Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = surface capillarity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7931 KiB  
Article
Enhanced Pool Boiling via Binder-Jetting 3D-Printed Porous Copper Structures: CHF and HTC Investigation
by Lilian Aketch Okwiri, Takeshi Mochizuki, Kairi Koito, Noriaki Fukui and Koji Enoki
Appl. Sci. 2025, 15(14), 7892; https://doi.org/10.3390/app15147892 - 15 Jul 2025
Viewed by 264
Abstract
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical [...] Read more.
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical treatments. This approach enables a reliable utilization of phenomena like capillarity for improved performance. Three types of porous copper structures, namely Large Lattice, Small Lattice, and Staggered, were fabricated on pure copper substrates and tested via pool boiling of de-ionized and de-gassed water at atmospheric pressure. Compared to a plain polished copper surface, which exhibited a critical heat flux (CHF) of 782 kW/m2 at a wall superheat of 18 K, the 3D-printed porous copper surfaces showed significantly improved heat transfer performance. The Staggered surface achieved a conventional CHF of 2342.4 kW/m2 (a 199.7% enhancement) at a wall superheat of 24.6 K. Notably, the Large Lattice and Small Lattice structures demonstrated exceptionally stable boiling without reaching the typical catastrophic CHF within the experimental parameters. These geometries continued to increase in heat flux, reaching maximums of 2397.7 kW/m2 (206.8% higher at a wall superheat of 55.6 K) and 2577.2 kW/m2 (229.7% higher at a wall superheat of 39.5 K), respectively. Subsequently, a gradual decline in heat flux was observed with an increasing wall superheat, demonstrating an outstanding resistance to the boiling crisis. These improvements are attributed to the formation of distinct vapor–liquid pathways within the porous structures, which promotes the efficient rewetting of the heated surface through capillary action. This mechanism supports a highly efficient, self-sustaining boiling configuration, emphasizing the superior rewetting and vapor management capabilities of these 3D-printed porous structures, which extend the boundaries of sustained high heat flux performance. The porous surfaces also demonstrated a higher heat transfer coefficient (HTC), particularly at lower heat fluxes (≤750 kW/m2). High-speed digital camera visualization provided further insight into the boiling phenomenon. Overall, the findings demonstrate that these BJ3DP structured surfaces produce optimized vapor–liquid pathways and capillary-enhanced rewetting, offering significantly superior heat transfer performance compared to smooth surfaces and highlighting their potential for advanced thermal management. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 3729 KiB  
Article
Antifungal Susceptibility Assessment of Innovative and Non-Conventional Lime Mortars Incorporating Almond-Shell Powder Bio-Waste Subjected to Particle-Dispersion Technique
by Alexandre Jerónimo, Mafalda Loureiro, Mariana Fernandes, Verónica De Zea Bermudez and Ana Briga-Sá
Materials 2024, 17(6), 1426; https://doi.org/10.3390/ma17061426 - 20 Mar 2024
Cited by 1 | Viewed by 2254
Abstract
A favorable environment for fungi colonization in building materials’ surfaces can emerge when certain hygrothermal conditions occur. Thus, reducing fungal growth susceptibility is of major interest. Furthermore, if the integration of bio-wastes is performed in parallel with the development of innovative materials for [...] Read more.
A favorable environment for fungi colonization in building materials’ surfaces can emerge when certain hygrothermal conditions occur. Thus, reducing fungal growth susceptibility is of major interest. Furthermore, if the integration of bio-wastes is performed in parallel with the development of innovative materials for this purpose, a more sustainable and environmentally friendly material can be obtained. In this study, the fungal susceptibility of lime mortars incorporating almond-shell powder (ASP) microparticles (2 and 4%, wt.–wt. in relation to the binder content) was evaluated. The particle-dispersion technique was employed to prepare the bio-waste introduced in the mixtures. The fungal susceptibility of ASP samples was compared with nanotitania (n-TiO2) with recognized antifungal properties. Mechanical strength, water absorption, and wettability tests were also performed for a better characterization of the composites. Although the addition of 2% ASP led to mechanical properties reduction, an increase in the compressive and flexural strength resulted for 4% of the ASP content. Difficulties in fungal growth were observed for the samples incorporating ASP. No fungal development was detected in the mortar with 2% of ASP, which may be correlated with an increase in the surface hydrophobic behavior. Furthermore, mortars with ASP revealed a reduction in water absorption by capillarity ability, especially with 4% content, suggesting changes in the microstructure and pore characteristics. The results also demonstrated that an improvement in the physical and mechanical properties of the lime mortars can be achieved when ASP microparticles are previously subjected to dispersion techniques. Full article
(This article belongs to the Special Issue Trends in the Development of Building Materials with Recycled Waste)
Show Figures

Graphical abstract

15 pages, 6304 KiB  
Article
Capillary Wicking on Heliamphora minor-Mimicking Mesoscopic Trichomes Array
by Fenglin Chen, Ziyang Cheng, Lei Jiang and Zhichao Dong
Biomimetics 2024, 9(2), 102; https://doi.org/10.3390/biomimetics9020102 - 9 Feb 2024
Cited by 1 | Viewed by 2137
Abstract
Liquid spontaneously spreads on rough lyophilic surfaces, and this is driven by capillarity and defined as capillary wicking. Extensive studies on microtextured surfaces have been applied to microfluidics and their corresponding manufacturing. However, the imbibition at mesoscale roughness has seldom been studied due [...] Read more.
Liquid spontaneously spreads on rough lyophilic surfaces, and this is driven by capillarity and defined as capillary wicking. Extensive studies on microtextured surfaces have been applied to microfluidics and their corresponding manufacturing. However, the imbibition at mesoscale roughness has seldom been studied due to lacking fabrication techniques. Inspired by the South American pitcher plant Heliamphora minor, which wicks water on its pubescent inside wall for lubrication and drainage, we implemented 3D printing to fabricate a mimetic mesoscopic trichomes array and investigated the high-flux capillary wicking process. Unlike a uniformly thick climbing film on a microtextured surface, the interval filling of millimeter-long and submillimeter-pitched trichomes creates a film of non-uniform thickness. Different from the viscous dissipation that dominated the spreading on microtextured surfaces, we unveiled an inertia-dominated transition regime with mesoscopic wicking dynamics and constructed a scaling law such that the height grows to 2/3 the power of time for various conditions. Finally, we examined the mass transportation inside the non-uniformly thick film, mimicking a plant nutrition supply method, and realized an open system siphon in the film, with the flux saturation condition experimentally determined. This work explores capillary wicking in mesoscopic structures and has potential applications in the design of low-cost high-flux open fluidics. Full article
(This article belongs to the Special Issue Advances in Biomimetics: The Power of Diversity)
Show Figures

Figure 1

18 pages, 6142 KiB  
Article
Hydrophobic and Photocatalytic Treatment for the Conservation of Painted Lecce stone in Outdoor Conditions: A New Cleaning Approach
by Laura Bergamonti, Marianna Potenza, Federica Scigliuzzo, Sandro Meli, Antonella Casoli, Pier Paolo Lottici and Claudia Graiff
Appl. Sci. 2024, 14(3), 1261; https://doi.org/10.3390/app14031261 - 2 Feb 2024
Cited by 4 | Viewed by 1568
Abstract
Self-cleaning and hydrophobic treatments based on TiO2 and SiO2 nanoparticles are widely applied for the preservation of cultural heritage materials, to improve their resilience in polluted environments. Excellent results have been obtained on stone materials, but experiments on painted stone surfaces, [...] Read more.
Self-cleaning and hydrophobic treatments based on TiO2 and SiO2 nanoparticles are widely applied for the preservation of cultural heritage materials, to improve their resilience in polluted environments. Excellent results have been obtained on stone materials, but experiments on painted stone surfaces, such as wall paintings and polychrome plasters used in historic buildings, are still limited. In this work, we present a study on the use of water dispersions of TiO2 nanoparticles obtained via sol-gel and organically modified silica (OrMoSil) for cleaning and protective purposes on Lecce stone, a carbonate stone, widely used for its excellent workability but easily attacked by atmospheric agents and pollutants. First, we evaluated the harmlessness of the treatment on Lecce stone through colorimetric tests, water absorption by capillarity and permeability to water vapor. The photocatalytic activity of the TiO2 nanoparticles was assessed by photo-degradation of methyl orange and methylene blue dyes. The dispersion was then applied on painted samples prepared according to ancient recipes to confirm the effectiveness of the cleaning. The proposed TiO2/OrMoSil-based coating can act as a self-cleaning and protective treatment on lithic surfaces to prevent degradation phenomena and preserve the original appearance of the monument. Full article
(This article belongs to the Special Issue Innovative Methods of Cleaning Polychrome Works of Art)
Show Figures

Figure 1

20 pages, 577 KiB  
Article
Nucleation Work on Curved Substrates
by Zdeněk Kožíšek, Robert Král and Petra Zemenová
Metals 2023, 13(11), 1815; https://doi.org/10.3390/met13111815 - 27 Oct 2023
Cited by 3 | Viewed by 1617
Abstract
Nucleation is the initial phase transition process when nuclei of a new phase form within an undercooled or supersaturated parent phase under appropriate conditions. Nucleation most often occurs through a heterogeneous process on active centers on which the probability of nucleus formation is [...] Read more.
Nucleation is the initial phase transition process when nuclei of a new phase form within an undercooled or supersaturated parent phase under appropriate conditions. Nucleation most often occurs through a heterogeneous process on active centers on which the probability of nucleus formation is high. In general, the origin of active centers may be difficult to distinguish. In this work, we consider the formation of crystalline nuclei in a melt on various curved substrates. Knowledge of excess free energy plays a key role in understanding the process of formation of clusters and it is not easy to express this quantity in a considered system. Excess free energy is often approximated within the framework of capillarity approximation based on interfacial energy, which depends on interatomic interactions near the interface, as well as the misfit between melts, surface roughness, temperature, composition, etc., near the phase interface. The formation of nuclei requires overcoming a certain energy (nucleation) barrier that is a consequence of balancing the volume and the interfacial free energy. Knowing the nucleation barrier (W) is crucial for understanding this process, as nuclei predetermine the physical properties of a newly formed phase. W is typically expressed as a function of the nucleus radius; however, in nucleation kinetics, one needs to determine (W) as a function of the number of molecules forming the nucleus. We analyze nucleation work on various substrates (flat, convex, and concave) for crystallization from an aluminum melt to show that the formation of nuclei is the most probable on concave substrates. An analytical expression for W can be easily applied to other systems under consideration. We show that under the same conditions, the critical radius of nuclei is identical for various substrate, in contrast with the critical number of molecules forming a nucleus. Full article
Show Figures

Figure 1

34 pages, 5417 KiB  
Review
Durability of Slippery Liquid-Infused Surfaces: Challenges and Advances
by Divyansh Tripathi, Prauteeto Ray, Ajay Vikram Singh, Vimal Kishore and Swarn Lata Singh
Coatings 2023, 13(6), 1095; https://doi.org/10.3390/coatings13061095 - 13 Jun 2023
Cited by 52 | Viewed by 8509
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have emerged as a unique approach to creating surfaces that can resist fouling when placed in contact with aqueous media, organic fluids, or biological organisms. These surfaces are composed of essentially two components: a liquid lubricant that is [...] Read more.
Slippery liquid-infused porous surfaces (SLIPS) have emerged as a unique approach to creating surfaces that can resist fouling when placed in contact with aqueous media, organic fluids, or biological organisms. These surfaces are composed of essentially two components: a liquid lubricant that is locked within the protrusions of a textured solid due to capillarity. Drops, immiscible to the lubricant, exhibit high mobility and very-low-contact-angle hysteresis when placed on such surfaces. Moreover, these surfaces are shown to resist adhesion to a wide range of fluids, can withstand high pressure, and are able to self-clean. Due to these remarkable properties, SLIPS are considered a promising candidate for applications such as designing anti-fouling and anti-corrosion surfaces, drag reduction, and fluid manipulation. These collective properties, however, are only available as long as the lubricant remains infused within the surface protrusions. A number of mechanisms can drive the depletion of the lubricant from the interior of the texture, leading to the loss of functionality of SLIPS. Lubricant depletion is one challenge that is hindering the real-world application of these surfaces. This review mainly focuses on the studies conducted in the context of enhancing the lubricant retention abilities of SLIPS. In addition, a concise introduction of wetting transitions on structured as well as liquid-infused surfaces is given. We also discuss, briefly, the mechanisms that are responsible for lubricant depletion. Full article
(This article belongs to the Special Issue Self-Lubricating Materials and Coatings)
Show Figures

Figure 1

14 pages, 3436 KiB  
Article
The Effects of Viscosity and Capillarity on Nonequilibrium Distribution of Gas Bubbles in Swelling Liquid–Gas Solution
by Alexander K. Shchekin, Anatoly E. Kuchma and Elena V. Aksenova
Colloids Interfaces 2023, 7(2), 39; https://doi.org/10.3390/colloids7020039 - 5 May 2023
Cited by 1 | Viewed by 2420
Abstract
A detailed statistical description of the evolution of supersaturated-by-gas solution at degassing has been presented on the basis of finding the time-dependent distribution in radii of overcritical gas bubbles. The influence of solution viscosity and capillarity via internal pressure in the bubbles on [...] Read more.
A detailed statistical description of the evolution of supersaturated-by-gas solution at degassing has been presented on the basis of finding the time-dependent distribution in radii of overcritical gas bubbles. The influence of solution viscosity and capillarity via internal pressure in the bubbles on this distribution has been considered until the moment when the gas supersaturation drops due to depletion and stops nucleation of new overcritical gas bubbles. This study is based on our previous results for the nonstationary growth rates of overcritical bubbles depending on gas supersaturation, diffusivity and solubility in solution, solution viscosity, and surface tension on bubble surface. Other important factors are linked with the initial rate of homogeneous gas bubble nucleation and coupling between diffusivity and viscosity in the solution. Here, we numerically studied how all these factors affect the time-dependent distribution function of overcritical bubbles in their radii, maximal and mean bubble radii, and the time-dependent swelling ratio of a supersaturated-by-gas solution in a wide range of solution viscosities. Full article
(This article belongs to the Special Issue A Themed Issue in Honor of Prof. Boris Noskov)
Show Figures

Graphical abstract

15 pages, 6887 KiB  
Article
Assessment of the Type of Paint on Performance of Rendering Mortars
by Luis G. Baltazar and Antonio Morais
CivilEng 2023, 4(2), 454-468; https://doi.org/10.3390/civileng4020026 - 24 Apr 2023
Cited by 3 | Viewed by 2546
Abstract
The aim of this work is to determine how the mechanical and physical properties of render mortars, in particular their moisture performance, are affected by the application of paint. In this study, three commercial paints, hydro-pliolite-based paint, acrylic paint and silicate paint, were [...] Read more.
The aim of this work is to determine how the mechanical and physical properties of render mortars, in particular their moisture performance, are affected by the application of paint. In this study, three commercial paints, hydro-pliolite-based paint, acrylic paint and silicate paint, were applied as coating layers on render mortars formulated with different binders. The choice of the binders used (hydrated lime, natural hydraulic lime and cement) was related to the functional requirements that the renders have to fulfil according to the type of buildings where they are applied (i.e., new or old buildings). Firstly, the hardness and surface cohesion of the different painted and unpainted renders were analysed in order to investigate the effect of the type of paint on the mechanical strength of the render surface. The influence of the paints on the moisture behaviour of the renders was then investigated using the water capillarity test, the water vapour permeability test and the drying test. The results show that all the paints studied can cause a significant change in the behaviour of the renders in terms of moisture transport phenomena. Nevertheless, it can be concluded that acrylic paint has the greatest resistance to water absorption, but it is also the paint with the higher resistance to water vapour diffusion. Hydro pliolite paint was found to be adequate from the point of view of reducing moisture accumulation and is the most recommended for old buildings with hydrated lime or hydraulic lime-based renders. Full article
(This article belongs to the Topic Built Environment and Human Comfort)
Show Figures

Figure 1

11 pages, 4153 KiB  
Article
Ballpoint/Rollerball Pens: Writing Performance and Evaluation
by Jongju Lee, Sohail Murad and Alex Nikolov
Colloids Interfaces 2023, 7(2), 29; https://doi.org/10.3390/colloids7020029 - 4 Apr 2023
Cited by 1 | Viewed by 9599
Abstract
Here, a brief history of the development of the ballpoint/rollerball pen and the fountain pen is presented. Their principle of operation is analogous that of multipart microfluidics-type devices, where capillarity–gravity drives the ink, a complex fluid, to flow in the confinement of a [...] Read more.
Here, a brief history of the development of the ballpoint/rollerball pen and the fountain pen is presented. Their principle of operation is analogous that of multipart microfluidics-type devices, where capillarity–gravity drives the ink, a complex fluid, to flow in the confinement of a micrometer-sized canal or to lubricate a ball rotating in a socket. The differences in the operational writing principles of the fountain pen versus the ballpoint/rollerball pen are discussed. The ballpoint/rollerball pen’s manner of writing was monitored using lens end fiber optics and was digitally recorded. The ball rotation rate per unit length was monitored using a piezoelectric disk oscilloscope technique. The role of ink (a complex fluid) chemistry in the wetting phenomenon is elucidated. We also discuss methods for studying and evaluating ink–film–ball–paper surface wetting. The goal of the proposed research is to optimize and improve the writing performance of the ballpoint/rollerball pen. Full article
(This article belongs to the Special Issue Fundamental and Applied Aspects of Nanofluids)
Show Figures

Graphical abstract

13 pages, 1614 KiB  
Article
Comparative Analysis of Mechanical Properties and Microbiological Resistance of Polyfilament and Monofilament Suture Materials Used in the Operation “Tooth Extraction”
by Alexey A. Pcheliakov, Ekaterina Yu. Diachkova, Yuriy L. Vasil’ev, Oxana A. Svitich, Alexander V. Poddubikov, Stanislav A. Evlashin, Beatrice A. Volel, Anastasia A. Bakhmet, Svetlana V. Klochkova, Ellina V. Velichko, Natalia Tiunova and Svetlana V. Tarasenko
Biomimetics 2023, 8(1), 129; https://doi.org/10.3390/biomimetics8010129 - 22 Mar 2023
Cited by 2 | Viewed by 3483
Abstract
In surgical dentistry, suture material is the only foreign body that remains in the tissues after surgery, and it can lead to several negative reactions, for example, infection of the wound. The purpose of this study was to compare the mechanical properties and [...] Read more.
In surgical dentistry, suture material is the only foreign body that remains in the tissues after surgery, and it can lead to several negative reactions, for example, infection of the wound. The purpose of this study was to compare the mechanical properties and microbiological resistance of mono- and polyfilament suture materials used in tooth extraction operations. The study of elongation and knot force was carried out on an Instron 5969 Dual Column Testing System device. The capillarity of the materials was studied on a setup assembled by the authors manually by immersing the ends of the filaments in a colored manganese solution. A microbiological study was carried out on the threads taken for the experiment immediately after wound suturing, and on day 7, at which time they were removed. The comparison was made according to Rothia mucilaginosa, Streptococcus sanguinis, Staphylococcus epidermidis. Results: monofilament suture materials (Prolene and Glycolon), after calculating the Kruskal–Wallis and Mann–Whitney indices, showed better performance in all experiments compared to polyfilament sutures (Vicryl and PGA). In capillarity comparison, there was a significant difference between groups (p = 0.00018). According to the sum of the results of three microbiological studies on day 7, monofilament suture materials absorbed less of the studied bacteria on their surface compared to the polyfilament ones (p < 0.05). Conclusions: Of the studied suture materials, Prolene had the best microbiological resistance and good mechanical properties. Full article
(This article belongs to the Special Issue The Mechanical Properties of Biomaterials)
Show Figures

Figure 1

14 pages, 4358 KiB  
Article
Plasma Treatment as a Sustainable Method for Enhancing the Wettability of Jute Fabrics
by Aleksandra Ivanovska, Marija Milošević, Bratislav Obradović, Zorica Svirčev and Mirjana Kostić
Sustainability 2023, 15(3), 2125; https://doi.org/10.3390/su15032125 - 23 Jan 2023
Cited by 15 | Viewed by 3194
Abstract
In this paper, raw jute fabric was subjected to atmospheric pressure dielectric barrier discharge (at 150 or 300 Hz) to enhance its wettability, i.e., capillarity and wetting time. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM) were [...] Read more.
In this paper, raw jute fabric was subjected to atmospheric pressure dielectric barrier discharge (at 150 or 300 Hz) to enhance its wettability, i.e., capillarity and wetting time. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM) were used to assess the changes in the fabrics’ surface chemistry and morphology induced by plasma treatments. The obtained results revealed that both plasma treatments enhanced the wettability of jute fabrics, which could be ascribed to the changes in the fibers’ surface chemistry (the removal of non-cellulosic components, exposure of the cellulose molecules, and oxidation) and morphology (increased roughness due to etching of the surface layers and partial fibrillation). Capillary rise heights increased by approximately 1.8 and 1.9 times, and wetting times were 35 and 34 times shorter 24 h after the plasma treatment at 150 and 300 Hz, respectively. Special attention was given to the aging effect of plasma treatment indicated no significant changes in the fabrics’ capillarity and wetting time after 28 and 7 days, respectively, proving the durability of the effects of plasma treatment. Plasma-treated raw jute fabrics could be used as water-binding geo-prebiotic polysaccharide supports to provide the necessary water for the initial growth of cyanobacterial biocrusts. The lack of moisture is the main constraint in biocrust development after cyanobacterial inoculation. The combination of such water-supportive fabrics and cyanobacterial strains could be used for the rehabilitation of various degraded lands, sediments, and substrates, as well as for air and water pollution control. Full article
(This article belongs to the Special Issue Performance Enhancement and Sustainable Application of Cellulose)
Show Figures

Figure 1

17 pages, 2866 KiB  
Article
Type-A Gelatin-Based Hydrogel Infiltration and Degradation in Titanium Foams as a Potential Method for Localised Drug Delivery
by Hanaa Mehdi-Sefiani, Víctor Perez-Puyana, Francisco José Ostos, Ranier Sepúlveda, Alberto Romero, Mohammed Rafii-El-Idrissi Benhnia and Ernesto Chicardi
Polymers 2023, 15(2), 275; https://doi.org/10.3390/polym15020275 - 5 Jan 2023
Cited by 6 | Viewed by 2975
Abstract
A gelatin-based hydrogel was infiltrated and degraded-released in two different titanium foams with porosities of 30 and 60 vol.% (Ti30 and Ti60 foams) and fabricated by the space holder technique to evaluate its potential to act as an innovative, alternative, and localised method [...] Read more.
A gelatin-based hydrogel was infiltrated and degraded-released in two different titanium foams with porosities of 30 and 60 vol.% (Ti30 and Ti60 foams) and fabricated by the space holder technique to evaluate its potential to act as an innovative, alternative, and localised method to introduce both active pharmaceutical ingredients, such as antibiotics and non-steroidal anti-inflammatory drugs, and growth factors, such as morphogens, required after bone-tissue replacement surgeries. In addition, the kinetic behaviour was studied for both infiltration and degradation-release processes. A higher infiltration rate was observed in the Ti60 foam. The maximum infiltration hydrogel was achieved for the Ti30 and Ti60 foams after 120 min and 75 min, respectively. Further, both processes followed a Lucas-Washburn theoretical behaviour, typical for the infiltration of a fluid by capillarity in porous channels. Regarding the subsequent degradation-release process, both systems showed similar exponential degradation performance, with the full release from Ti60 foam (80 min), versus 45 min for Ti30, due to the greater interconnected porosity open to the surface of the Ti60 foam in comparison with the Ti30 foam. In addition, the optimal biocompatibility of the hydrogel was confirmed, with the total absence of cytotoxicity and the promotion of cell growth in the fibroblast cells evaluated. Full article
(This article belongs to the Special Issue Polymeric Scaffolds for Tissue Engineering II)
Show Figures

Graphical abstract

13 pages, 4873 KiB  
Article
Acoustic Assessment of Multiscale Porous Lime-Cement Mortars
by Irene Palomar and Gonzalo Barluenga
Materials 2023, 16(1), 322; https://doi.org/10.3390/ma16010322 - 29 Dec 2022
Cited by 2 | Viewed by 1909
Abstract
Noise pollution is an issue of high concern in urban environments and current standards and regulations trend to increase acoustic insulation requirements concerning airborne noise control. The design and development of novel building materials with enhanced acoustic performance is an efficient solution to [...] Read more.
Noise pollution is an issue of high concern in urban environments and current standards and regulations trend to increase acoustic insulation requirements concerning airborne noise control. The design and development of novel building materials with enhanced acoustic performance is an efficient solution to mitigate this problem. Their application as renders and plasters can improve the acoustic conditions of existing and brand-new buildings. This paper reports the acoustic performance of eleven multiscale porous lime-cement mortars (MP-LCM) with two types of fibers (cellulose and polypropylene), gap-graded sand, and three lightweight aggregates (expanded clay, perlite, and vermiculite). Gap-graded sand was replaced by 25 and 50% of lightweight aggregates. A volume of 1.5% and 3% of cellulose fibers were added. The experimental study involved a physical characterization of properties related to mortar porous microstructure, such as apparent density, open porosity accessible to water, capillarity absorption, and water vapor permeability. Mechanical properties, such as Young’s modulus, compressibility modulus, and Poisson’s ratio were evaluated with ultrasonic pulse transmission tests. Acoustic properties, such as acoustic absorption coefficient and global index of airborne noise transmission, were measured using reduced-scale laboratory tests. The influence of mortar composition and the effects of mass, homogeneity, and stiffness on acoustic properties was assessed. Mortars with lower density, lower vapor permeability, larger open porosity, and higher Young’s and compressibility modulus showed an increase in sound insulation. The incorporation of lightweight aggregates increased sound insulation by up to 38% compared to the gap-graded sand reference mixture. Fibers slightly improved sound insulation, although a small fraction of cellulose fibers can quadruplicate noise absorption. The roughness of the exposed surface also affected sound transmission loss. A semi-quantitative multiscale model for acoustic performance, considering paste thickness, active void size, and connectivity of paste pores as key parameters, was proposed. It was observed that MP-LCM with enhanced sound insulation, slightly reduced sound absorption. Full article
(This article belongs to the Special Issue Acoustic Properties of Materials)
Show Figures

Figure 1

25 pages, 3899 KiB  
Review
Review of Capillary Rise Experiments for Surface-Active Solutes in the Subsurface
by Sebnem Boduroglu and Rashid Bashir
Geotechnics 2022, 2(3), 706-730; https://doi.org/10.3390/geotechnics2030034 - 20 Aug 2022
Cited by 10 | Viewed by 9123
Abstract
Surface-active solutes that exist in the subsurface either naturally (humic acid) or as a result of anthropogenic activities (alcohols, surfactants, PFAS) alter the hydraulic and geotechnical properties of the unsaturated porous media. The alteration of properties is the result of concentration-dependent surface tension, [...] Read more.
Surface-active solutes that exist in the subsurface either naturally (humic acid) or as a result of anthropogenic activities (alcohols, surfactants, PFAS) alter the hydraulic and geotechnical properties of the unsaturated porous media. The alteration of properties is the result of concentration-dependent surface tension, and/or density, and the contact angle effects. These effects are manifested in the form of changes in water retention and conduction and changes in the suction component of the shear strength. Differences in the spatial distribution of these solutes in the subsurface result in capillary pressure gradients causing flow perturbations. Conceptual and numerical models to understand the effects of these solutes require concentration-dependent consideration of surface tension, density, and the contact angle effects on hydraulic and geotechnical properties of porous media. Capillary rise experiments have been carried out to either quantify the effect of surface-active solutes on the height of capillary rise or to determine the concentration-dependent contact angle changes due to salinity of the pore water. This paper provides a comprehensive review of the literature on capillary rise experiments and how they can potentially be used to characterize the hydraulic and geotechnical properties of unsaturated porous media affected by surface-active solutes. Full article
Show Figures

Figure 1

16 pages, 5225 KiB  
Article
Limewashes with Linseed Oil and Its Effect on Water and Salt Transport
by Cristiana Lara Nunes, Kateřina Mlsnová and Zuzana Slížková
Buildings 2022, 12(4), 402; https://doi.org/10.3390/buildings12040402 - 25 Mar 2022
Cited by 4 | Viewed by 8879
Abstract
Paints are the protective and aesthetic skin of buildings, so (re) painting is one of the most recurrent maintenance actions. Limewashes have been used since antiquity and are currently of high interest for both conservation and new construction, majorly thanks to their eco-friendly [...] Read more.
Paints are the protective and aesthetic skin of buildings, so (re) painting is one of the most recurrent maintenance actions. Limewashes have been used since antiquity and are currently of high interest for both conservation and new construction, majorly thanks to their eco-friendly and antiseptic features, and ability to improve the performance of the materials in relation to water transport. Linseed oil is a traditional water-repellent additive that can enhance the water-shedding properties of the limewashes. However, it has the risk of altering the drying kinetics of the substrate if an improper dosage is used. In this work, limewashes with the addition of varying dosages of linseed oil have been applied on two types of natural stone to study the effect of the paints in respect to water and salt transport. The water absorption by capillarity was reduced in both stones coated with pure limewash and limewash with oil, while the drying rate was slightly accelerated. The effect of the paints on the drying of the salt-laden stones varied. The salt damage developed during drying also diverged in both stones, damaging the coats and stone surface of the less porous stone and mainly promoting salt efflorescence in the most porous one. Full article
(This article belongs to the Special Issue Green Lime Technologies in Construction Materials)
Show Figures

Figure 1

Back to TopTop