Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Microparticles
2.3. Drug Loading
2.4. Particle Size Distribution
2.5. Morphology
2.6. X-ray Diffraction
2.7. Viscosity Measurements
2.8. Thermal Measurements
2.9. In Vitro Release Study of Nasal Powders
2.10. In Vitro Permeability Test
3. Results and Discussion
3.1. Drug Loading, Yield and Particle Morphology
3.2. Evaluation of Dissolution Tests
3.3. Evaluation of Permeability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawchik, S.M.; Saccar, C.L. A risk-benefit assessment of intranasal triamcinolone acetonide in allergic rhinitis. Drug Saf. 2000, 23, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, Y.; Yanai, K.; Sakurai, E.; Fukui, H.; Yanagisawa, T.; Watanabe, T. Histamine-induced calcium mobilization in single cultured cells expressing histamine H1 receptors: A relationship between its sensitivity and the density of H1 receptors. Int. J. Mol. Med. 1998, 1, 355–415. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Nakagawa, H.; Fujii, T.; Sakoda, T.; Enomoto, T.; Mizuguchi, H.; Fukui, H.; Takeda, N. Effects of antihistamine on up-regulation of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis induced by controlled cedar pollen challenge in an environmental exposure unit. J. Pharmacol. Sci. 2015, 129, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leurs, R.; Church, M.K.; Taglialatela, M. H1-antihistamines: Inverse agonism, anti-inflammatory actions and cardiac effects. Clin. Exp. Allergy 2002, 32, 489–498. [Google Scholar] [CrossRef]
- Bakker, R.A.; Wieland, K.; Timmerman, H.; Leurs, R. Constitutive activity of the histamine H1 receptor reveals inverse agonism of histamine H1 receptor antagonists. Eur. J. Pharmacol. 2000, 387, 5–7. [Google Scholar] [CrossRef]
- Behl, C.; Pimplaskar, H.; Sileno, A.; Demeireles, J.; Romeo, V. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 89–116. [Google Scholar] [CrossRef]
- Keller, L.-A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2021, 12, 735–757. [Google Scholar] [CrossRef]
- Berger, W.; Hampel, F.; Bernstein, J.; Shah, S.; Sacks, H.; Meltzer, E.O. Impact of azelastine nasal spray on symptoms and quality of life compared with cetirizine oral tablets in patients with seasonal allergic rhinitis. Ann. Allergy Asthma Immunol. 2006, 97, 375–381. [Google Scholar] [CrossRef]
- Kaliner, M.A. A novel and effective approach to treating rhinitis with nasal antihistamines. Ann. Allergy Asthma Immunol. 2007, 99, 383–391. [Google Scholar] [CrossRef]
- Berger, W.E.; White, M.V. Efficacy of azelastine nasal spray in patients with an unsatisfactory response to loratadine. Ann. Allergy Asthma Immunol. 2003, 91, 205–211. [Google Scholar] [CrossRef] [PubMed]
- LaForce, C.F.; Corren, J.; Wheeler, W.J.; Berger, W.E. Efficacy of azelastine nasal spray in seasonal allergic rhinitis patients who remain symptomatic after treatment with fexofenadine. Ann. Allergy Asthma Immunol. 2004, 93, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kaliner, M.A.; Oppenheimer, J.; Farrar, J.R. Comprehensive review of olopatadine: The molecule and its clinical entities. Allergy Asthma Proc. 2010, 31, 112–119. [Google Scholar] [CrossRef]
- Schipper, N.G.M.; Romeijn, S.G.; Verhoef, J.C.; Merkus, F.W.H.M. Nasal Insulin Delivery with Dimethyl-β-Cyclodextrin as an Absorption Enhancer in Rabbits: Powder More Effective than Liquid Formulations. Pharm. Res. 1993, 10, 682–686. [Google Scholar] [CrossRef]
- Illum, L. Nasal drug delivery: New developments and strategies. Drug Discov. Today 2002, 7, 1184–1189. [Google Scholar] [CrossRef]
- Vasa, D.M.; O’Donnell, L.A.; Wildfong, P.L.D. Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake. J. Pharm. Innov. 2015, 10, 200–210. [Google Scholar] [CrossRef]
- Fasiolo, L.T.; Manniello, M.D.; Tratta, E.; Buttini, F.; Rossi, A.; Sonvico, F.; Bortolotti, F.; Russo, P.; Colombo, G. Opportunity and challenges of nasal powders: Drug formulation and delivery. Eur. J. Pharm. Sci. 2018, 113, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Vasa, D.M.; Buckner, I.S.; Cavanaugh, J.E.; Wildfong, P.L.D. Improved Flux of Levodopa via Direct Deposition of Solid Microparticles on Nasal Tissue. AAPS PharmSciTech 2016, 18, 904–912. [Google Scholar] [CrossRef]
- Illum, L. Nasal drug delivery—Recent developments and future prospects. J. Control. Release 2012, 161, 254–263. [Google Scholar] [CrossRef]
- Nanda, A.; Sahoo, R.N.; Pramanik, A.; Mohapatra, R.; Pradhan, S.K.; Thirumurugan, A.; Das, D.; Mallick, S. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: Effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surf. B Biointerfaces 2018, 172, 555–564. [Google Scholar] [CrossRef]
- Tanaka, A.; Furubayashi, T.; Tomisaki, M.; Kawakami, M.; Kimura, S.; Inoue, D.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Nasal drug absorption from powder formulations: The effect of three types of hydroxypropyl cellulose (HPC). Eur. J. Pharm. Sci. 2017, 96, 284–289. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Rojewska, M.; Biadasz, A.; Lulek, J.; Prochaska, K. Surface properties and morphology of selected polymers and their blends designed to mucoadhesive dosage forms. React. Funct. Polym. 2017, 118, 10–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Brown, M.; Khengar, R.H.; Traynor, M.J.; Barata, P.; Jones, S.A. Pharmacokinetic Evaluation of Intranasally Administered Vinyl Polymer-Coated Lorazepam Microparticles in Rabbits. AAPS J. 2012, 14, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, K.K. (Ed.) Drug Delivery Systems—An Overview. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2008; Volume 437, pp. 1–50. [Google Scholar] [CrossRef]
- Ventura, C.A.; Fresta, M.; Paolino, D.; Pedotti, S.; Corsaro, A.; Puglisi, G. Biomembrane Model Interaction and Percutaneous Absorption of Papaverine Through rat Skin: Effects of Cyclodextrins as Penetration Enhancers. J. Drug Target. 2001, 9, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska, M.; Mizera, M.; Lewandowska, K.; Kozak, M.; Miklaszewski, A.; Cielecka-Piontek, J. Effects of inclusion of cetirizine hydrochloride in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2018, 91, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Callens, C.; Pringels, E.; Remon, J.P. Influence of multiple nasal administrations of bioadhesive powders on the insulin bioavailability. Int. J. Pharm. 2003, 250, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, R.; Gergely, M.; Zvonar, A.; Szabó-Révész, P.; Sipos, E. The Role of co-Spray-Drying Procedure in the Preformulation of Intranasal Propranolol Hydrochloride. Acta Chim. Slov. 2014, 61, 601–607. [Google Scholar]
- Cho, W.; Kim, M.-S.; Jung, M.-S.; Park, J.; Cha, K.-H.; Kim, J.-S.; Park, H.J.; Alhalaweh, A.; Velaga, S.P.; Hwang, S.-J. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes. Int. J. Pharm. 2015, 478, 288–296. [Google Scholar] [CrossRef]
- Coucke, D.; Vervaet, C.; Foreman, P.; Adriaensens, P.; Carleer, R.; Remon, J. Effect on the nasal bioavailability of co-processing drug and bioadhesive carrier via spray-drying. Int. J. Pharm. 2009, 379, 67–71. [Google Scholar] [CrossRef]
- Quadir, H.Z.M. Development and Evaluation of Nasal Formulations of Ketorolac. Drug Deliv. 2000, 7, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Krauland, A.H.; Guggi, D.; Bernkop-Schnürch, A. Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery. Int. J. Pharm. 2006, 307, 270–277. [Google Scholar] [CrossRef]
- Chen, K.; Di Sabatino, M.; Albertini, B.; Passerini, N.; Kett, V. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur. J. Pharm. Sci. 2013, 50, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.T.; Martin, G.P.; Berry, D.J.; Brown, M.B. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J. Control. Release 2000, 66, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Mouez, M.A.; Zaki, N.M.; Mansour, S.; Geneidi, A.S. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres. Eur. J. Pharm. Sci. 2014, 51, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Chourasia, M.K.; Jain, A.K.; Jain, R.K.; Shrivastava, A.K. Development and Characterization of Mucoadhesive Microspheres Bearing Salbutamol for Nasal Delivery. Drug Deliv. 2004, 11, 113–122. [Google Scholar] [CrossRef]
- Nagda, C.D.; Chotai, N.P.; Nagda, D.C.; Patel, S.B.; Patel, U.L. Development and characterization of mucoadhesive microspheres for nasal delivery of ketorolac. Pharmazie 2011, 66, 249–257. [Google Scholar] [CrossRef]
- Patil, S.; Babbar, A.; Mathur, R.; Mishra, A.; Sawant, K. Mucoadhesive Chitosan Microspheres of Carvedilol for Nasal Administration. J. Drug Target. 2010, 18, 321–331. [Google Scholar] [CrossRef]
- Varshosaz, J.; Sadrai, H.; Alinagari, R. Nasal delivery of insulin using chitosan microspheres. J. Microencapsul. 2004, 21, 761–774. [Google Scholar] [CrossRef]
- Gavini, E.; Rassu, G.; Ferraro, L.; Generosi, A.; Rau, J.V.; Brunetti, A.; Giunchedi, P.; Dalpiaz, A. Influence of Chitosan Glutamate on the in vivo Intranasal Absorption of Rokitamycin from Microspheres. J. Pharm. Sci. 2011, 100, 1488–1502. [Google Scholar] [CrossRef]
- Gavini, E.; Rassu, G.; Sanna, V.; Cossu, M.; Giunchedi, P. Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: In-vitro/ex-vivo studies. J. Pharm. Pharmacol. 2005, 57, 287–294. [Google Scholar] [CrossRef]
- Martinac, A.; Filipović-Grčić, J.; Perissutti, B.; Voinovich, D.; Pavelić, Z. Spray-dried chitosan/ethylcellulose microspheres for nasal drug delivery: Swelling study and evaluation of in vitro drug release properties. J. Microencapsul. 2005, 22, 549–561. [Google Scholar] [CrossRef]
- Kontou-Fili, K. H1-Receptor Antagonists in the Management of Allergic Rhinitis. Clin. Immunother. 1994, 2, 352–375. [Google Scholar] [CrossRef]
- Amelian, A.; Szekalska, M.; Ciosek-Skibińska, P.; Basa, A.; Winnicka, K. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying. Acta Pharm. 2017, 67, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Amelian, A.; Wasilewska, K.; Wesoły, M.; Ciosek-Skibińska, P.; Winnicka, K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm. J. 2017, 25, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Physicochemical, Pharmacological and Pharmacokinetic Properties of the Zwitterionic Antihistamines Cetirizine and Levocetirizine. Curr. Med. Chem. 2008, 15, 2173–2191. [Google Scholar] [CrossRef]
- Hair, P.I.; Scott, L.J. Levocetirizine. Drugs 2006, 66, 973–996. [Google Scholar] [CrossRef]
- Van Balen, G.P.; Caron, G.; Ermondi, G.; Pagliara, A.; Grandi, T.; Bouchard, G.; Fruttero, R.; Carrupt, P.; Testa, B. Lipophilicity Behaviour of the Zwitterionic Antihistamine Cetirizine in Phosphatidylcholine Liposomes/Water Systems. Pharm. Res. 2001, 18, 694–701. [Google Scholar] [CrossRef]
- Cetirizine Side Effects. Available online: https://www.drugs.com/sfx/cetirizine-side-effects.html (accessed on 10 January 2023).
- Henriques, P.; Fortuna, A.; Doktorovová, S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur. J. Pharm. Biopharm. 2022, 176, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, S.; Kushida, I.; Yamashita, T.; Hasebe, T.; Shirai, O.; Kano, K. Inhibition of Crystal Nucleation and Growth by Water-Soluble Polymers and its Impact on the Supersaturation Profiles of Amorphous Drugs. J. Pharm. Sci. 2013, 102, 2273–2281. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C.; John, P.; Collenberg, A.; Rütti, D. Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries, 1st ed.; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 346–401. [Google Scholar] [CrossRef]
- Sipos, B.; Szabó-Révész, P.; Csóka, I.; Pallagi, E.; Dobó, D.; Bélteky, P.; Kónya, Z.; Deák, Á.; Janovák, L.; Katona, G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020, 12, 697. [Google Scholar] [CrossRef]
- Testa, B.; Pagliara, A.; Carrupt, P.A. The molecular behaviour of cetirizine. Clin. Exp. Allergy 1997, 27, 13–18. [Google Scholar] [CrossRef]
- Comer, J.E.A. Ionization Constants and Ionization Profiles. In Comprehensive Medicinal Chemistry II, 2nd ed.; Triggle, D.J., Taylor, J.B., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 5, pp. 357–397. [Google Scholar] [CrossRef]
- Pomázi, A.; Ambrus, R.; Sipos, P.; Szabó-Révész, P. Analysis of co-spray-dried meloxicam–mannitol systems containing crystalline microcomposites. J. Pharm. Biomed. Anal. 2011, 56, 183–190. [Google Scholar] [CrossRef]
- Schiller, R. The Stokes-Einstein Law by Macroscopic Arguments. Radiat. Phys. Chem. 1991, 37, 549–550. [Google Scholar] [CrossRef]
- Tzanova, M.M.; Randelov, E.; Stein, P.C.; Hiorth, M.; di Cagno, M.P. Towards a better mechanistic comprehension of drug permeation and absorption: Introducing the diffusion-partitioning interplay. Int. J. Pharm. 2021, 608, 121116–121124. [Google Scholar] [CrossRef] [PubMed]
- Trommer, H.; Neubert, R.H.H. Overcoming the Stratum Corneum: The Modulation of Skin Penetration. Ski. Pharmacol. Physiol. 2006, 19, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.; Pandit, J. Effect of cyclodextrins on the complexation and transdermal delivery of bupranolol through rat skin. Int. J. Pharm. 2003, 271, 155–165. [Google Scholar] [CrossRef]
No. | Yield (%) | CLC, % (w/w) | Water Content, % (w/w) | D[4,3] (µm) | d(0.1) (µm) | d(0.5) (µm) | d(0.9) (µm) | Span |
---|---|---|---|---|---|---|---|---|
SD1 (LC) | 71.1 | 96.2 1 | 3.8 | 2.42 | 1.13 | 2.16 | 4.12 | 1.38 |
SD2 (SBECD) | 78.0 | 49.1 ± 1.2 | 3.1 | 2.82 | 1.23 | 2.48 | 4.92 | 1.49 |
SD3 (HPBCD) | 71.1 | 50.5 ± 0.8 | 2.7 | 2.52 | 1.24 | 2.29 | 4.14 | 1.27 |
SD4 (RAMEB) | 79.6 | 49.9 ± 0.9 | 2.7 | 2.88 | 1.25 | 2.55 | 5.01 | 1.47 |
SD5 (β-CD) | 81.9 | 52.9 ± 1.2 | 0.6 | 2.68 | 1.21 | 2.38 | 4.61 | 1.43 |
SD6 (PVP) | 83.5 | 49.9 ± 0.3 | 4.2 | 2.74 | 1.27 | 2.46 | 4.62 | 1.36 |
SD7 (PVA) | 71.8 | 49.9 ± 0.3 | 3.1 | 29.80 | 1.95 | 4.72 | 116.76 | 24.32 |
SD8 (HPMC) | 82.6 | 50.0 ± 0.6 | 2.4 | 3.09 | 1.35 | 2.72 | 5.37 | 1.48 |
SD9 (HPMC + NaOH) | 85.1 | 47.2 ± 0.4 | 1.6 | 3.44 | 1.46 | 3.03 | 6.02 | 1.50 |
Bulk LC | - | 100 | - | 55.94 | 2.01 | 6.16 | 232.12 | 37.36 |
No. | J (µg/cm2/h) | Kp (cm/h) |
---|---|---|
Bulk LC | 56.96 | 10.3 |
SD1 (LC) | 53.15 | 9.6 |
SD2 (SBECD) | 52.52 | 9.5 |
SD3 (HPBCD) | 65.29 | 11.8 |
SD4 (RAMEB) | 74.73 | 13.6 |
SD5 (β-CD) | 188.37 | 35.1 |
SD6 (PVP) | 36.41 | 6.5 |
SD7 (PVA) | 32.35 | 5.9 |
SD8 (HPMC) | 23.29 | 4.2 |
SD9 (HPMC + NaOH) | 29.99 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirankó, M.; Tóth, J.; Bartos, C.; Ambrus, R.; Feczkó, T. Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration. Pharmaceutics 2023, 15, 317. https://doi.org/10.3390/pharmaceutics15020317
Mirankó M, Tóth J, Bartos C, Ambrus R, Feczkó T. Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration. Pharmaceutics. 2023; 15(2):317. https://doi.org/10.3390/pharmaceutics15020317
Chicago/Turabian StyleMirankó, Mirella, Judit Tóth, Csilla Bartos, Rita Ambrus, and Tivadar Feczkó. 2023. "Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration" Pharmaceutics 15, no. 2: 317. https://doi.org/10.3390/pharmaceutics15020317
APA StyleMirankó, M., Tóth, J., Bartos, C., Ambrus, R., & Feczkó, T. (2023). Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration. Pharmaceutics, 15(2), 317. https://doi.org/10.3390/pharmaceutics15020317