Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = sulfobutylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4044 KiB  
Article
Preparation and Characterization of Ternary Complexes to Improve the Solubility and Dissolution Performance of a Proteolysis-Targeting Chimera Drug
by Heng Zhang, Hengqian Wu, Lili Wang, Laura Machín Galarza, Chuanyu Wu, Mingzhong Li, Zhengping Wang, Erpeng Zhou and Jun Han
Pharmaceutics 2025, 17(5), 671; https://doi.org/10.3390/pharmaceutics17050671 - 20 May 2025
Viewed by 668
Abstract
Background/Objectives: Proteolysis-targeting chimeras (PROTACs) have shown significant potential in the treatment of intractable diseases. However, their clinical applications are limited by poor water solubility and permeability. In this study, the cyclodextrin inclusion method was employed for the first time to prepare the PROTAC-CD [...] Read more.
Background/Objectives: Proteolysis-targeting chimeras (PROTACs) have shown significant potential in the treatment of intractable diseases. However, their clinical applications are limited by poor water solubility and permeability. In this study, the cyclodextrin inclusion method was employed for the first time to prepare the PROTAC-CD complex with the aim of improving the dissolution of a PROTAC drug (LC001). Methods: Initially, sulfobutyl ether-β-cyclodextrin (SBE-β-CD) was selected to improve the solubility of LC001. The polymer TPGS was screened based on the phase solubility method to enhance the efficiency of complexation and solubilization capacity, and its ratio with SBE-β-CD was optimized. The ternary complex was prepared by lyophilization with an SBE-β-CD/TPGS molar ratio of 1:0.03. Differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy results confirmed the formation of an amorphous complex. Fourier-transform infrared and molecular docking simulations indicated the formation of hydrogen bond interactions between components. Results: The results showed that the ternary complexes significantly improved the dissolution rate and release amount of LC001 in PBS (pH 6.8) and were unaffected by changes in gastric pH compared to the binary complexes and physical mixtures. The lack of crystal structure in the lyophilized particles and the formation of nano aggregates in solution may be the reasons for the improved dissolution of the ternary complex. Conclusions: In conclusion, the addition of TPGS to the LC001-SBE-β-CD binary system has a synergistic effect on improving the solubility and dissolution of LC001. This ternary complex is a promising formulation for enhancing the dissolution of LC001. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

15 pages, 5150 KiB  
Article
Oxidative Thermolysis of Sulfobutyl-Ether-Beta-Cyclodextrin Sodium Salt: A Kinetic Study
by Ionuț Ledeți, Claudia Temereancă, Amalia Ridichie, Adriana Ledeți, Denisa Laura Ivan, Gabriela Vlase, Titus Vlase, Carmen Tomoroga, Laura Sbârcea and Oana Suciu
Appl. Sci. 2025, 15(1), 441; https://doi.org/10.3390/app15010441 - 6 Jan 2025
Viewed by 1670
Abstract
Sulfobutyl-ether-beta-cyclodextrin sodium salt (SBECD) is a modified cyclodextrin widely used in the pharmaceutical industry to enhance the solubility and stability of poorly water-soluble drugs. As a derivative of beta-cyclodextrin, it is produced by introducing sulfobutyl ether groups into the beta-cyclodextrin molecule, which significantly [...] Read more.
Sulfobutyl-ether-beta-cyclodextrin sodium salt (SBECD) is a modified cyclodextrin widely used in the pharmaceutical industry to enhance the solubility and stability of poorly water-soluble drugs. As a derivative of beta-cyclodextrin, it is produced by introducing sulfobutyl ether groups into the beta-cyclodextrin molecule, which significantly increases its water solubility and decreases its toxicity compared to unmodified cyclodextrins. This study investigates the spectral and PXR diffraction characterization of SBECD, its thermal stability profile, and decomposition mechanism using isoconversional methods. Since the simple ASTM E698 method does not provide realistic data, the Flynn–Wall–Ozawa, Friedman, and NPK methods were employed, leading to the kinetic triplet that characterizes the oxidative thermolysis of this compound. Full article
Show Figures

Figure 1

17 pages, 13401 KiB  
Article
Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition
by Marta Hoelm, Nilkanta Chowdhury, Sima Biswas, Angshuman Bagchi and Magdalena Małecka
Molecules 2024, 29(16), 3824; https://doi.org/10.3390/molecules29163824 - 12 Aug 2024
Cited by 4 | Viewed by 1372
Abstract
Cilostazol is a phosphodiesterase III inhibitor characterized by poor solubility. This limitation can be overcome by using a drug carrier capable of delivering the drug to the target site. Cyclodextrins are essential as drug carriers because of their outstanding complexation abilities and their [...] Read more.
Cilostazol is a phosphodiesterase III inhibitor characterized by poor solubility. This limitation can be overcome by using a drug carrier capable of delivering the drug to the target site. Cyclodextrins are essential as drug carriers because of their outstanding complexation abilities and their capacity to improve drug bioavailability. This study comprises two stages: The first involves verifying different cyclodextrins and their complexation abilities towards cilostazol. This was accomplished using molecular docking simulations (MDS) and density functional theory (DFT). Both techniques indicate that the largest Sulfobutyl Ether-β-Cyclodextrin forms the most stable complex with cilostazol. Additionally, other important parameters of the complex are described, including binding sites, dominant interactions, and thermodynamic parameters such as complexation enthalpy, Gibbs free energy, and Gibbs free energy of solvation. The second stage involves a binding study between cilostazol and Phosphodiesterse3 (PDE3). This study was conducted using molecular docking simulations, and the most important energetic parameters are detailed. This is the first such report, and we believe that the results of our predictions will pave the way for future drug development efforts using cyclodextrin–cilostazol complexes as potential therapeutics. Full article
Show Figures

Graphical abstract

15 pages, 4521 KiB  
Article
Environmentally Friendly UV Absorbers: Synthetic Characterization and Biosecurity Studies of the Host–Guest Supramolecular Complex
by Luwei Tian, Yanan Wu, Yetong Hou, Yaru Dong, Kaijie Ni and Ming Guo
Int. J. Mol. Sci. 2024, 25(15), 8476; https://doi.org/10.3390/ijms25158476 - 3 Aug 2024
Viewed by 1185
Abstract
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host–guest supramolecule [...] Read more.
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host–guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the “saturated solution method”, and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field. Full article
Show Figures

Graphical abstract

20 pages, 4248 KiB  
Article
Chrysin Directing an Enhanced Solubility through the Formation of a Supramolecular Cyclodextrin–Calixarene Drug Delivery System: A Potential Strategy in Antifibrotic Diabetes Therapeutics
by Anca Hermenean, Eleftheria Dossi, Alex Hamilton, Maria Consiglia Trotta, Marina Russo, Caterina Claudia Lepre, Csilla Sajtos, Ágnes Rusznyák, Judit Váradi, Ildikó Bácskay, István Budai, Michele D’Amico and Ferenc Fenyvesi
Pharmaceuticals 2024, 17(1), 107; https://doi.org/10.3390/ph17010107 - 12 Jan 2024
Cited by 2 | Viewed by 2167
Abstract
Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of [...] Read more.
Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system. Nuclear magnetic resonance, differential scanning calorimetry, and computational studies elucidated the interactions at the molecular level, and cellular assays confirmed the system’s biocompatibility. Combining SBECD with OTX008 enhances CHR solubility more than using SBECD alone by forming water-soluble molecular associates in a ternary complex. This aids in the solubilization and delivery of CHR and OTX008. Structural investigations revealed non-covalent interactions essential to complex formation, which showed no cytotoxicity in hyperglycemic in vitro conditions. A new ternary complex has been formulated to deliver promising antifibrotic agents for diabetic complications, featuring OTX008 as a key structural and pharmacological component. Full article
Show Figures

Figure 1

22 pages, 2990 KiB  
Article
Investigation of the Affinity of Ceftobiprole for Selected Cyclodextrins Using Molecular Dynamics Simulations and HPLC
by Dariusz Boczar and Katarzyna Michalska
Int. J. Mol. Sci. 2023, 24(23), 16644; https://doi.org/10.3390/ijms242316644 - 23 Nov 2023
Cited by 2 | Viewed by 1888
Abstract
This paper presents the theoretical calculations of the inclusion complex formation between native ceftobiprole, a promising antibiotic from the cephalosporin group, and selected cyclodextrins (CDs) approved by the European Medicines Agency. Ceftobiprole was studied in three protonation states predicted from pKa calculations, [...] Read more.
This paper presents the theoretical calculations of the inclusion complex formation between native ceftobiprole, a promising antibiotic from the cephalosporin group, and selected cyclodextrins (CDs) approved by the European Medicines Agency. Ceftobiprole was studied in three protonation states predicted from pKa calculations, along with three selected CDs in a stoichiometric ratio of 1:1. It was introduced into the CD cavity in two opposite directions, resulting in 18 possible combinations. Docking studies determined the initial structures of the complexes, which then served as starting structures for molecular dynamics simulations. The analysis of the obtained trajectories included the spatial arrangement of ceftobiprole and CD, the hydrogen bonds forming between them, and the Gibbs free energy (ΔG) of the complex formation, which was calculated using the Generalised Born Surface Area (GBSA) equation. Among them, a complex of sulfobutyl ether- (SBE-) β-CD with protonated ceftobiprole turned out to be the most stable (ΔG = −12.62 kcal/mol = −52.80 kJ/mol). Then, experimental studies showed changes in the physiochemical properties of the ceftobiprole in the presence of the CDs, thus confirming the validity of the theoretical results. High-performance liquid chromatography analysis showed that the addition of 10 mM SBE-β-CD to a 1 mg/mL solution of ceftobiprole in 0.1 M of HCl increased the solubility 1.5-fold and decreased the degradation rate constant 2.5-fold. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling)
Show Figures

Graphical abstract

12 pages, 1861 KiB  
Article
Decreased Penetration Mechanism of Ranitidine Due to Application of Sodium Sulfobutyl Ether-β-Cyclodextrin
by Rui Yang, Jing Zhang, Jiaqi Huang, Xiaofeng Wang, Huiying Yang and Qingri Jin
Pharmaceutics 2023, 15(11), 2593; https://doi.org/10.3390/pharmaceutics15112593 - 6 Nov 2023
Cited by 2 | Viewed by 1862
Abstract
Permeability has an important effect on drug absorption. In this study, the effect of different concentrations of sodium sulfobutyl ether-β-cyclodextrin (SBE-β-CD) on the absorption of ranitidine was investigated to examine the mechanism of permeability changes. The results of a parallel artificial membrane permeability [...] Read more.
Permeability has an important effect on drug absorption. In this study, the effect of different concentrations of sodium sulfobutyl ether-β-cyclodextrin (SBE-β-CD) on the absorption of ranitidine was investigated to examine the mechanism of permeability changes. The results of a parallel artificial membrane permeability assay (PAMPA) showed that increasing the concentration of sodium sulfobutyl ether-β-cyclodextrin, 0, 0.12% (w/v), 0.36% (w/v) and 3.6% (w/v), respectively, caused the apparent permeability coefficient of ranitidine to decrease to 4.62 × 10−5, 4.5 × 10−5, 3.61 × 10−5 and 1.08 × 10−5 in Caco-2 cells, respectively. The same results were obtained from an oral pharmacokinetic study in rats. Further studies indicated that SBE-β-CD significantly increased the zeta potential of ranitidine. SBE-β-CD interacted with ranitidine charges to form a complex that reduced ranitidine permeability, and SBE-β-CD should be chosen with caution for drugs with poor permeability. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

18 pages, 5024 KiB  
Article
Enhanced Anti-Herpetic Activity of Valacyclovir Loaded in Sulfobutyl-ether-β-cyclodextrin-decorated Chitosan Nanodroplets
by Monica Argenziano, Irene Arduino, Massimo Rittà, Chiara Molinar, Elisa Feyles, David Lembo, Roberta Cavalli and Manuela Donalisio
Microorganisms 2023, 11(10), 2460; https://doi.org/10.3390/microorganisms11102460 - 30 Sep 2023
Cited by 3 | Viewed by 2221
Abstract
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach [...] Read more.
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEβCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments. Full article
Show Figures

Figure 1

16 pages, 9652 KiB  
Article
Complexation between the Antioxidant Pterostilbene and Derivatized Cyclodextrins in the Solid State and in Aqueous Solution
by Laura Catenacci, Alexios I. Vicatos, Milena Sorrenti, Cesarina Edmonds-Smith, Maria Cristina Bonferoni and Mino R. Caira
Pharmaceuticals 2023, 16(2), 247; https://doi.org/10.3390/ph16020247 - 7 Feb 2023
Cited by 4 | Viewed by 2388
Abstract
Inadequate aqueous solubilities of bioactive compounds hinder their ability to be developed for medicinal applications. The potent antioxidant pterostilbene (PTB) is a case in point. The aim of this study was to use a series of modified water-soluble cyclodextrins (CDs), namely, hydroxypropyl β-CD [...] Read more.
Inadequate aqueous solubilities of bioactive compounds hinder their ability to be developed for medicinal applications. The potent antioxidant pterostilbene (PTB) is a case in point. The aim of this study was to use a series of modified water-soluble cyclodextrins (CDs), namely, hydroxypropyl β-CD (HPβCD), dimethylated β-CD (DIMEB), randomly methylated β-CD (RAMEB), and sulfobutyl ether β-CD sodium salt (SBECD) to prepare inclusion complexes of PTB via various solid, semi-solid, and solution-based treatments. Putative CD–PTB products generated by solid-state co-grinding, kneading, irradiation with microwaves, and the evaporative treatment of CD–PTB solutions were considered to have potential for future applications. Primary analytical methods for examining CD–PTB products included differential scanning calorimetry and Fourier transform infrared spectroscopy to detect the occurrence of binary complex formation. Phase solubility analysis was used to probe CD–PTB complexation in an aqueous solution. Complexation was evident in both the solid-state and in solution. Complex association constants (K1:1) in an aqueous solution spanned the approximate range of 15,000 to 55,000 M−1; the values increased with the CDs in the order HPβCD < DIMEB < RAMEB < SBECD. Significant PTB solubility enhancement factors were recorded at 100 mM CD concentrations, the most accurately determined values being in the range 700-fold to 1250-fold. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

13 pages, 2947 KiB  
Article
Design and Simulation of a Ratiometric SPR Sensor Based on a 2D van der Waals Heterojunction for Refractive Index Measurement
by Jun Zhou, Xiantong Yu, Lianzhen Zhang, Xuejing Liu, Youjun Zeng and Xuedian Zhang
Nanomaterials 2023, 13(3), 515; https://doi.org/10.3390/nano13030515 - 27 Jan 2023
Cited by 6 | Viewed by 1814
Abstract
Surface plasmon resonance (SPR) sensors have been widely applied in many fields because of their advantages of working in real time and high sensitivity. However, because the spectrum of an SPR sensor is easily affected by the smoothness of the metal surface, this [...] Read more.
Surface plasmon resonance (SPR) sensors have been widely applied in many fields because of their advantages of working in real time and high sensitivity. However, because the spectrum of an SPR sensor is easily affected by the smoothness of the metal surface, this type of sensor has obvious disadvantages in the application of quantitative detection. We designed an SPR refractive index sensor for molecular detection that has the advantage of quantifiability. A ratio spectral quantitative analysis method was established based on the two coherent dips of the SPR spectrum formed by the strong coupling effect between the surface plasmon polaritons and the excitons of the J-aggregate molecule 5,6-dichloro-2–[3–[5,6-dichloro-1-ethyl-3–(4-sulfobutyl)–2-benzimidazoline subunit] propenyl]–3-ethyl-1–(4-sulfobutyl) benzimidazole hydroxide inner salt (TDBC). The introduced MoS2/graphene van der Waals heterojunction produced an effective charge transfer to the Ag film, resulting in significant electric field enhancement at the sensing interface and further improving the detection sensitivity of the sensor. The simulation results showed that for 43 nm Ag film, for example, the ratiometric SPR sensor with the Ag film structure can obtain 16.12 RIU−1 sensing sensitivity, applied to the detection of gas molecules, while the SPR sensor with single-layer graphene and three layers of MoS2 heterostructures can obtain 50.68 RIU−1 sensing sensitivity. The addition of van der Waals heterostructures can significantly improve sensing performance by 215%. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensors: Fabrication and Applications)
Show Figures

Figure 1

24 pages, 4044 KiB  
Article
Voriconazole Eye Drops: Enhanced Solubility and Stability through Ternary Voriconazole/Sulfobutyl Ether β-Cyclodextrin/Polyvinyl Alcohol Complexes
by Hay Man Saung Hnin Soe, Khanittha Kerdpol, Thanyada Rungrotmongkol, Patamaporn Pruksakorn, Rinrapas Autthateinchai, Sirawit Wet-osot, Thorsteinn Loftsson and Phatsawee Jansook
Int. J. Mol. Sci. 2023, 24(3), 2343; https://doi.org/10.3390/ijms24032343 - 25 Jan 2023
Cited by 21 | Viewed by 5791
Abstract
Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex [...] Read more.
Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex aggregates to improve the aqueous solubility and chemical stability of VCZ. The VCZ solubility was greatly enhanced using sulfobutyl ether β-cyclodextrin (SBEβCD). The addition of polyvinyl alcohol (PVA) showed a synergistic effect on VCZ/SBEβCD solubilization and a stabilization effect on the VCZ/SBEβCD complex. The formation of binary VCZ/SBEβCD and ternary VCZ/SBEβCD/PVA complexes was confirmed by spectroscopic techniques and in silico studies. The 0.5% w/v VCZ eye drop formulations were developed consisting of 6% w/v SBEβCD and different types and concentrations of PVA. The VCZ/SBEβCD systems containing high-molecular-weight PVA prepared under freeze–thaw conditions (PVA-H hydrogel) provided high mucoadhesion, sustained release, good ex vivo permeability through the porcine cornea and no sign of irritation. Additionally, PVA-H hydrogel was effective against the filamentous fungi tested. The stability study revealed that our VCZ eye drops provide a shelf-life of more than 2.5 years at room temperature, while a shelf-life of only 3.5 months was observed for the extemporaneous Vfend® eye drops. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications)
Show Figures

Graphical abstract

13 pages, 4638 KiB  
Article
Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration
by Mirella Mirankó, Judit Tóth, Csilla Bartos, Rita Ambrus and Tivadar Feczkó
Pharmaceutics 2023, 15(2), 317; https://doi.org/10.3390/pharmaceutics15020317 - 18 Jan 2023
Cited by 8 | Viewed by 3132
Abstract
Antihistamines such as levocetirizine dihydrochloride (LC) are commercially used in oral tablets and oral drops to reduce allergic symptoms. In this study, LC was nano-spray-dried using three mucoadhesive polymers and four cyclodextrin species to form composite powders for nasal administration. The product was [...] Read more.
Antihistamines such as levocetirizine dihydrochloride (LC) are commercially used in oral tablets and oral drops to reduce allergic symptoms. In this study, LC was nano-spray-dried using three mucoadhesive polymers and four cyclodextrin species to form composite powders for nasal administration. The product was composed of hydroxypropyl methylcellulose polymer, including LC as a zwitterion, after neutralization by NaOH, and XRD investigations verified its amorphous state. This and a sulfobutylated-beta-cyclodextrin sodium salt-containing sample showed crystal peaks due to NaCl content as products of the neutralization reaction in the solutions before drying. The average particle size of the spherical microparticles was between 2.42 and 3.44 µm, except for those containing a polyvinyl alcohol excipient, which were characterized by a medium diameter of 29.80 µm. The drug was completely and immediately liberated from all the samples at pH 5.6 and 32 °C; i.e., the carriers did not change the good dissolution behavior of LC. A permeability test was carried out by dipping the synthetic cellulose ester membrane in isopropyl myristate using modified horizontal diffusion cells. The spray-dried powder with β-cyclodextrin showed the highest permeability (188.37 µg/cm2/h), as this additive was the least hydrophilic. Products prepared with other cyclodextrins (randomly methylated-beta-cyclodextrin, sulfobutylated-beta-cyclodextrin sodium salt and (hydroxypropyl)-beta-cyclodextrin) showed similar or slightly higher penetration abilities than LC. Other polymer excipients resulted in lower penetration of the active agent than the pure LC. Full article
Show Figures

Figure 1

15 pages, 5319 KiB  
Article
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action
by Anna A. Skuredina, Tatiana Yu. Kopnova, Anastasia S. Tychinina, Sergey A. Golyshev, Irina M. Le-Deygen, Natalya G. Belogurova and Elena V. Kudryashova
Molecules 2022, 27(22), 8026; https://doi.org/10.3390/molecules27228026 - 18 Nov 2022
Cited by 9 | Viewed by 2978
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative [...] Read more.
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3–4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1–5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug’s mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery)
Show Figures

Graphical abstract

12 pages, 3237 KiB  
Article
Design, Preparation and Evaluation of Supramolecular Complexes with Curcumin for Enhanced Cytotoxicity in Breast Cancer Cell Lines
by Hamdy Abdelkader, Adel Al Fatease, Zeinab Fathalla, Mai E. Shoman, Heba A. Abou-Taleb and Mohammed A. S. Abourehab
Pharmaceutics 2022, 14(11), 2283; https://doi.org/10.3390/pharmaceutics14112283 - 25 Oct 2022
Cited by 6 | Viewed by 2037
Abstract
Curcumin is one of the most researched phytochemicals by pharmacologists and formulation scientists to unleash its potential therapeutic benefits and tackle inherent biopharmaceutic problems. In this study, the native β-cyclodextrin (CD) and three derivatives, namely, Captisol (sulfobutyl ether β-CD), hydroxypropyl β-cyclodextrin, and hydroxyethyl [...] Read more.
Curcumin is one of the most researched phytochemicals by pharmacologists and formulation scientists to unleash its potential therapeutic benefits and tackle inherent biopharmaceutic problems. In this study, the native β-cyclodextrin (CD) and three derivatives, namely, Captisol (sulfobutyl ether β-CD), hydroxypropyl β-cyclodextrin, and hydroxyethyl β-cyclodextrin were investigated for inclusion complexes with curcumin using two preparation methods (physical mixing and solvent evaporation). The prepared complexes were studied for docking, solubility, FTIR, DSC, XRD, and dissolution rates. The best-fitting curcumin: cyclodextrins (the latter of the two CDs) were evaluated for cytotoxicity using human breast cell lines (MCF-7). Dose-dependent cytotoxicity was recorded as IC50% for curcumin, curcumin: hydroxyethyl β-cyclodextrin, and curcumin: hydroxypropyl β-cyclodextrin were 7.33, 7.28, and 19.05 µg/mL, respectively. These research findings indicate a protective role for the curcumin: hydroxypropyl β-cyclodextrin complex on the direct cell lines of MCF-7. Full article
(This article belongs to the Special Issue Excipients Used in Pharmaceutical Dosage Forms)
Show Figures

Figure 1

15 pages, 5996 KiB  
Article
Polydopamine Copolymers for Stable Drug Nanoprecipitation
by Danna Niezni, Yuval Harris, Hagit Sason, Maytal Avrashami and Yosi Shamay
Int. J. Mol. Sci. 2022, 23(20), 12420; https://doi.org/10.3390/ijms232012420 - 17 Oct 2022
Cited by 7 | Viewed by 2891
Abstract
Polydopamine (PDA), a biomaterial inspired by marine mussels, has attracted interest in cancer nanomedicine due to its photothermal properties, nanoparticle coating, and pi-pi stacking-based drug encapsulation abilities. Despite numerous one-pot and post-polymerization modifications, PDA copolymers have not been sufficiently studied in the context [...] Read more.
Polydopamine (PDA), a biomaterial inspired by marine mussels, has attracted interest in cancer nanomedicine due to its photothermal properties, nanoparticle coating, and pi-pi stacking-based drug encapsulation abilities. Despite numerous one-pot and post-polymerization modifications, PDA copolymers have not been sufficiently studied in the context of stabilizing hydrophobic drugs in the process of nanoprecipitation. In this study, we tested combinatorial panels of comonomers with PDA to optimize drug loading efficiency, particle size and stability of nano formulations made via drug nanoprecipitation. As a selection criterion for optimal comonomers, we used drug aggregation-induced emission (AIE). We identified 1,1,2-Trimethyl-3-(4-sulfobutyl)benz[e]indolium (In820) as a novel and highly useful comonomer for catecholamines and optimized the conditions for its incorporation into PDA copolymers used for drug nanoprecipitation. Surprisingly, it was superior to polyethylene glycol modifications in every aspect. The leading copolymer, poly(dopamine)-poly(L-dopa)-co-In820 (PDA-PDO-In820 1:1:1), was shown to be a good stabilizer for several hydrophobic drugs. The resulting nanoparticles showed stability for up to 15 days, high encapsulation efficiency of at least 80%, low toxicity, and high antitumor efficacy in vitro. Nanoprecipitation of hydrophobic drugs can be greatly enhanced by the use of PDA copolymers containing In820, which are easy-to-prepare and highly effective stabilizers. Full article
Show Figures

Graphical abstract

Back to TopTop