
Citation: Kožíšek, Z.; Král, R.;

Zemenová, P. Nucleation Work on

Curved Substrates. Metals 2023, 13,

1815. https://doi.org/10.3390/

met13111815

Academic Editor: Alain Pasturel

Received: 18 September 2023

Revised: 19 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Nucleation Work on Curved Substrates
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Abstract: Nucleation is the initial phase transition process when nuclei of a new phase form within
an undercooled or supersaturated parent phase under appropriate conditions. Nucleation most
often occurs through a heterogeneous process on active centers on which the probability of nucleus
formation is high. In general, the origin of active centers may be difficult to distinguish. In this work,
we consider the formation of crystalline nuclei in a melt on various curved substrates. Knowledge
of excess free energy plays a key role in understanding the process of formation of clusters and it is
not easy to express this quantity in a considered system. Excess free energy is often approximated
within the framework of capillarity approximation based on interfacial energy, which depends on
interatomic interactions near the interface, as well as the misfit between melts, surface roughness,
temperature, composition, etc., near the phase interface. The formation of nuclei requires overcoming
a certain energy (nucleation) barrier that is a consequence of balancing the volume and the interfacial
free energy. Knowing the nucleation barrier (W) is crucial for understanding this process, as nuclei
predetermine the physical properties of a newly formed phase. W is typically expressed as a function
of the nucleus radius; however, in nucleation kinetics, one needs to determine (W) as a function of
the number of molecules forming the nucleus. We analyze nucleation work on various substrates
(flat, convex, and concave) for crystallization from an aluminum melt to show that the formation
of nuclei is the most probable on concave substrates. An analytical expression for W can be easily
applied to other systems under consideration. We show that under the same conditions, the critical
radius of nuclei is identical for various substrate, in contrast with the critical number of molecules
forming a nucleus.

Keywords: nucleation; growth from melt; metals

1. Introduction

Clusters of a new phase are formed due to fluctuations within an undercooled or
supersaturated parent phase. Under the appropriate conditions, these clusters overcome
an energy barrier (nucleation work, W) to reach the critical size (i∗) and become nuclei of a
new phase. Interfacial energy (WS

i ) increases, and the volumetric energy (WV
i ) decreases

with the number of monomers (atoms or molecules, i) forming the cluster. At the critical
size (i∗), the nucleation barrier (W∗ = Wi∗ ) is reached. Subcritical clusters (i < i∗) have a
tendency to diminish, and overcritical clusters (i > i∗) tend to grow.

The classical nucleation theory (CNT) [1–3] succeeded in determining the number
of nuclei formed in unit volume per unit time, i.e., the nucleation rate in the station-
ary state under the assumption of constant supersaturation for vapor–liquid transitions.
Gonçalves et al. [4] calculated crystal nucleation rates in supercooled liquid nickel using
molecular dynamics (MD) simulations and showed excellent agreement between CNT and
MD, which justified the use of the CNT. Turnbull and Fisher [5] suggested the transient
probabilities (attachment and detachment frequencies) of monomers on a cluster surface
for the liquid–solid transition. The nucleation rate and the number of nuclei (critical size
clusters) are exponentially proportional to the nucleation barrier. Determination of the
work of formation of clusters thus plays a very important role. In many cases, W is deter-
mined as a function of cluster radius (r). However, in the kinetic model [6], the attachment
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frequency is proportional to ∆gi = Wi+1 −Wi, and we need to determine Wi instead of
W(r) dependence, which is quite easy for homogeneous nucleation or heterogeneous nu-
cleation on a flat surface. On other surfaces (convex and concave substrates), the situation
is more complicated.

At a constant temperature (T) and pressure (P), the work of formation of an i-sized
cluster (Wi) is determined based on the difference of n the Gibbs free energy between final,

G f in = (M− i) µliquid + iµcrystal + Φ(i, ∆µ), (1)

and initial,
Gini = Mµliquid (2)

states, which yields
Wi = −i∆µ + Φ(i, ∆µ), (3)

where ∆µ = µliquid − µsolid denotes the difference between chemical potentials of liquid
and solid phases, M stands for the number of molecules in the system, and the excess free
energy (Φ [7]) depends on the system under consideration (homogeneous or heterogeneous
nucleation on a foreign surface).

In a supersaturated solution, ∆µ decreases as a consequence of the formation of
crystals; thus, nucleation work and nucleation kinetics change over time [8].

Nuclei are formed in the volume of a parent phase (homogeneous nucleation) or on
foreign particles, impurities, point defects, etc. (heterogeneous nucleation) [1]. Nucleation
on active centers is a special case [9,10] that occurs when a so-called nucleation agent [11]
is added to the melt to increase nucleation rate.

Homogeneous nucleation starts on any monomer surface within the volume of the
parent phase. Chen et al. [12] studied the influence of the cooling rate on the solidification
process of pure metal Al via molecular dynamics (MD). It was shown that a supercooled
Al melt tends to grow to a spherical shape. The number of nuclei formed in unit time
(i.e., nucleation rate) and the critical size decrease with an increase in the cooling rate.
Chen et al. [13] also applied MD simulations using the embedded-atom method (EAM) to
show the influence of pressure on the isothermal solidification process of pure Al. The
solidification process was characterized by the mean fist-passage time (MFPT) method, X-
ray diffraction analysis, and the Johnson–Mehl–Avrami law. The increase in the nucleation
rate starts earlier with increasing pressure during isothermal solidification.

Heterogeneous nucleation starts on nucleation sites (foreign substrates or particles,
defects, etc.), where the probability of nucleus formation is high. Wypych [14] summarized
the nucleation agents in polymer materials, which are used to increase the crystallization
rate and modify the structure and morphology. The addition of a nucleation agent con-
tributes to faster crystallization and better organization of the internal structure. Polylactic
acid (PLA), one of the most productive biodegradable materials, is difficult to crystallize.
Shi et al. [15] summarized the biomass nucleation agents to regulate PLA crystallization be-
havior. Concerning inorganic systems, Li et al. [16] investigated the influence of aluminum
on the morphologies and crystallization kinetics of hemihydrate calcium sulfate, using
focused-beam reflectance measurement to show that Al3+ ions retard nucleation by increas-
ing surface energy. He et al. [17] showed the effect of different kinds of nucleation agents
on the crystallization and microstructure of magnesium aluminosilicate glass ceramics.
Nasir et al. [18] observed the aluminum-induced crystallization of amorphous germanium
thin films under heat treatment. Structural modifications triggered nucleation for con-
trolled grain growth, which transformed Ge thin film from amorphous to polycrystalline.
Understanding the role of foreign nucleation sites is crucial for the entire crystallization
process and defines the final properties of crystallites.

O’Masta et al. [19] studied the liquid-phase epitaxy of aluminum on substrates of
varying lattice spacing using molecular dynamics simulations to show the formation and
growth of small islands. A thermodynamic analysis revealed island creation as a stochastic
process. Large-scale molecular dynamics simulation of the solidification of pure aluminum
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has had a positive impact on the development of solidification and nucleation theory [20].
Crystal nucleation and growth in aluminum and structural development in the aluminum
melt after the addition of a nanoparticle modifier was studied using the electron-beam
surface treatment method [21].

It is important to know the structure of heterogeneous substrates and the interfacial
energies on a phase interface. Our understanding the process of heterogeneous nucleation
and the role of the phase interface was improved through a combination of MD simulations
and advanced high-resolution electron microscopy. Fan and Men [22] showed that atomistic
mechanisms depend on the misfit between the substrate and the newly formed crystal
phase. Structural templating plays a key role in heterogeneous nucleation and crystal
growth. Fan et al. [23] used MD simulations to investigate the heterogeneous nucleation
kinetics of metallic liquid Al on various substrates with a negative misfit. Heterogeneous
nucleation occurs layer by layer when a 2D crystal nucleus is initially formed, after which
solids can successively grow.

Using ab initio molecular dynamics simulations, Wang et al. [24] showed that heteroge-
neous nucleation plays an important role in the atomic arrangement of the substrate surface,
which is influenced by the lattice misfit between the melt and solid, surface roughness,
and the chemical interaction at the phase interface.

Men et al. [25] used classical and ab initio MD simulations to study prenucleation,
i.e., atomic ordering in the liquid near the liquid/substrate interface at temperatures
above nucleation temperature, which is influenced by surface roughness, lattice misfit,
and chemical interactions between the liquid and the substrate. Prenucleation serves as a
precursor for nucleation at the nucleation temperature.

Current experimental methods contribute significantly to the understanding of phase
transition kinetics and contribute to the solution of the problem of how to control parti-
cle distributions in a considered system. Advances in X-ray sources (synchrotron) have
enabled spatiotemporal resolutions sufficient to determine quantitative information re-
lated to crystal growth. Feng et al. [26] used in situ X-ray radiography to investigate the
solidification of Al alloys. Improvements in spatiotemporal resolution provide a better
understanding of the crystallization processes.

In this work, we focus on computation of the work of formation of crystalline clusters
of single-component nucleation in a melt for homogeneous and heterogeneous nucleation
on flat, concave, and convex substrates depending of the nucleus radius (r) and the number
of monomers (i) forming the nucleus. In all computations (for homogeneous and hetero-
geneous nucleation), we selected material parameters of aluminum [6] at temperatures
of T = 800 K and σ = 0.075 Jm−2. We performed computations under different condi-
tions. However, under these conditions, we can easily compare our calculations with
Turnbull [27]’s original results (the first experimental and theoretical study of aluminum
crystallization in liquid droplets) and with our previous work [6].

2. Homogeneous Nucleation

For the sake of simplicity, we used capillarity approximation when Φ is identified
using the cluster surface energy (WS

i = 4πr2σ); thus,

Whom = −i∆µ + 4πr2σ = −4πr3

3v1
∆µ + 4πr2σ, (4)

where v1 = m1/$c is the mean volume per monomer in the crystal phase, m1 is the atomic
mass of the Al atom, and $c denotes the density of the solid crystalline phase. The following
simple relation

Vc$c = im1 (5)

implies

r = 3

√
3m1

4π$c
i1/3 and i =

4πr3$c

3m1
, (6)
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where Vc is the nucleus volume; thus, from Equations (4) and (6), we obtain

Whom(i) = −i∆µ + (36π)1/3
(

m1

$c

)2/3
σi2/3. (7)

Critical size (r∗ and i∗, respectively) follows from the extreme condition:(
dWhom(r)

dr
= 0

)
r=r∗

or

(
dWhom(i)

di
= 0

)
i=i∗

(8)

Thus,

r∗ =
2σv1

∆µ
=

2σm1

$c∆µ
, (9)

and

i∗ =
32π

3

(
m1

$c

)2( σ

∆µ

)3
, (10)

and the nucleation barrier is

W∗ =
16π

3

(
m1

$c

)2 σ3

∆µ2 . (11)

The difference in chemical potentials between crystal and melt is usually approximated by:

∆µ = ∆h f (TE − T)/TE, (12)

yielding

r∗ =
2σv1TE

∆h f (TE − T)
, (13)

where ∆h f is the heat of fusion, TE is the equilibrium melting temperature, and ∆T = TE−T
represents undercooling.

It is well known that smaller crystals are in equilibrium with melt at a lower temper-
atures than large crystals, and the melting point depression (∆Tm = TE − Tm) is approxi-
mated by the Gibbs–Thomson equation [28]:

∆Tm = TE − Tm =
2σv1TE

r∆h f
. (14)

From Equation (13) yields,

∆T = TE − T =
2σv1TE
r∗∆h f

, (15)

which is identical to the Gibbs–Thomson Equation (14). It is not surprising if we consider
that at the critical size, the nucleus is in metastable equilibrium with a melt.

However, generally, σ depends on the cluster size (i) and temperature (T). Surfaces of
the crystal nucleus have various crystallographic orientations. The interfacial energy of the
nucleus is determined by:

Φ = ∑
i

Aiσi ≈ 4πr2σe, (16)

where σi represents the interfacial energies on the Ai surfaces of the crystal nucleus, and σe
is the effective surface energy. In this context, the surface energy (σ) needs to be understood.

The shape of nuclei can be polyhedral, and if we suppose the same shape for various
nucleus sizes, only one characteristic dimension (r) can be selected to determine the nucleus
surface area [29].



Metals 2023, 13, 1815 5 of 20

Moreover, σ depends on the cluster size i, and this dependency is most often unknown.
Tolman [30] suggested an approximation for the size dependence of the surface energy:

σ(r) = σ∞

(
1− 2δ

r

)
, (17)

where σ∞ is the surface energy in the limit of the flat interface, and δ is the Tolman length.
In this case,

W(r) = −4
3

π
r3

v1
∆µ + 4πr2σ∞

(
1− 2δ

r

)
, (18)

and extreme conditions ((d∆W(r)/dr)r=r∗ = 0) yield

r∗1,2 =
σ∞v1 ±

√
σ2v2

1 − 2σ∞δv1∆µ

∆µ
, (19)

i.e., two solutions for the critical size exist. The work of cluster formation (W) changes
in with Tolman length (δ) and reaches a minimum before reaching its maximum at the
critical size, as shown in Figure 1. W reaches its maximum at the nucleation barrier (W∗) for
homogeneous nucleation (solid line in Figure 1, δ = 0) and decreases with δ (the dashed line
in Figure 1 corresponds to δ = 0.5 Å, and the dotted–dashed line corresponds to δ = 1.0 Å).
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Figure 1. The work of cluster formation (W), as a function of cluster radius (r) for Tolman length,
is δ = 0. (solid line), 0.5 (dashed line), and 1.0 Å (doted–dashed line) for aluminum nucleation at
temperatures of T = 800 K and σ = 0.075 Jm−2.

3. Heterogeneous Nucleation

Nucleation often occurs on foreign substrates, point defects, impurities, etc., where the
nucleation barrier is usually lower in comparison with homogeneous nucleation. Crystal
nuclei are thus formed on some foreign surfaces, where the probability of nucleus formation
is usually higher. In this work, we consider a geometric model of the nucleation barrier on
flat, convex, and concave substrates (Figure 2).
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Figure 2. Scheme of the formation of a crystalline nucleus on a flat (a), convex (b), and concave
(c) substrate.

3.1. Flat Substrate

The surface contribution to the work of cluster formation on a flat substrate is ex-
pressed as (Figure 3)

W f ,S = Scσ + Si(σcs − σls), (20)

and using Young’s equation (σ cos ϑ + σcs = σls), we obtain

W f (r) = Whom(r) ψ(ϑ), (21)

where Sc and Si are the surface energies on the crystal–liquid and crystal–substrate interface,
respectively, and

ψ(ϑ) =
1
4
(1− cos ϑ)2(2 + cos ϑ) =

1
4
(2− 3 cos ϑ + cos3 ϑ). (22)

ϑ

liquid

crystal

substrate

σ

σcs σls

Figure 3. Schematic representation of the formation of a crystalline nucleus on a flat surface. σls and
σcs denote the interfacial energies on the liquid–solid and crystal–substrate interface, respectively, σ

is the surface energy on the liquid–crystal interface, and ϑ is the wetting angle.

The relation between r and i follows from Equation (5),

r = 3

√
3m1

4π$cψ(ϑ)
i1/3. (23)

The critical radius is determined by Equation (9); however, the critical number of monomers,

i∗, f = i∗,homψ(ϑ), (24)

differs from the homogeneous case, where i∗,hom is determined by Equation (10).
The work of cluster formation on a flat substrate (W f ) can be expressed as a function

of the number of monomers (i). Equations (21) and (23) yield

W f (i) = −i∆µ + 3
√

36πψ(ϑ)

(
m1

$c

)2/3
σi2/3. (25)

The critical radius (r∗) for homogeneous nucleation (thin dotted line in Figure 4a) coincides
with the critical radius of heterogeneous nucleation on a flat surface (r∗, f ) and does not
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change with the wetting angle (ϑ). The difference in the critical number of monomers is
i∗, with a higher value for homogeneous nucleation (thin dotted line in Figure 4b) than
heterogeneous nucleation on a flat substrate. The work of cluster formation on a flat surface
increases with the wetting angle (ϑ).
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Figure 4. The work of cluster formation (W) as a function of cluster radius (r) (a) and the number
of monomers (i) (b) for homogeneous (solid line) and heterogeneous nucleation on a flat substrate
at ϑ = 120◦ (dashed line), 90◦ (dotted line), and 60◦ (dotted–dashed line). Material parameters
correspond to aluminum nucleation at a temperature of T = 800 K and σ = 0.075 Jm−2.

3.2. Convex Substrate

Nucleation often occurs on curved surfaces of foreign particles serving as nucleation
centers. Xu and Johnson [31] determined the work of cluster formation on a convex
substrate as a function of cluster radius (Figures 2 and 5), with emphasis on the nucle-
ation barrier.

The work of cluster formation on a convex substrate is expressed as

Wx = −$cVc

m1
∆µ + Scσ + Si(σcs − σls) = −

$cVc

m1
∆µ + Scσ− Siσ cos ϑ, (26)

where the substrate radius (R) and wetting angle (ϑ) are fixed; however, ϕ depends on
r (Appendix A),

ϕ = arctan
sin ϑ

R/r− cos ϑ
, (27)

and the nucleus volume

Vc =
4πr3

3
ψ(ϑ + ϕ)− 4πR3

3
ψ(ϕ), (28)
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R

ϑ

ϕ

ϕ

r

Sc

Si

Vc

Figure 5. Schematic representation of crystal nucleation on a convex substrate.

Thus, Equations (27) and (28) yield

Vc =
4
3

πr3[ψ(ϑ + ϕ)− sin3(ϑ + ϕ)

sin3 ϕ
ψ(ϕ)]. (29)

where Sc is the surface area between the nucleus and a parent phase, and Si denotes the
surface area between the substrate and the nucleus. The work of cluster formation on a
convex substrate can be expressed by (for details, see Appendix A):

Wx(r) =
4π$c∆µr3

3m1
[−ψ(ϕ + ϑ) + ψ(ϕ)

sin3(ϕ + ϑ)

sin3 ϕ
] +

2πσr2[1− cos(ϕ + ϑ)− sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ]. (30)

The relation between r and i follows from Equations (5), (27), and (28),

r =
(

3m1i
4π$c[ψ(ϑ + ϕ)− sin3(ϑ + ϕ)ψ(ϕ)/ sin3 ϕ]

)1/3
, (31)

and we obtain

Wx(i) = −i∆µ +
3

√
9π

2
v2/3

1 σi2/3[1− cos(ϕ + ϑ)− sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ]

[ψ(ϑ + ϕ)− sin3(ϕ + ϑ)

sin3 ϕ
ψ(ϕ)]−2/3. (32)

However, in Equations (31) and (32), ϕ depends on r according to Equation (27), and it
is not easy to express r(i) analytically. ϕ increases with cluster size and decreases with
wetting angle (ϑ) for r/R & 0.2 (Figure 6).

At the critical size, the nucleus barrier reaches its maximum, so for the critical radius
on a convex substrate (r∗,x), we obtain Equation (9). The critical radius of the nucleus does
not depend on either the wetting angle (ϑ) or the radius (R) of the particle where nucleation
occurs, and the critical radius of homogeneous nucleation is r∗,hom = r∗,x.
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The nucleation barrier can be expressed by [31]

W∗,x =
16πv2

1σ3

3∆µ2 ψx(R/r∗, ϑ) = W∗,homψx(R/r∗, ϑ), (33)

where

ψx(R/r∗, ϑ) = 2[−ψ(ϕ + ϑ) +
sin3(ϕ + ϑ)

sin3 ϕ
ψ(ϕ)] +

3
2
[1− cos(ϕ + ϑ)− sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ].

=
1
2
[1− cos3(ϕ + ϑ) +

sin3(ϕ + ϑ)

sin3 ϕ
(2− 3 cos ϕ + cos3 ϕ)

−3
sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ]. (34)

where ϕ depends on R/r∗ and, in the limit of a flat interface, we obtain

ψx(R→ ∞, ϑ) = ψ(ϑ) =
1
4
(2− 3 cos ϑ + cos3 ϑ) (35)

in coincidence with Equation (22).
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Figure 6. Angle ϕ as a function of the cluster radius (r) scaled by substrate radius (R) for wetting
angles of ϑ = 60◦ (solid line), 90◦ (dashed line), and 120◦ (dotted–dashed line).

It is clear that under the same conditions, nucleus formation is more probable on a flat
substrate in comparison with a convex substrate (Figure 7). The nucleation barrier on a
convex substrate (W∗,x) is equal to that of homogeneous nucleation (W∗,hom) reduced by a
function of ψx. For the same considered system, (the same wetting angle (ϑ)), ψx decreases
with substrate radius (R); thus, the probability of nucleus formation is higher on a flat
surface in comparison with a convex substrate.
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Figure 7. ψx as a function of the wetting angle (ϑ) for R/r∗ = 1 (dashed line), R/r∗ = 2 (dotted–
dashed line), and R/r∗ → ∞ (solid line).
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3.3. Concave Substrate

Cooper et al. [28] studied crystallization in small confinement volumes and computed
the work of cluster formation on a concave substrate (for details, see Appendix B).

We(r) = −4
3

πr3 $c∆µ

m1
[ψ(ϑ− ϕ) +

sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)]

+2πr2σ[1− cos(ϑ− ϕ)− sin2(ϑ− ϕ)

1 + cos ϕ
cos ϑ], (36)

where
ϕ = arctan

sin ϑ

R/r + cos ϑ
. (37)

If we consider a negative angle (ϕ̃ = ϕ), Equation (36) yields

We(r) = −4
3

πr3 $c∆µ

m1
[ψ(ϑ + ϕ̃) +

sin3(ϑ + ϕ̃)

− sin3 ϕ̃
ψ(ϕ̃)]

+2πr2σ[1− cos(ϑ + ϕ̃)− sin2(ϑ + ϕ̃)

1 + cos ϕ̃
cos ϑ]. (38)

Thus, W can be expressed by the same analytical expression for both convex and con-
cave substrates (compare Equations (30) and (38)) considering R and ϕ as negative in a
concave system.

The nucleus volume on a concave substrate with a radius of R is

Vc(R) =
4
3

πR3

[
sin3 ϕ

sin3(ϑ− ϕ)
ψ(ϑ− ϕ) + ψ(ϕ)

]
, (39)

or, as a function of the nucleus radius (r),

Vc(r) =
4
3

πr3[ψ(ϑ− ϕ) +
sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)], (40)

where ϕ and r are related by Equation (37). Equations (5) and (40) yield

r(i) =
(

3m1i
4π$c)

)1/3
[ψ(ϑ− ϕ) +

sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)]−1/3, (41)

and Equations (36) and (41) yield a rather complex analytical expression for the work of
cluster formation on a concave substrate as a function of cluster size (i):

We(i) = −i∆µ +
3

√
9π

2

(
m1

$c

)2/3
σi2/3[1− cos(ϑ− ϕ)− sin2(ϑ− ϕ)

1 + cos ϕ
cos ϑ]

[ψ(ϑ− ϕ) +
sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)]−2/3. (42)

The nucleation barrier and critical radius are determined by the extreme condition of
the work of cluster formation; thus, we obtain (for details, see Appendix B)

W∗,e =
16πv2

1σ3

3∆µ2 ψe(R, ϑ) = W∗,homψe(R, ϑ), (43)

where

ψe(R, ϑ) =
1
2
[1− cos3(ϑ− ϕ)− sin3(ϑ− ϕ)

sin3 ϕ
(2− 3 cos ϕ + cos3 ϕ)− 3

sin2(ϑ− ϕ)

1 + cos ϕ
cos ϑ]. (44)
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The critical nucleus radius (r∗,e) on a concave substrate is determined by Equation (9), i.e.,
the analytical solution for the critical radius is the same for flat, convex, and concave substrates.

4. Discussion

The number of crystal nuclei formed within a melt as a function of time can be
determined by the solution of kinetic equations [6]. Transient probabilities of attach-
ment/detachment of atoms on/from a crystal surface are proportional to ∆gi = Wi+1 −Wi;
thus, it is important to determine the work of cluster formation (W) as a function of the
number of atoms (i) forming the crystal cluster. We focus on heterogeneous curved sub-
strates, where W was determined as a function of the nucleus radius (r) [28,31]; however,
the Wi dependence is missing.

Generally, the excess free energy of clusters depends on the phase interface, which is
governed by temperature, undercooling, supersaturation, cluster size, etc. It is possible to
take into account a simple approach to the dependence of the surface energy on cluster size
(σ(i)) for homogeneous nucleation [30] to express W(r) or W(i) dependency (Figure 1).
Heterogeneous nucleation on curved substrates is more complicated, which is why we
approach σ as size-independent.

The nucleation barrier (W∗,het) of heterogeneous nucleation on various substrates
decreases with the wetting angle (ϑ) (Figure 3). We compared W(r) and W(i) dependencies
for homogeneous and heterogeneous nucleation on flat, convex, and concave substrates
(Figure 8). Analytical solutions of W(r) for homogeneous and heterogeneous nucleation
are known. However, W(i) dependence was determined by the numerical solution of
Equations (32), (27), and (31) for a convex substrate and Equations (42), (37), and (41) for a
concave substrate.

The heterogeneous nucleation barrier (maximum of Whet(r) = maximum of Whet(i))
is equal to the homogeneous nucleation barrier (W∗,hom) (dotted line in Figure 8) reduced
by a function of ψ that depends on the substrate shape (compare Equation (22) for a
flat substrate with Equation (34) for a convex substrate and Equation (44) for a concave
substrate). Interfacial energies strongly influence the heterogeneous nucleation barrier
(W∗,het), and for wetting angles (ϑ) close to 180, ◦, W∗,het is close to W∗,hom. For ϑ = 180◦,
the work of cluster formation on flat, convex, and concave substrates coincides with the
homogeneous nucleation case (dotted line in Figure 8).

Under the same conditions (see Figure 8 for a wetting angle of ϑ = 90◦ and a substrate
radius of R = 20 ), the lowest heterogeneous nucleation barrier (W∗,het) belongs to the
concave substrate (dotted–dashed line), and the highest barrier belongs to to the convex
substrate (dashed line in Figure 8) under the same conditions. The nucleation barrier on a
flat surface (solid line in Figure 8) lies between W∗,het on concave and convex substrates;
thus, nucleation on a concave substrate is more probable than on a planar interface, unlike
a convex substrate.

The critical nucleation radius (r∗) is determined by Equation (9) for homogeneous and
heterogeneous nucleation on various surfaces. Hu and Chen [32] showed that the same
equation is valid for r∗ on a conic substrate. In all cases (homogeneous or heterogeneous
nucleation), the critical radius of nuclei is the same for all systems, unlike the critical
number of monomers (i∗) (compare Figure 8a,b).

In a very small encapsulated volume (nanosystems), the scarcity of crystallizing ma-
terial reduces the formation of nuclei [28,33]. During nucleus formation, liquid droplets
are depleted; thus, the nucleus can be in equilibrium with the remaining liquid. We can
imagine that in the case of crystallization of a supersaturated solution, supersaturation
decreases with nucleus evolution and, at a certain nucleus size (imin), reaches the equilib-
rium value [34]. Kožíšek et al. [6] showed that the main contribution to the decrease in
monomers in the liquid phase, which depends on the time evolution of the cluster size
distribution, is caused by the formation of subcritical clusters.

The size distribution of nuclei can be determined by the solution of kinetic equations.
In that case, we need to determine the formation energy change for two successive cluster
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sizes, i.e., ∆gi = W(i + 1)−W(i). It is easy to determine W(i) for homogeneous nucleation
and heterogeneous nucleation on a flat substrate. However, an analytical solution for W(i)
on a general surface shape (convex, concave, conic, etc.) is too complicated, and a numerical
solution is needed.
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Figure 8. The work of cluster formation (W) as a function of radius (r) (a) and cluster size (i) (b) for
homogeneous (dotted line) and heterogeneous nucleation on flat (solid line), convex (dashed line),
and concave (dotted–dashed line) substrates with a radius of R = 20 and a wetting angle of ϑ = 90◦.

5. Conclusions

It is a known fact that crystallization occurs via nucleation and subsequent growth of
nuclei. During crystal nucleation, it is necessary to overcome a certain energy barrier. We
summarized the energy of the formation of clusters (W) on various substrates (flat, concave,
and convex). The critical radius of nuclei (r∗) reaches the same value for homogeneous and
heterogeneous nucleation on different substrates, and the analytical solution is quite easy.
However, the critical number of monomers (i∗) differs in various systems under considera-
tion (homogeneous or heterogeneous nucleation on various substrate shapes). A simple
analytical solution of i∗ exists for homogeneous (see Equation (10)) and heterogeneous
nucleation on a flat surface (see Equation (24)). On the other hand, it is too complicated
to find an analytical solution of i∗ for heterogeneous nucleation on convex and concave
substrates. We have summarized the analytical solution for the work of cluster formation
(W) as a function of radius (r). The analytical solution of W as a function of the number of
atoms (i) forming the cluster is too complicated, and a numerical solution is necessary. The
heterogeneous nucleation barrier is lower in comparison with the homogeneous barrier
and increases with wetting angle (ϑ). At the same wetting angle (ϑ) and substrate radius
(R), the most probable is the formation of nuclei on a concave substrate (lowest nucleation
barrier), and the least probable is nucleation on a convex substrate (highest nucleation
barrier). The extreme of nucleation for homogeneous nucleation is reached at the same
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critical radius (r∗), in contrast to the critical size (i∗), which differs for various substrate
shapes (Figure 8).
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Appendix A. Convex Substrate

In this section, we present a derivation of analytical formulas for the energy associated
with the formation of the nucleus on a convex substrate. Some relations are evident from
Figure 5, where ϑ is the wetting angle; r is the nucleus radius; R denotes the substrate
radius; Sc and Si stand for the surface area between nucleus–melt and substrate–nucleus
interface; and Vc is the nucleus volume. The following relations hold: β = π/2− (ϑ + ϕ),
α = π/2− β = ϑ + ϕ,

Sc = 2πr2[1− cos(ϑ + ϕ)], (A1)

Si = 2πR2(1− cos ϕ), (A2)

$ = R sin ϕ = r sin(ϑ + ϕ), (A3)

and thus,

sin ϑ cos ϕ + cos ϑ sin ϕ =
R
r

sin ϕ, (A4)

sin ϑ + cos ϑ tan ϕ =
R
r

tan ϕ, (A5)

cot ϕ =
R/r− cos ϑ

sin ϑ
, (A6)

and thus, we obtain Equation (27).
The volumetric contribution (Wx,V) to the work of cluster formation a on convex

substrate (Wx) follows from Equations (5) and (A3),

Wx,V(r) = −i∆µ = −Vc$c

m1
∆µ

= −4
3

πr3 $c

m1
∆µψ(ϑ + ϕ) +

4
3

πR3 $c

m1
∆µψ(ϕ), (A7)

and thus,

Wx,V =
4π$c∆µr3

3m1
[−ψ(ϕ + ϑ) + ψ(ϕ)

sin3(ϕ + ϑ)

sin3 ϕ
]. (A8)

The surface contribution to Wx is expressed by

Wx,S = σSc + Si(σcs − σls), (A9)

and Young’s equation yields

Wx,S = σSc − σ cos ϑSi. (A10)

Equations (A1)–(A3), and (A10) yield

Wx,S = 2πr2σ[1− cos(ϑ + ϕ)]− 2πR2σ cos ϑ(1− cos ϕ), (A11)
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and

Wx,S = 2πσr2[1− cos(ϕ + ϑ)− sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ]. (A12)

The work of cluster formation on a convex substrate is Wx = Wx,vol + Wx,sur; thus, we
obtain Equation (30). The critical size follows from the extreme condition:

(dWx/dr)r=r∗ = 0, (A13)

and
dWx

dr
=

∂Wx,V

∂r
+

∂Wx,V

∂ϕ

dϕ

dr
+

dWx,S

dr
, (A14)

where
dr
dϕ

= R
cos ϕ sin(ϕ + ϑ)− sin ϕ cos(ϕ + ϑ)

sin2(ϕ + ϑ)
= R

sin ϑ

sin2(ϕ + ϑ)
. (A15)

The volumetric contribution to dWx/dr is

dWx,V

dr
= −πr2$c∆µ

m1
[2− 3 cos(ϕ + ϑ) + cos3(ϕ + ϑ)]

+
dϕ

dr
{−πr3$c∆µ

3m1
[3 sin(ϕ + ϑ)− 3 cos2(ϕ + ϑ) sin(ϕ + ϑ)]

+
πR3$c∆µ

3m1
(3 sin ϕ− 3 cos2 ϕ sin ϕ)}

= −πr2$c∆µ

m1
[2− 3 cos(ϕ + ϑ) + cos3(ϕ + ϑ)]

+
π$c∆µ

m1

dϕ

dr
[−r3 sin3(ϕ + ϑ) + R3 sin3 ϕ]

= − 4πr2$c∆µ

m1
ψ(ϕ + ϑ) +

π$c∆µ

m1

sin2(ϕ + ϑ)

R sin ϑ
[−r3sin3(ϕ + ϑ) + R3sin3 ϕ], (A16)

and using Equation (A3), we obtain

dWx,V

dr
= − 4πr2$c∆µ

m1
ψ(ϕ + ϑ)

+
π$c∆µ

m1

sin2(ϕ + ϑ) sin ϕ

r sin(ϕ + ϑ)
[−r3 sin3(ϕ + ϑ) +

r3 sin3(ϕ + ϑ) sin3 ϕ

sin3 ϕ
]

= − 4πr2$c∆µ

m1
ψ(ϕ + ϑ) +

π∆µr2$c

m1
[− sin4(ϕ + ϑ) sin ϕ + sin4(ϕ + ϑ) sin ϕ],

and thus,
dWx,V

dr
= −4πr2$c∆µ

m1
ψ(ϑ + ϕ). (A17)

Remember that ϕ depends on r (Equation (A3)).
Equations (A3), (A12), and (A15) yield
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dWx,S

dr
= 2πσR2 dϕ

dr
d

dϕ
{ sin2 ϕ

1 + cos(ϕ + ϑ)
− cos ϑ(1− cos ϕ)}

= 2πσR
sin2(ϕ + ϑ)

sin ϑ
{ 2 sin ϕ cos ϕ

1 + cos(ϕ + ϑ)
+

sin2 ϕ sin(ϕ + ϑ)

[1 + cos(ϕ + ϑ)]2
− cos ϑ sin ϕ}

= 2πσr
sin(ϕ + ϑ)

sin ϕ

1− cos2(ϕ + ϑ)

sin ϑ
sin ϕ{ 2 cos ϕ

1 + cos(ϕ + ϑ)
+

sin ϕ sin(ϕ + ϑ)

[1 + cos(ϕ + ϑ)]2
− cos ϑ}

= 2πσr
1− cos(ϕ + ϑ)

sin ϑ
{2 cos ϕ sin(ϕ + ϑ) +

sin ϕ sin2(ϕ + ϑ)

1 + cos(ϕ + ϑ)

− cos ϑ sin(ϕ + ϑ)[1 + cos(ϕ + ϑ)].} (A18)

The first term in the braces of Equation (A18) can be expressed by:

cos ϕ sin(ϕ + ϑ) = cos ϕ(sin ϕ cos ϑ + sin ϑ cos ϕ)

= cos ϕ sin ϕ cos ϑ + sin ϑ(1− sin2 ϕ)

= sin ϕ cos ϕ cos ϑ + sin ϑ− sin2 ϕ sin ϑ

= sin ϑ + sin ϕ cos(ϕ + ϑ), (A19)

and Equations (A18) and (A19) yield

dWx,S

dr
= 2πσr

1− cos(ϕ + ϑ)

sin ϑ
{2[sin ϑ + sin ϕ cos(ϕ + ϑ)] + sin ϕ[1− cos(ϕ + ϑ)]

− cos ϑ sin(ϕ + ϑ)[1 + cos(ϕ + ϑ)]}

= 2πσr
1− cos(ϕ + ϑ)

sin ϑ
{2 sin ϑ + sin ϕ[1 + cos(ϕ + ϑ)]− cos ϑ sin(ϕ + ϑ)[1 + cos(ϕ + ϑ)]}

= 2πσr
1− cos(ϕ + ϑ)

sin ϑ
{2 sin ϑ + [sin ϕ− cos ϑ sin(ϕ + ϑ)][1 + cos(ϕ + ϑ)]}. (A20)

The relation in the first brackets in Equation (A20) can be simplified as:

[sin ϕ− cos ϑ sin(ϕ + ϑ)] = sin ϕ− cos ϑ sin ϕ cos ϑ− cos ϑ sin ϑ cos ϕ

= sin ϕ(1− cos2 ϑ)− cos ϑ sin ϑ cos ϕ

= − sin ϑ(cos ϕ cos ϑ− sin ϕ sin ϑ)

= − sin ϑ cos(ϕ + ϑ), (A21)

and Equations (A20) and (A21) yield the nucleation barrier:

dWx,S

dr
= 2πσr

1− cos(ϕ + ϑ)

sin ϑ
{2 sin ϑ− sin ϑ cos(ϕ + ϑ)[1 + cos(ϕ + ϑ)]}

= 2πσr[1− cos(ϕ + ϑ)][2− cos(ϕ + ϑ)− cos2(ϕ + ϑ)]

= 2πσr[2− cos(ϕ + ϑ)− cos2(ϕ + ϑ)− 2 cos(ϕ + ϑ) + cos2(ϕ + ϑ) + cos3(ϕ + ϑ)]

= 2πσr[2− 3 cos(ϕ + ϑ) + cos3(ϕ + ϑ)] = 8πσrψ(ϕ + ϑ), (A22)

and from Equations (9) and (30) yield

W∗,x =
32πv2

1σ3

3∆µ2 [−ψ(ϕ + ϑ) +
sin3(ϕ + ϑ)

sin3 ϕ
ψ(ϕ)]

+
8πv2

1σ3

∆µ2 [1− cos(ϕ + ϑ)− sin2(ϕ + ϑ)

1 + cos ϕ
cos ϑ],

which can be simplified to Equation (33).
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Appendix B. Concave Substrate

Figure A1 shows a schematic representation of the formation of a nucleus on a con-
cave substrate.

ϑ

ϕ

ϕ

R

r

Vc

Sc

Se

σ

σcs

σls

liquid substrate

crystal

Figure A1. Schematic representation of crystal nucleation on a spherical concave substrate.

It is clear that the following relations hold: β = π/2− ϕ, γ = π/2− ϑ, α = ϑ− ϕ, and

R sin ϕ = r sin(ϑ− ϕ). (A23)

The work of cluster formation on a concave substrate is

We = −Vc$c

m1
∆µ + Scσ + Se(σcs − σls) = −

Vc$c

m1
∆µ + Scσ− Seσ cos ϑ

= −4πr3∆µ$c

3m1
ψ(ϑ− ϕ)− 4πR3∆µ$c

3m1
ψ(ϕ)

+2πr2[1− cos(ϑ− ϕ)]σ− 2πR2(1− cos ϕ)σ cos ϑ, (A24)
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and using Equation (A23), we obtain

We(r) = −4
3

πr3 ∆µ$c

m1
ψ(ϑ− ϕ)− 4

3
πr3 ∆µ$c

m1

sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)

+2πr2σ[1− cos(ϑ− ϕ)]− 2πr2σ
sin2(ϑ− ϕ)

sin2 ϕ
(1− cos ϕ) cos ϑ, (A25)

and thus, Equation (36) holds.
The nucleation barrier and the critical radius follow from the extreme condition,

dWe

dr
=

∂We

∂r
+

∂We

∂ϕ

dϕ

dr
, (A26)

where
dr
dϕ

= R
cos ϕ sin(ϑ− ϕ) + sin ϕ cos(ϑ− ϕ)

sin2(ϑ− ϕ)
= R

sin ϑ

sin2(ϑ− ϕ)
(A27)

The derivative of the volume contribution to We is expressed by

dWe,V

dr
= −πr2 ∆µ

v1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]

+
dϕ

dr
{−πr3 ∆µ

3v1
[−3 sin(ϑ− ϕ) + 3 cos2(ϑ− ϕ) sin(ϑ− ϕ)]

−πR3 ∆µ

3v1
(3 sin ϕ− 3 cos2 ϕ sin ϕ)}

= −πr2 ∆µ

v1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]

+
dϕ

dr
π

∆µ

v1
{−r3[− sin(ϑ− ϕ) + cos2(ϑ− ϕ) sin(ϑ− ϕ)]

−r3 sin3(ϑ− ϕ)

sin3 ϕ
(sin ϕ− cos2 ϕ sin ϕ)}

= −πr2 ∆µ

v1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]

+
dϕ

dr
πr3 ∆µ

v1
{sin(ϑ− ϕ)[1− cos2(ϑ− ϕ)] +

sin3(ϑ− ϕ)

sin2 ϕ
(−1 + cos2 ϕ)}

dϕ

dr
=

1
R

sin2(ϑ− ϕ)

sin ϑ
=

sin ϕ

r sin(ϑ− ϕ)

sin2(ϑ− ϕ)

sin ϑ
=

1
r

sin ϕ sin(ϑ− ϕ)

sin ϑ
. (A28)

dWe,V

dr
= −πr2 ∆µ

v1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]

+πr2 ∆µ

v1

sin ϕ sin(ϑ− ϕ)

sin ϑ
[sin3(ϑ− ϕ)− sin3(ϑ− ϕ)],

and thus,
dWe,V

dr
= −πr2 ∆µ

v1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]. (A29)

The surface contribution to We is

We,S = 2πr2σ[1− cos(ϑ− ϕ]− 2πσR2σ cos ϑ(1− cos ϕ), (A30)

and using Equation (A23), we obtain

We,S = 2πR2σ

{
sin2 ϕ

sin2(ϑ− ϕ)
[1− cos(ϑ− ϕ)]− cos ϑ(1− cos ϕ)

}
, (A31)
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and according to Equation (A26),

dWe,S

dr
= 2πR2σ

dϕ

dr
∂

∂ϕ
{ sin2 ϕ

1 + cos(ϑ− ϕ)
− cos ϑ(1− cos ϕ)}

= 2πR2σ
dϕ

dr
{2 sin ϕ cos ϕ[1 + cos(ϑ− ϕ)]− sin2 ϕ sin(ϑ− ϕ)

[1 + cos(ϑ− ϕ)]2
− cos ϑ sin ϕ}

= 2πRσ
sin2(ϑ− ϕ)

sin ϑ
{ 2 sin ϕ cos ϕ

1 + cos(ϑ− ϕ)
− sin2 ϕ sin(ϑ− ϕ)

[1 + cos(ϑ− ϕ)]2
− cos ϑ sin ϕ}

= 2πrσ
sin(ϑ− ϕ)

sin ϕ

1− cos2(ϑ− ϕ)

sin ϑ
{ 2 sin ϕ cos ϕ

1 + cos(ϑ− ϕ)
− sin2 ϕ sin(ϑ− ϕ)

[1 + cos(ϑ− ϕ)]2
− cos ϑ sin ϕ}

= 2πrσ
1− cos(ϑ− ϕ)

sin ϑ
{2 cos ϕ sin(ϑ− ϕ)− sin ϕ sin2(ϑ− ϕ)

1 + cos(ϑ− ϕ)

− cos ϑ sin(ϑ− ϕ)[1 + cos(ϑ− ϕ)].}

After simplification,

cos ϕ sin(ϑ− ϕ) = cos ϕ(sin ϑ cos ϕ− cos ϑ sin ϕ)

= sin ϑ cos2 ϕ− cos ϕ cos ϑ cos ϕ

= sin ϑ− sin ϑ sin2 ϕ− cos ϕ cos ϑ sin ϕ

= sin ϑ− sin ϕ(sin ϑ sin ϕ + cos ϑ cos ϕ)

= sin ϑ− sin ϕ cos(ϑ− ϕ),

and we obtain

dWe,S

dr
= 2πrσ

1− cos(ϑ− ϕ)

sin ϑ
{2 sin ϑ− 2 sin ϕ cos(ϑ− ϕ)− sin ϕ[1− cos(ϑ− ϕ)]

− cos ϑ sin(ϑ− ϕ)[1 + cos(ϑ− ϕ)]}

= 2πrσ
1− cos(ϑ− ϕ)

sin ϑ
{2 sin ϑ− sin ϕ[1 + cos(ϑ− ϕ)]− cos ϑ sin(ϑ− ϕ)[1 + cos(ϑ− ϕ)]}

= 2πrσ
1− cos(ϑ− ϕ)

sin ϑ
{2 sin ϑ− [sin ϕ + cos ϑ sin(ϑ− ϕ)][1 + cos(ϑ− ϕ)]}

Taking into account that

sin ϕ + cos ϑ sin(ϑ− ϕ) = sin ϕ + cos ϑ sin ϑ cos ϕ− cos2 ϑ sin ϕ

= sin ϕ(1− cos2 ϑ) + cos ϑ sin ϑ cos ϕ

= sin ϑ(sin ϕ sin ϑ + cos ϑ cos ϕ)

= sin cos(ϑ− ϕ),

we obtain

dWe,S

dr
= 2πrσ

1− cos(ϑ− ϕ)

sin ϑ
{2 sin ϑ− sin ϑ cos(ϑ− ϕ)[1 + cos(ϑ− ϕ)]}

= 2πrσ{2− 2 cos(ϑ− ϕ)− cos(ϑ− ϕ)[1− cos2(ϑ− ϕ)]}
= 2πrσ[2− 2 cos(ϑ− ϕ)− cos(ϑ− ϕ) + cos3(ϑ− ϕ)],

and thus,

dWe,S

dr
= 2πrσ[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)] = 8πrσψ(ϑ− ϕ). (A32)
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The derivative of We can be expressed by

dWe

dr
= −πr2 ∆µ$c

m1
[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)]

+2πrσ[2− 3 cos(ϑ− ϕ) + cos3(ϑ− ϕ)] (A33)

For the critical radius, Equations (A13) and (A33), yield Equation (9), i.e., r∗ is deter-
mined by the same equation for concave and convex substrates. The relation between the
cluster radius (r) and the number of monomers forming the cluster (i) is determined by
Equations (5), (37), and (40).

Equations (9) and (36) yield

W∗,e = −4
3

π
8σ3m2

1
∆µ2$2

c
[ψ(ϑ− ϕ) +

sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)]

+2π
4σ2v2

1
∆µ2 σ[1− cos(ϑ− ϕ)− sin2(ϑ− ϕ)

1 + cos ϕ
cos ϑ]

= −
32πm2

1σ3

3∆µ2$2
c
[ψ(ϑ− ϕ) +

sin3(ϑ− ϕ)

sin3 ϕ
ψ(ϕ)]

+
8πv2

1σ3

∆µ2 [1− cos(ϑ− ϕ)− sin2(ϑ− ϕ)

1 + cos ϕ
cos ϑ],

and thus, Equation (43) is derived.
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