leached with ClO/OH media generates surface layers with the following intermediate products: ChalcopyriteCuFe1-xS2/CuSn/Fe3+ -OHFe3+-OH/CuO/SO42−. Neither sulfur intermediates nor oxidized final products are passivating, allowing the chalcopyrite transformation to progress in depth with increasing reaction time. Full article
Show Figures

Figure 1

16 pages, 2905 KB  
Article
Development of a Au/TiO2/Ti Electrocatalyst for the Oxygen Reduction Reaction in a Bicarbonate Medium
by Mostafizur Rahaman, Md. Fahamidul Islam, Mohebul Ahsan, Mohammad Imran Hossain, Faruq Mohammad, Tahamida A. Oyshi, Md. Abu Rashed, Jamal Uddin and Mohammad A. Hasnat
Catalysts 2025, 15(11), 1074; https://doi.org/10.3390/catal15111074 - 13 Nov 2025
Viewed by 991
Abstract
The oxygen reduction reaction (ORR) is a pivotal electrochemical process in energy technologies and in the generation of hydrogen peroxide (H2O2), which serves as both an effective agent for dye degradation and a fuel in H2O2 [...] Read more.
The oxygen reduction reaction (ORR) is a pivotal electrochemical process in energy technologies and in the generation of hydrogen peroxide (H2O2), which serves as both an effective agent for dye degradation and a fuel in H2O2-based fuel cells. In this regard, a titanium (Ti) sheet was anodized to generate a TiO2 layer, and then the oxide layer was modified with gold (presented as Au/TiO2/Ti) via electrodeposition. The developed electrocatalyst was confirmed by X-ray photoelectron spectroscopy (XPS), which showed characteristic binding energies for Ti4+ in TiO2 and metallic Au. In addition, the Nyquist plot verified the electrode modification process, since the diameter of the semicircular arc, corresponding to charge transfer resistance, significantly decreased due to Au deposition. Voltametric studies revealed that the TiO2 layer with a Ti surface exhibited a good synergistic effect on Au and the ORR in a bicarbonate medium (0.1 M KHCO3) by lowering the overpotential, enhancing current density, and boosting durability. The scan rate-dependent study of the ORR produced by the developed electrocatalyst showed a Tafel slope of 180 ± 2 mV dec−1 over a scan rate range of 0.05–0.4 V s−1, thereby indicating a 2e transfer process in which the initial electron transfer process was the rate-limiting step. The study also revealed that the Au/TiO2/Ti electrode caused oxygen electro-reduction with a heterogenous rate constant (k0) of 4.40×103 cm s−1 at a formal potential (E0′) of 0.54 V vs. RHE. Full article
Show Figures

Figure 1

22 pages, 2851 KB  
Article
A Novel Biomass-Based Catalyst Composite Using Waste Chicken Eggshells and Avocado Seeds for Biolubricant Production: Synthesis Route, Catalytic Property Characterization, and Performance
by Juan Esteban Foronda-Quiroz, Hilda Elizabeth Reynel-Ávila, Luiz Pereira-Ramos and Adrián Bonilla-Petriciolet
Molecules 2025, 30(21), 4280; https://doi.org/10.3390/molecules30214280 - 3 Nov 2025
Viewed by 525
Abstract
This study introduces the preparation and tailoring of the catalytic properties of a novel biomass-based composite to produce a sustainable biolubricant, trimethylolpropane fatty acid triester (TFATE), via the transesterification of fatty acid methyl esters (FAMEs). This novel catalyst was prepared from avocado seed [...] Read more.
This study introduces the preparation and tailoring of the catalytic properties of a novel biomass-based composite to produce a sustainable biolubricant, trimethylolpropane fatty acid triester (TFATE), via the transesterification of fatty acid methyl esters (FAMEs). This novel catalyst was prepared from avocado seed and chicken eggshell residues using a Taguchi experimental design to determine the best synthesis conditions. The variables tested in the catalyst preparation included CaO impregnation time and temperature, mass ratio of CaO/char, and activation temperature. The transesterification conditions to obtain TFATE were analyzed using the best eggshell-/char-based catalyst, and the reaction kinetics were measured at 120 and 150 °C. The results showed an endothermic reactive system with calculated kinetic rate constants of 7.45 × 10−3–10.31 × 10−3 L/mmol·min, and an activation energy of 15 kJ/mol. This new catalyst achieved 90% TFATE formation under optimized reaction conditions. Reuse tests indicated that catalyst deactivation occurred due to active-site poisoning, despite very low calcium leaching. Catalyst characterization confirmed the relevance of the crystalline structure and CaO loading on the avocado char surface to obtain the best catalytic properties, while 1H nuclear magnetic resonance analysis proved TFATE formation. This low-cost catalyst can be an alternative for enhancing sustainable biolubricant production with the aim of replacing petrochemical-based counterparts. Full article
(This article belongs to the Special Issue Nano and Micro Materials in Green Chemistry)
Show Figures

Figure 1

18 pages, 10019 KB  
Article
Belt Sanding Robot for Large Convex Surfaces Featuring SEA Arms and an Active Re-Tensioner with PI Force Control
by Hongjoo Jin, Chanhyuk Moon, Taegyun Kim and TaeWon Seo
Machines 2025, 13(11), 1012; https://doi.org/10.3390/machines13111012 - 2 Nov 2025
Viewed by 456
Abstract
This study presents a belt sanding robot for large convex surfaces together with a proportional–integral force control method. Sanding belt tension strongly affects area coverage and spatial normal-force uniformity on large curved surfaces; existing approaches typically use fixed tool positions or lack active [...] Read more.
This study presents a belt sanding robot for large convex surfaces together with a proportional–integral force control method. Sanding belt tension strongly affects area coverage and spatial normal-force uniformity on large curved surfaces; existing approaches typically use fixed tool positions or lack active tension regulation, which limits coverage and makes force distribution difficult to control. The mechanism consists of two series elastic actuator arms and an active re-tensioner that adjusts belt tension during contact. In contrast to a conventional belt sander, the series elastic configuration enables indirect estimation of the reaction force without load cells and provides compliant interaction with contact transients. The system is evaluated on curved steel plates using vertical scans with a belt width of 50 mm and a drive wheel speed of 300 rpm. Performance is reported for two target curvature values, namely 0.47 and 1.37, with five trials for each condition. The control objective is a constant normal force along the contact, achieved through proportional–integral control of the arms for normal-force tracking and the re-tensioner for belt tension regulation. To quantify spatial force uniformity, the distribution rate is defined as the ratio of the difference between the maximum and minimum normal forces to the maximum normal force measured across the belt–workpiece contact region. Compared with a simple belt sander baseline, the proposed system increased the sanded area coverage by 31.85%, from 62.20% to 94.05%, at the curvature value of 0.47, and by 8.49%, from 81.21% to 89.70%, at the curvature value of 1.37. The distribution rate improved by 113% at the curvature value of 0.47 and by 16.7% at the curvature value of 1.37. Under identical operating conditions of 50 mm belt width, 300 rpm, and five repeated trials, these results indicate higher area coverage and more uniform force distribution relative to the baseline. Full article
Show Figures

Figure 1

15 pages, 1519 KB  
Article
Construction and Application of a Novel Three-Dimensional Electrocatalytic Ozonation System for Micropollutant Removal
by Yang Zhang, Xian Zhang, Shiyi Wang, Jiafeng Huang, Yuxiao Zhang, Yang Guo, Chunrong Wang and Tao Yu
Catalysts 2025, 15(11), 1026; https://doi.org/10.3390/catal15111026 - 31 Oct 2025
Viewed by 722
Abstract
Conventional two-dimensional (2D) electrocatalytic ozonation faces challenges such as low mass transfer efficiency, limited hydroxyl radical (•OH) yield, and insufficient pollutant degradation rates. To address these limitations, this study developed a novel three-dimensional electrocatalytic ozonation system using a 316 stainless-steel skeleton as the [...] Read more.
Conventional two-dimensional (2D) electrocatalytic ozonation faces challenges such as low mass transfer efficiency, limited hydroxyl radical (•OH) yield, and insufficient pollutant degradation rates. To address these limitations, this study developed a novel three-dimensional electrocatalytic ozonation system using a 316 stainless-steel skeleton as the cathode. By systematically comparing the ozone decay kinetics, •OH yield, imidacloprid degradation efficiency, and ozone mass transfer characteristics among the 3D electrocatalytic ozonation system, 2D electrocatalytic ozonation system, and conventional ozonation system, combined with electrode interface reaction analysis and structural simulation, the core mechanism by which the 3D structure enhances the electrocatalytic ozonation reaction was revealed. The results showed that the 3D electrocatalytic ozonation technology primarily promotes ozone decay and •OH generation through a reaction pathway dominated by the reduction of ozone at the cathode, while simultaneously enhancing pollutant removal efficiency. The pseudo-first-order kinetic constant for ozone decay in the 3D system reached 1.0 min−1, which was five times that of the 2D system (0.2 min−1). The •OH yield increased to 38%, significantly higher than that of the 2D system (15%) and conventional ozonation (10%). The complete degradation of imidacloprid was achieved within 5 min, and the degradation rate (2.14 min−1) was 10 times that of the 2D system. The high specific surface area (75 cm2/g, 30–90 times that of the 2D flat electrode) and 70% porosity of the 3D framework overcame the mass transfer limitation of the 2D structure, exhibiting excellent reaction activity. The ozone mass transfer amount was approximately 1.5 times that of the 2D electrode and 2 times that of conventional ozonation. This study provides theoretical support and technical basis for the engineering application of 3D electrocatalytic ozonation technology in the field of micro-pollutant control. Full article
(This article belongs to the Special Issue Nanocatalysts for Contaminant Degradation)
Show Figures

Graphical abstract

16 pages, 1422 KB  
Article
Urea Detection in Phosphate Buffer and Artificial Urine: A Simplified Kinetic Model of a pH-Sensitive EISCAP Urea Biosensor
by Karen Simonyan, Astghik Tsokolakyan, Vahe Buniatyan, Artem Badasyan and Mkrtich Yeranosyan
Sensors 2025, 25(21), 6596; https://doi.org/10.3390/s25216596 - 26 Oct 2025
Viewed by 853
Abstract
A simplified kinetic model for the quantitative analysis of a potentiometric, pH-based urea biosensor is presented. The device was an electrolyte–insulator–semiconductor capacitor (EISCAP) with a pH-sensitive Ta2O5 gate functionalized by a polyallylamine hydrochloride (PAH)/urease bilayer. Within the steady-state approximation, the [...] Read more.
A simplified kinetic model for the quantitative analysis of a potentiometric, pH-based urea biosensor is presented. The device was an electrolyte–insulator–semiconductor capacitor (EISCAP) with a pH-sensitive Ta2O5 gate functionalized by a polyallylamine hydrochloride (PAH)/urease bilayer. Within the steady-state approximation, the kinetic equations yielded an implicit algebraic relation linking the bulk urea concentration to the local pH at the sensor surface. Numerical solution of this equation, combined with a fitting routine, provides the apparent Michaelis–Menten constant (KM) and the normalized maximum reaction rate (k¯V). Validation against the literature data confirmed the reliability of the approach. Experimental results were then analyzed in both phosphate buffer (PBS) and artificial urine (AU), covering urea concentrations of 0.1–50 mM. The fitted parameters showed comparable KM values of 10.9 mM (PBS) and 32.4 mM (AU), but strongly different k¯V values: 2.2×104 (PBS) versus 8.6×107 (AU). The three-order reduction in AU was attributed to the inhibitory effects inherent to complex biological fluids. These findings highlight the importance of the model-based quantitative analysis of EISCAP biosensors, enabling the accurate characterization of immobilized enzyme layers and guiding optimization for applications in realistic sample matrices. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

13 pages, 2414 KB  
Article
The Rapid Catalytic Degradation of Reactive Black 5 Using Mo51Fe34B15 Metallic Glass Wire
by Ya-Nan Chen, Bo Song, Chengquan Zhang, Tao Li, Chen Su and Shengfeng Guo
Metals 2025, 15(10), 1160; https://doi.org/10.3390/met15101160 - 21 Oct 2025
Viewed by 305
Abstract
Metallic glass, as an emerging catalytic material, possesses an atomic structure characterized by long-range disorder and short-range order, which creates abundant and accessible active sites that enhance the adsorption and reactivity toward pollutant molecules, particularly dye compounds. In treating highly colored and recalcitrant [...] Read more.
Metallic glass, as an emerging catalytic material, possesses an atomic structure characterized by long-range disorder and short-range order, which creates abundant and accessible active sites that enhance the adsorption and reactivity toward pollutant molecules, particularly dye compounds. In treating highly colored and recalcitrant Reactive Black 5 (RB5) dye wastewater, Mo51Fe34B15 metallic glass wire demonstrate outstanding catalytic degradation performance within a conventional Fenton-like system. Under acidic conditions (pH = 2), the material exhibits a degradation rate constant of 0.698 min−1 for a 20 ppm RB5 dye solution, achieving a degradation efficiency of 98.8% within 10 min. After 10 consecutive cycles, the efficiency remains at 95%, and throughout 15 cycles, it consistently maintains a performance level above 90%. As the reaction proceeds, the degradation rate gradually decreases, primarily due to the accumulation of corrosion products on the catalyst surface, which are predominantly composed of MoO3 and Fe2O3. During the degradation process, metallic Mo0 and Fe0 serve as electron donors that facilitate the decomposition of H2O2, generating highly reactive hydroxyl radicals (•OH). These radicals attack the chromophoric structure of the dye, leading to its structural disruption and enabling rapid decolorization. Full article
Show Figures

Figure 1

16 pages, 1893 KB  
Article
Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation
by Anilkumar Krosuri, Yunfei Zhou, Muhammad Aamir Bashir, Robinson Junior Ndeddy Aka and Sarah Wu
Sustainability 2025, 17(20), 9275; https://doi.org/10.3390/su17209275 - 19 Oct 2025
Viewed by 404
Abstract
This study presents a statistical modelling and optimization of an argon-activated electrohydraulic plasma discharge (EHPD) process for the degradation and mineralization of p-nitrophenol (p-NP) in water. The EHPD reactor design incorporated dual dielectric plates to initiate plasma discharge through a central orifice. A [...] Read more.
This study presents a statistical modelling and optimization of an argon-activated electrohydraulic plasma discharge (EHPD) process for the degradation and mineralization of p-nitrophenol (p-NP) in water. The EHPD reactor design incorporated dual dielectric plates to initiate plasma discharge through a central orifice. A fractional factorial design (FFD) was first employed to screen four operating variables, including argon flow rate, pH, applied power, and persulfate dosage, on the p-NP degradation efficiency and energy yield, revealing argon flow rate and applied power as two identified, significant process factors. These were then further optimized using a central composite design (CCD) and response surface methodology (RSM), with the optimal operating condition found to be 2.73 L/min and 128.6 W for argon flow rate and applied power, respectively. Under the optimal operating conditions, 10 min treatment of 50 mg/L p-NP achieved a degradation efficiency of 94.2% and 75.8% total organic carbon (TOC) removal, along with a first-order reaction rate constant of 0.296 min−1 and an energy efficiency of 0.22 g/kWh. The reaction mechanism for p-NP degradation by EHPD was proposed and confirmed with optical emission spectroscopy and radical scavengers. The optimized EHPD process proved both effective and energy-efficient in treating p-nitrophenol, highlighting its potential as a scalable and sustainable plasma-based technology for eliminating persistent organic pollutants and promoting greener water treatment practices. Full article
Show Figures

Figure 1

14 pages, 891 KB  
Article
Tensor Network Modeling of Electronic Structure of Semiconductor Nanoparticles and Sensory Effect of Layers Based on Them
by Vladimir S. Posvyanskii, Valeria L. Bodneva, Andrei V. Chertkov, Kairat S. Kurmangaleev, Maria I. Ikim, Vasily B. Novozhilov, Ivan V. Oseledets and Leonid I. Trakhtenberg
Mathematics 2025, 13(20), 3296; https://doi.org/10.3390/math13203296 - 15 Oct 2025
Cited by 1 | Viewed by 342
Abstract
This paper develops mathematical apparatus for the modeling of the electronic structure of semiconductor nanoparticles and the description of sensor response of the layers constructed on their base. The developed technique involves solutions of both the direct and inverse problems. The direct problem [...] Read more.
This paper develops mathematical apparatus for the modeling of the electronic structure of semiconductor nanoparticles and the description of sensor response of the layers constructed on their base. The developed technique involves solutions of both the direct and inverse problems. The direct problem involves of the two coupled sets of differential equations, at fixed values of physical parameters. The first of them is the set of equations of chemical kinetics which describes processes occurring at the surface of a nanoparticle. The second involves an equation describing electron concentration distribution inside a nanoparticle. The inverse problem consists of the determination of physical parameters (essentially, reactions rate constants) which provide a good approximation of experimental data when using them to find the solution of the direct problem. The mathematical novelty of this paper is the application of—for the first time, to find the solution of the inverse problem—the new gradient-free optimization methods based on low-rank tensor train decomposition and modern machine learning paradigm. Sensor effect was measured in a dedicated set of experiments. Comparisons of computed and experimental data on sensor effect were carried out and demonstrated sufficiently good agreement. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

30 pages, 6686 KB  
Article
Interplay of the Mass Transport and Reaction Kinetics for Lateral Flow Immunoassay Integrated on Lab-on-Disc
by Snehan Peshin, Anthony Gavin, Nakajima Rie, Aarti Jain, Philip Felgner, Marc J. Madou and Lawrence Kulinsky
Sensors 2025, 25(20), 6271; https://doi.org/10.3390/s25206271 - 10 Oct 2025
Viewed by 776
Abstract
Lateral Flow Assays (LFAs) are ubiquitous test platforms due to their affordability and simplicity but are often limited by low sensitivity and lack of flow control. The present work demonstrates the combination of LFAs with centrifugal microfluidic platforms that allows for enhancement of [...] Read more.
Lateral Flow Assays (LFAs) are ubiquitous test platforms due to their affordability and simplicity but are often limited by low sensitivity and lack of flow control. The present work demonstrates the combination of LFAs with centrifugal microfluidic platforms that allows for enhancement of LFAs’ sensitivity via the increase in the dwell time of the analyte at the test line as well as by passing a larger sample volume through the LFA strip. The rate of advancement of the liquid front in the radially positioned NC strip is retarded by the centrifugal force generated on spinning disc; therefore, the dwell time of the liquid front above the test line of LFA is increased. Additionally, integrating a waste reservoir enables passive replenishment of additional sample volume increases total probed volume by approximately 20% (from 50 μL to 60 μL). Comprehensive analysis, including COMSOL multiphysics simulation, was performed to deduce the importance of parameters such as channel height (100–300 μm), disc spin rate (0–2000 rpm), and reaction kinetics (fast vs. slow binding kinetics). The analysis was validated by the experimental observation of the slower-reacting CD79b protein on the test strip. For slower-reacting targets like CD79b, fluorescence intensity increased by ~40% compared to the static LFA. A new merit number, TRc (Transport Reaction Constant), is introduced, which refines the traditional Damköhler number (Da) by including the thickness of the liquid layer (such as the height of the microchannel), which affects the final sensitivity of the assays and is designed to reflect the role channel height plays for surface-based assays (in contrast to the bulk assays). Full article
(This article belongs to the Special Issue Sensors and Actuators for Lab-on-Chip Applications)
Show Figures

Figure 1

17 pages, 2176 KB  
Article
A Study on Maximizing the Performance of a Concrete-Based TiO2 Photocatalyst Using Hydrophilic Polymer Dispersion
by Jung Soo Kim, Kanghyeon Song, Jiwon Kim, Hyun-Ju Kang, Dayoung Yu, Hong Gun Kim and Young Soon Kim
Catalysts 2025, 15(10), 935; https://doi.org/10.3390/catal15100935 - 1 Oct 2025
Cited by 1 | Viewed by 752
Abstract
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and [...] Read more.
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyethylene glycol methyl ether (PEGME), dynamic light scattering (DLS) and zeta potential measurements were performed, and as a result, a 0.1 wt% PVA solution was optimal for inhibiting aggregation, with an average hydrodynamic diameter of 1.4 µm and a zeta potential of −11 mV. In methylene blue photolysis, the reaction rate constant (k_app) was 1.71 × 10−2 min−1 (R2 = 0.98), which was improved by 11.4 times compared to the control group, and was about twice as high in the concrete specimen experiment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analyses confirmed an anatase-to-rutile ratio of 81:19 particle sizes of 10–30 nm, and a specific surface area of 58.985 m2·g−1. As a result, it is suggested that PVA pretreatment is a practical method to effectively improve the photocatalytic performance of TiO2-based self-cleaning concrete. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

23 pages, 4917 KB  
Article
Kinetics of the Reduction of Iron Ore Pellets with Hydrogen: A Parametric Experimental and Modeling Study
by Antoine Marsigny, Jean-Baptiste Letz, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(9), 1034; https://doi.org/10.3390/met15091034 - 18 Sep 2025
Viewed by 1479
Abstract
The direct reduction of iron ore by hydrogen is a serious candidate for reducing greenhouse gas emissions in the iron and steelmaking industry by replacing traditional blast furnace technology. The reduction kinetics are key to this process. The present paper reports an extensive [...] Read more.
The direct reduction of iron ore by hydrogen is a serious candidate for reducing greenhouse gas emissions in the iron and steelmaking industry by replacing traditional blast furnace technology. The reduction kinetics are key to this process. The present paper reports an extensive parametric study of the reduction of iron ore pellets with hydrogen that combines both experiments and modeling. A new model (modified grainy pellet model) was developed on the basis of the grainy pellet concept, the law of additive reaction times and the evolution of gas composition. The chemical kinetic constants of the three-step reduction reaction were determined from isothermal thermogravimetry experiments in the 600–900 °C temperature range. The model was then validated against laboratory-scale fixed-bed experimental results. A comparison with the experimental thermogravimetry results for a broad range of operating parameters shows the robustness of the model. The effects of temperature, gas dilution, gas flow rate, water content, pellet size, pressure, porosity, tortuosity, and specific surface area were investigated. The temperature, pellet size, pressure, gas composition and, particularly, the water content and gas flow rate have major influences on the reaction rate, in contrast to the initial porosity and specific surface area. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

16 pages, 12051 KB  
Article
Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System
by Xiaojiao Li, Zhenlin Peng and Yang Yang
Processes 2025, 13(9), 2904; https://doi.org/10.3390/pr13092904 - 11 Sep 2025
Viewed by 901
Abstract
To address the challenge of low iron extraction efficiency from boiling furnace pyrite cinder (BPC), a significant secondary iron resource posing environmental risks due to massive stockpiling in China, this study investigated the kinetics and reactivity regulation of an oxalic acid-sulfuric acid hybrid [...] Read more.
To address the challenge of low iron extraction efficiency from boiling furnace pyrite cinder (BPC), a significant secondary iron resource posing environmental risks due to massive stockpiling in China, this study investigated the kinetics and reactivity regulation of an oxalic acid-sulfuric acid hybrid leaching system to overcome the inertness and diffusion barriers of hematite. Single-factor experiments and Response Surface Methodology (RSM) optimization were employed to determine optimal leaching parameters (time, temperature, liquid–solid ratio, H2SO4 concentration) under constant stirring (400 r/min) and BPC–oxalic acid ratio (50:1). Shrinking core kinetic modeling, complemented by SEM-EDS/XRD residue characterization, elucidated the dissolution mechanism. Results showed a maximum iron leaching rate of 94.7% at 90 °C, 40 wt% H2SO4, an L/S ratio of 5 mL/g, and a time of 7 h. Kinetics transitioned from liquid-film diffusion control (Ea = 76.9 kJ/mol) below 70 °C to mixed interfacial reaction/internal diffusion control (Ea = 32.4 kJ/mol) above 80 °C. Highly concentrated acid conditions (50% H2SO4) reduced efficiency by >20% due to oxalate protonation, CaSO4 pore occlusion, and increased viscosity. RSM confirmed temperature-dominated kinetics and acid concentration-governed thermodynamics, with no synergy under combined high-temperature/high-acidity conditions. This optimized process enables efficient iron recovery from refractory BPC using minimal reagent consumption. Full article
(This article belongs to the Special Issue Advanced Methods of Metal Recycling)
Show Figures

Figure 1

Back to TopTop