Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = sulfated glycans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5889 KiB  
Article
Upregulation of Sulfated N-Glycans in Serum as Predictive Biomarkers for Early-Stage Breast Cancer
by Dereje G. Feleke, Bryan M. Montalban, Solomon T. Gizaw and Hiroshi Hinou
Int. J. Mol. Sci. 2025, 26(11), 4968; https://doi.org/10.3390/ijms26114968 - 22 May 2025
Viewed by 857
Abstract
Breast cancer (BC) is a major global health concern, and early detection is key to improving patient outcomes. Aberrant glycosylation, particularly the sulfation of glycans, is implicated in cancer progression; however, analyzing these low-abundance glycans is challenging. This study aimed to profile serum [...] Read more.
Breast cancer (BC) is a major global health concern, and early detection is key to improving patient outcomes. Aberrant glycosylation, particularly the sulfation of glycans, is implicated in cancer progression; however, analyzing these low-abundance glycans is challenging. This study aimed to profile serum sulfated N-glycans in Ethiopian patients with BC to identify novel biomarkers for the early detection of BC. Using a glycoblotting-based sulphoglycomics workflow, including high-throughput glycoblotting enrichment, weak anion exchange (WAX) separation, and MALDI-TOF MS, serum samples from 76 BC patients and 20 healthy controls were analyzed. Statistical evaluation revealed significant differences in the sulfated N-glycan profiles. Seven mono-sulfated N-glycans were markedly elevated in patients with BC, demonstrating high diagnostic accuracy (AUC ≥ 0.8) in this internal cohort. Terminal Lewis-type glycan epitopes were prominent in sulfated glycans but were absent in their non-sulfated counterparts. The increased fucosylation and sialylation of sulfated glycans are statistically significant markers of early-stage BC. The preservation of sialic acid groups during the analysis ensured detailed structural insight. This pioneering study quantitatively examined sulfated N-glycans in BC and identified potential glyco-biomarkers for early detection. Validation in larger, diverse cohorts is needed to establish their broader diagnostic relevance and improve our understanding of cancer-associated glycomic alterations. Full article
(This article belongs to the Special Issue Cancer Diagnosis and Treatment: Exploring Molecular Research)
Show Figures

Figure 1

21 pages, 2838 KiB  
Article
A Nanoparticle Comprising the Receptor-Binding Domains of Norovirus and Plasmodium as a Combination Vaccine Candidate
by Ming Xia, Pengwei Huang, Frank S. Vago, Wen Jiang, Xi Jiang and Ming Tan
Vaccines 2025, 13(1), 34; https://doi.org/10.3390/vaccines13010034 - 1 Jan 2025
Viewed by 1953
Abstract
Background: Noroviruses, which cause epidemic acute gastroenteritis, and Plasmodium parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of Plasmodium sporozoite [...] Read more.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and Plasmodium parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of Plasmodium sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P24 NP). Methods: We generated a unique P24-αTSR NP by inserting the αTSR domain into a surface loop of the P domain. The P-αTSR fusion proteins were produced in the Escherichia coli expression system and the fusion protein self-assembled into the P24-αTSR NP. Results: The formation of the P24-αTSR NP was demonstrated through gel filtration, electron microscopy, and dynamic light scattering. A 3D structural model of the P24-αTSR NP was constructed, using the known cryo-EM structure of the previously developed P24 NP and P24-VP8* NP as templates. Each P24-αTSR NP consists of a P24 NP core, with 24 surface-exposed αTSR domains that have retained their general conformations and binding function to heparan sulfate proteoglycans. The P24-αTSR NP is immunogenic, eliciting strong antibody responses in mice toward both the norovirus P domain and the αTSR domain of Plasmodium CSP. Notably, sera from mice immunized with the P24-αTSR NP bound strongly to Plasmodium sporozoites and blocked norovirus VLP attachment to their glycan receptors. Conclusion: These data suggest that the P24-αTSR NP may serve as a combination vaccine against both norovirus and Plasmodium parasites. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

19 pages, 2472 KiB  
Article
Thyroid Carcinoma Glycoproteins Express Altered N-Glycans with 3-O-Sulfated Galactose Residues
by Jordan M. Broekhuis, Dongli Lu, Rajindra P. Aryal, Yasuyuki Matsumoto, Lauren E. Pepi, Natalia Chaves, Jorge L. Gomez-Mayorga, Benjamin C. James and Richard D. Cummings
Biomolecules 2024, 14(12), 1482; https://doi.org/10.3390/biom14121482 - 21 Nov 2024
Cited by 1 | Viewed by 1955
Abstract
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the N-glycosylation of its glycoproteins has not been well characterized. In this work, [...] Read more.
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the N-glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies. Glycomic analyses focused on Asn-linked (N)-glycans and employed mass spectrometry (MS), along with Western blot approaches of total solubilized materials that were examined for binding by specific lectins and a monoclonal antibody (mAb) O6, specific for 3-O-sulfated galactose residues. We observed major differences in PTC versus paired normal specimens, as PTC specimens exhibited higher levels of N-glycan branching and bisection with N-acetylglucosamine residues, consistent with RNAseq data. We also found that 3-O-sulfated galactose was present in N-glycans of multiple glycoproteins from both PTC and control specimens, as recognized by the O6 mAb and as confirmed by MS analyses. These results provide new insights into the N-glycans present in glycoproteins of thyroid cancer and context for further studies of these altered glycans as biomarkers and targets for therapeutics. Full article
(This article belongs to the Section Biomacromolecules: Carbohydrates)
Show Figures

Figure 1

17 pages, 9964 KiB  
Article
L-Fucose-Rich Sulfated Glycans from Edible Brown Seaweed: A Promising Functional Food for Obesity and Energy Expenditure Improvement
by Jimin Hyun, Hyo-Geun Lee, Jun-Geon Je, Yun-Sang Choi, Kyung-Mo Song, Tae-Kyung Kim, Bomi Ryu, Min-Cheol Kang and You-Jin Jeon
Int. J. Mol. Sci. 2024, 25(17), 9738; https://doi.org/10.3390/ijms25179738 - 9 Sep 2024
Cited by 2 | Viewed by 1971
Abstract
The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential [...] Read more.
The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5′ adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern. Full article
Show Figures

Graphical abstract

18 pages, 5690 KiB  
Article
Analytical Investigation of the Profile of Human Chorionic Gonadotropin in Highly Purified Human Menopausal Gonadotrophin Preparations
by Angela Capolupo, Sofia Petrocchi, Maura Melchiorre, Kim Jonas, Thomas D’Hooghe, Aylin Hanyaloglu, Sesh Sunkara, Angelo Palmese, Beste Ozgumus, Angela Amoresano, Gabriella Angiuoni, Susana Montenegro, Patrizia Simone and Monica Lispi
Int. J. Mol. Sci. 2024, 25(17), 9405; https://doi.org/10.3390/ijms25179405 - 29 Aug 2024
Cited by 1 | Viewed by 3662
Abstract
Highly purified human menopausal gonadotropin (HP-hMG [Menopur®, Ferring Pharmaceuticals, Saint-Prex, Switzerland]) contains a 1:1 ratio of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This analysis aimed to assess gonadotropin (FSH, LH and hCG) abundance in HP-hMG and clarify the source of [...] Read more.
Highly purified human menopausal gonadotropin (HP-hMG [Menopur®, Ferring Pharmaceuticals, Saint-Prex, Switzerland]) contains a 1:1 ratio of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This analysis aimed to assess gonadotropin (FSH, LH and hCG) abundance in HP-hMG and clarify the source of hCG by assessing the presence of sulfated glycans, which are diagnostic for pituitary hCG forms due to their distinct glycosylation patterns. Additionally, the purity of each sample, their specific components, and their oxidation levels were assessed. HP-hMG samples (three of Menopur® and two of Menogon® Ferring Pharmaceuticals, Saint-Prex, Switzerland) were included in the current analyses. Brevactid® (urinary hCG; Ferring Pharmaceuticals, Saint-Prex, Switzerland) and Ovidrel® (recombinant hCG; Merck KGaA, Darmstadt, Germany) were used as control samples. Glycopeptide mapping and analysis of impurities were carried out by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Oxidation was assessed through reducing peptide mapping using LC-MS/MS. The FSH and LH in the HP-hMG samples showed sulfated glycans, while no signals of sulfated glycopeptides were detected on any site of the beta subunit of hCG. HP-hMG test samples presented the same hCG glycan distribution as the control sample (placental hCG, Brevactid®) extracted from the urine of pregnant women, suggesting a non-pituitary source of hCG. Protein impurities were estimated to constitute approximately 20–30% of the entire HP-hMG protein content in the test samples. More than 200 non-gonadotropin proteins were identified in the HP-hMG test samples, of which several were involved in embryonic development or pregnancy. The alpha subunit of the tested samples was strongly oxidized, with a relative abundance of 20% of the total gonadotropin content. Without taking into account all the protein impurities, the beta subunit of LH was detected only in traces (0.9–1.2%) in all tested HP-HMG samples, confirming the data obtained by intact molecule analysis, while high levels of beta hCG (18–47%) were observed. Advanced molecular analysis of HP-hMG indicates a primarily placental origin of hCG, as evidenced by the absence of hCG sulfated glycans and the predominance of placental non-sulfated hCG in LH activity. The analysis revealed 20–30% of protein impurities and a significant presence of oxidized forms in the HP-hMG samples. These findings are critical for understanding the quality, safety, and clinical profile of HP-hMG. Full article
(This article belongs to the Special Issue Novel Drugs for Infertility Treatment in 2022)
Show Figures

Figure 1

22 pages, 4399 KiB  
Article
Dermatan Sulfate Affects the Activation of the Necroptotic Effector MLKL in Breast Cancer Cell Lines via the NFκB Pathway and Rac-Mediated Oxidative Stress
by Grzegorz Wisowski, Adam Pudełko, Monika Paul-Samojedny, Katarzyna Komosińska-Vassev and Ewa M. Koźma
Biomolecules 2024, 14(7), 829; https://doi.org/10.3390/biom14070829 - 10 Jul 2024
Cited by 1 | Viewed by 1151
Abstract
Dermatan sulfate (DS) is a glycosaminoglycan characterized by having a variable structure and wide distribution in animal tissues. We previously demonstrated that some structural variants of DS were able to rapidly induce moderate necroptosis in luminal breast cancer cells when used at a [...] Read more.
Dermatan sulfate (DS) is a glycosaminoglycan characterized by having a variable structure and wide distribution in animal tissues. We previously demonstrated that some structural variants of DS were able to rapidly induce moderate necroptosis in luminal breast cancer cells when used at a high concentration. We have now investigated the mechanisms underlying the DS-mediated activation of the necroptotic executor MLKL using immunofluorescence, Western blotting and pharmacological inhibition. The two main processes, by which DS influences the phosphorylation of MLKL, are the activation of NFκB, which demonstrates a suppressive impact, and the induction of oxidative stress, which has a stimulatory effect. Moreover, the triggering of the redox imbalance by DS occurs via the modulatory influence of this glycosaminoglycan on the rearrangement of the actin cytoskeleton, requiring alterations in the activity of small Rho GTP-ase Rac1. All of these processes that were elicited by DS in luminal breast cancer cells showed a dependence on the structure of this glycan and the type of cancer cells. Furthermore, our results suggest that a major mechanism that is involved in the stimulation of necroptosis in luminal breast cancer cells by high doses of DS is mediated via the effect of this glycan on the activity of adhesion molecules. Full article
Show Figures

Figure 1

13 pages, 3604 KiB  
Article
Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae
by Jiyuan Yang, Yuefan Song, Ke Xia, Vitor H. Pomin, Chunyu Wang, Mingqiang Qiao, Robert J. Linhardt, Jonathan S. Dordick and Fuming Zhang
Mar. Drugs 2024, 22(5), 232; https://doi.org/10.3390/md22050232 - 20 May 2024
Cited by 1 | Viewed by 2182
Abstract
Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen–host interactions, presenting a strategic target for therapeutic [...] Read more.
Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen–host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen–host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library’s efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections. Full article
(This article belongs to the Special Issue Biomedical Application of Marine-Derived Carbohydrates)
Show Figures

Figure 1

19 pages, 3608 KiB  
Article
Differential Solvent DEEP-STD NMR and MD Simulations Enable the Determinants of the Molecular Recognition of Heparin Oligosaccharides by Antithrombin to Be Disentangled
by Michela Parafioriti, Stefano Elli, Juan C. Muñoz-García, Jonathan Ramírez-Cárdenas, Edwin A. Yates, Jesús Angulo and Marco Guerrini
Int. J. Mol. Sci. 2024, 25(9), 4669; https://doi.org/10.3390/ijms25094669 - 25 Apr 2024
Cited by 1 | Viewed by 1672
Abstract
The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with [...] Read more.
The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins. Full article
Show Figures

Figure 1

16 pages, 5236 KiB  
Article
GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium
by Yoshiko Takeda-Uchimura, Midori Ikezaki, Tomoya O. Akama, Yoshito Ihara, Fabrice Allain, Kazuchika Nishitsuji and Kenji Uchimura
Molecules 2024, 29(4), 764; https://doi.org/10.3390/molecules29040764 - 7 Feb 2024
Cited by 2 | Viewed by 1788
Abstract
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded [...] Read more.
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium. Full article
(This article belongs to the Special Issue New Insights into Protein Glycosylation II)
Show Figures

Figure 1

15 pages, 3123 KiB  
Article
Sulfated Glycans Inhibit the Interaction of MERS-CoV Receptor Binding Domain with Heparin
by Jiyuan Yang, Yuefan Song, Weihua Jin, Ke Xia, Grace C. Burnett, Wanjin Qiao, John T. Bates, Vitor H. Pomin, Chunyu Wang, Mingqiang Qiao, Robert J. Linhardt, Jonathan S. Dordick and Fuming Zhang
Viruses 2024, 16(2), 237; https://doi.org/10.3390/v16020237 - 2 Feb 2024
Cited by 7 | Viewed by 2313
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus with high contagion and mortality rates. Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed on the surface of mammalian cells. Owing to its high negatively charged property, heparan sulfate (HS) on the surface of [...] Read more.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus with high contagion and mortality rates. Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed on the surface of mammalian cells. Owing to its high negatively charged property, heparan sulfate (HS) on the surface of host cells is used by many viruses as cofactor to facilitate viral attachment and initiate cellular entry. Therefore, inhibition of the interaction between viruses and HS could be a promising target to inhibit viral infection. In the current study, the interaction between the receptor-binding domain (RBD) of MERS-CoV and heparin was exploited to assess the inhibitory activity of various sulfated glycans such as glycosaminoglycans, marine-sourced glycans (sulfated fucans, fucosylated chondroitin sulfates, fucoidans, and rhamnan sulfate), pentosan polysulfate, and mucopolysaccharide using Surface Plasmon Resonance. We believe this study provides valuable insights for the development of sulfated glycan-based inhibitors as potential antiviral agents. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

14 pages, 959 KiB  
Article
Investigation of Glycosaminoglycans in Urine and Their Alteration in Patients with Juvenile Idiopathic Arthritis
by Elżbieta Lato-Kariakin, Kornelia Kuźnik-Trocha, Anna Gruenpeter, Katarzyna Komosińska-Vassev, Krystyna Olczyk and Katarzyna Winsz-Szczotka
Biomolecules 2023, 13(12), 1737; https://doi.org/10.3390/biom13121737 - 2 Dec 2023
Cited by 1 | Viewed by 1780
Abstract
(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by [...] Read more.
(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by complexation with blue 1,9-dimethylmethylene), including chondroitin–dermatan sulfate (CS/DS) and heparan sulfate (HS), as well as non-sulfated hyaluronic acid (HA, using the immunoenzymatic method), were determined in the blood of 89 children, i.e., 30 healthy children and 59 patients with JIA both before and during two years of ETA treatment. (3) Results: We confirmed the remodeling of the urinary glycan profile of JIA patients. The decrease in the excretion of sGAGs (p < 0.05), resulting from a decrease in the concentration of the dominant fraction in the urine, i.e., CS/DS (p < 0.05), not compensated by an increase in the concentration of HS (p < 0.000005) and HA (p < 0.0005) in the urine of patients with the active disease, was found. The applied biological therapy, leading to clinical improvement in patients, at the same time, did not contribute to normalization of the concentration of sGAGs (p < 0.01) in the urine of patients, as well as CS/DS (p < 0.05) in the urine of sick girls, while it promoted equalization of HS and HA concentrations. These results indicate an inhibition of the destruction of connective tissue structures but do not indicate their complete regeneration. (4) Conclusions: The metabolisms of glycans during JIA, reflected in their urine profile, depend on the patient’s sex and the severity of the inflammatory process. The remodeling pattern of urinary glycans observed in patients with JIA indicates the different roles of individual types of GAGs in the pathogenesis of osteoarticular disorders in sick children. Furthermore, the lack of normalization of urinary GAG levels in treated patients suggests the need for continued therapy and continuous monitoring of its effectiveness, which will contribute to the complete regeneration of the ECM components of the connective tissue and thus protect the patient against possible disability. Full article
(This article belongs to the Special Issue Hyaluronic Acid and Proteoglycans: Basic and Biomedical Applications)
Show Figures

Figure 1

18 pages, 5555 KiB  
Article
Identification of Novel Glycans in the Mucus Layer of Shark and Skate Skin
by Etty Bachar-Wikstrom, Kristina A. Thomsson, Carina Sihlbom, Lisa Abbo, Haitham Tartor, Sara K. Lindén and Jakob D. Wikstrom
Int. J. Mol. Sci. 2023, 24(18), 14331; https://doi.org/10.3390/ijms241814331 - 20 Sep 2023
Cited by 6 | Viewed by 4679
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In [...] Read more.
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In this pilot study, we aimed to explore the structure and composition of shark skin mucus through histological analysis and glycan profiling. Histological examination of skin samples from Atlantic spiny dogfish (Squalus acanthias) sharks and chain catsharks (Scyliorhinus retifer) revealed distinct mucin-producing cells and a mucus layer, indicating the presence of a functional mucus layer similar to bony fish mucus albeit thinner. Glycan profiling using liquid chromatography–electrospray ionization tandem mass spectrometry unveiled a diverse repertoire of mostly O-glycans in the mucus of the two sharks as well as little skate (Leucoraja erinacea). Elasmobranch glycans differ significantly from bony fish, especially in being more sulfated, and some bear resemblance to human glycans, such as gastric mucin O-glycans and H blood group-type glycans. This study contributes to the concept of shark skin having unique properties and provides a foundation for further research into the functional roles and potential biomedical implications of shark skin mucus glycans. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 5001 KiB  
Article
Docking and Molecular Dynamics Simulations Clarify Binding Sites for Interactions of Novel Marine Sulfated Glycans with SARS-CoV-2 Spike Glycoprotein
by Priyanka Samanta, Sushil K. Mishra, Vitor H. Pomin and Robert J. Doerksen
Molecules 2023, 28(17), 6413; https://doi.org/10.3390/molecules28176413 - 3 Sep 2023
Cited by 5 | Viewed by 3168
Abstract
The entry of SARS-CoV-2 into the host cell is mediated by its S-glycoprotein (SGP). Sulfated glycans bind to the SGP receptor-binding domain (RBD), which forms a ternary complex with its receptor angiotensin converting enzyme 2. Here, we have conducted a thorough and systematic [...] Read more.
The entry of SARS-CoV-2 into the host cell is mediated by its S-glycoprotein (SGP). Sulfated glycans bind to the SGP receptor-binding domain (RBD), which forms a ternary complex with its receptor angiotensin converting enzyme 2. Here, we have conducted a thorough and systematic computational study of the binding of four oligosaccharide building blocks from novel marine sulfated glycans (isolated from Pentacta pygmaea and Isostichopus badionotus) to the non-glycosylated and glycosylated RBD. Blind docking studies using three docking programs identified five potential cryptic binding sites. Extensive site-targeted docking and molecular dynamics simulations using two force fields confirmed only two binding sites (Sites 1 and 5) for these novel, highly charged sulfated glycans, which were also confirmed by previously published reports. This work showed the structural features and key interactions driving ligand binding. A previous study predicted Site 2 to be a potential binding site, which was not observed here. The use of several molecular modeling approaches gave a comprehensive assessment. The detailed comparative study utilizing multiple modeling approaches is the first of its kind for novel glycan–SGP interaction characterization. This study provided insights into the key structural features of these novel glycans as they are considered for development as potential therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 1019 KiB  
Article
N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer
by Iiris Ukkola, Pirjo Nummela, Annamari Heiskanen, Matilda Holm, Sadia Zafar, Mia Kero, Caj Haglund, Tero Satomaa, Soili Kytölä and Ari Ristimäki
Cancers 2023, 15(14), 3571; https://doi.org/10.3390/cancers15143571 - 11 Jul 2023
Cited by 1 | Viewed by 1854
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II [...] Read more.
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors. Full article
(This article belongs to the Special Issue Glycosylation in Cancer—Biomarkers and Targeted Therapies)
Show Figures

Figure 1

17 pages, 8316 KiB  
Article
Computational Characterization of the Binding Properties of the HIV1-Neutralizing Antibody PG16 and Design of PG16-Derived CDRH3 Peptides
by Manuel Deubler, Lucas Weißenborn, Simon Leukel, Anselm H. C. Horn, Jutta Eichler and Heinrich Sticht
Biology 2023, 12(6), 824; https://doi.org/10.3390/biology12060824 - 6 Jun 2023
Cited by 2 | Viewed by 2104
Abstract
PG16 is a broadly neutralizing antibody that binds to the gp120 subunit of the HIV-1 Env protein. The major interaction site is formed by the unusually long complementarity determining region (CDR) H3. The CDRH3 residue Tyr100H is known to represent a tyrosine sulfation [...] Read more.
PG16 is a broadly neutralizing antibody that binds to the gp120 subunit of the HIV-1 Env protein. The major interaction site is formed by the unusually long complementarity determining region (CDR) H3. The CDRH3 residue Tyr100H is known to represent a tyrosine sulfation site; however, this modification is not present in the experimental complex structure of PG16 with full-length HIV-1 Env. To investigate the role of sulfation for this complex, we modeled the sulfation of Tyr100H and compared the dynamics and energetics of the modified and unmodified complex by molecular dynamics simulations at the atomic level. Our results show that sulfation does not affect the overall conformation of CDRH3, but still enhances gp120 interactions both at the site of modification and for the neighboring residues. This stabilization affects not only protein–protein contacts, but also the interactions between PG16 and the gp120 glycan shield. Furthermore, we also investigated whether PG16-CDRH3 is a suitable template for the development of peptide mimetics. For a peptide spanning residues 93-105 of PG16, we obtained an experimental EC50 value of 3nm for the binding of gp120 to the peptide. This affinity can be enhanced by almost one order of magnitude by artificial disulfide bonding between residues 99 and 100F. In contrast, any truncation results in significantly lower affinity, suggesting that the entire peptide segment is involved in gp120 recognition. Given their high affinity, it should be possible to further optimize the PG16-derived peptides as potential inhibitors of HIV invasion. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

Back to TopTop