Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = succinyl-coenzyme A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2631 KiB  
Review
Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation—Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms
by Aimee Rachel Mathew, Giacomo Di Matteo, Piergiorgio La Rosa, Saviana Antonella Barbati, Luisa Mannina, Sandra Moreno, Ada Maria Tata, Virve Cavallucci and Marco Fidaleo
Int. J. Mol. Sci. 2024, 25(1), 590; https://doi.org/10.3390/ijms25010590 - 2 Jan 2024
Cited by 32 | Viewed by 22836
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including [...] Read more.
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets. Full article
Show Figures

Figure 1

15 pages, 1387 KiB  
Article
Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver
by Malgorzata Tokarska-Schlattner, Nour Zeaiter, Valérie Cunin, Stéphane Attia, Cécile Meunier, Laurence Kay, Amel Achouri, Edwige Hiriart-Bryant, Karine Couturier, Cindy Tellier, Abderrafek El Harras, Bénédicte Elena-Herrmann, Saadi Khochbin, Audrey Le Gouellec and Uwe Schlattner
Int. J. Mol. Sci. 2023, 24(19), 14957; https://doi.org/10.3390/ijms241914957 - 6 Oct 2023
Cited by 3 | Viewed by 3313
Abstract
Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare [...] Read more.
Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1–2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5–6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 2744 KiB  
Article
Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020
by Dorothy A. Okoth, Joachim J. Hug, Ronald Garcia and Rolf Müller
Microorganisms 2022, 10(10), 1959; https://doi.org/10.3390/microorganisms10101959 - 30 Sep 2022
Cited by 7 | Viewed by 2693
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed [...] Read more.
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation. Full article
Show Figures

Figure 1

18 pages, 1253 KiB  
Review
Recognized and Emerging Features of Erythropoietic and X-Linked Protoporphyria
by Elena Di Pierro, Francesca Granata, Michele De Canio, Mariateresa Rossi, Andrea Ricci, Matteo Marcacci, Giacomo De Luca, Luisa Sarno, Luca Barbieri, Paolo Ventura and Giovanna Graziadei
Diagnostics 2022, 12(1), 151; https://doi.org/10.3390/diagnostics12010151 - 8 Jan 2022
Cited by 18 | Viewed by 4877
Abstract
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited disorders resulting from defects in two different enzymes of the heme biosynthetic pathway, i.e., ferrochelatase (FECH) and delta-aminolevulinic acid synthase-2 (ALAS2), respectively. The ubiquitous FECH catalyzes the insertion of iron into the protoporphyrin ring [...] Read more.
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited disorders resulting from defects in two different enzymes of the heme biosynthetic pathway, i.e., ferrochelatase (FECH) and delta-aminolevulinic acid synthase-2 (ALAS2), respectively. The ubiquitous FECH catalyzes the insertion of iron into the protoporphyrin ring to generate the final product, heme. After hemoglobinization, FECH can utilize other metals like zinc to bind the remainder of the protoporphyrin molecules, leading to the formation of zinc protoporphyrin. Therefore, FECH deficiency in EPP limits the formation of both heme and zinc protoporphyrin molecules. The erythroid-specific ALAS2 catalyses the synthesis of delta-aminolevulinic acid (ALA), from the union of glycine and succinyl-coenzyme A, in the first step of the pathway in the erythron. In XLP, ALAS2 activity increases, resulting in the amplified formation of ALA, and iron becomes the rate-limiting factor for heme synthesis in the erythroid tissue. Both EPP and XLP lead to the systemic accumulation of protoporphyrin IX (PPIX) in blood, erythrocytes, and tissues causing the major symptom of cutaneous photosensitivity and several other less recognized signs that need to be considered. Although significant advances have been made in our understanding of EPP and XLP in recent years, a complete understanding of the factors governing the variability in clinical expression and the severity (progression) of the disease remains elusive. The present review provides an overview of both well-established facts and the latest findings regarding these rare diseases. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

21 pages, 8713 KiB  
Article
Structure, Biosynthesis, and Biological Activity of Succinylated Forms of Bacteriocin BacSp222
by Justyna Śmiałek, Michał Nowakowski, Monika Bzowska, Oliwia Bocheńska, Agnieszka Wlizło, Andrzej Kozik, Grzegorz Dubin and Paweł Mak
Int. J. Mol. Sci. 2021, 22(12), 6256; https://doi.org/10.3390/ijms22126256 - 10 Jun 2021
Cited by 10 | Viewed by 3385
Abstract
BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory [...] Read more.
BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory and cytotoxic activities toward eukaryotic cells. In the present study, we demonstrate that BacSp222 is produced in several post-translationally modified forms, succinylated at the ε-amino group of lysine residues. Such modifications have not been previously described for any bacteriocins. NMR and circular dichroism spectroscopy studies have shown that the modifications do not alter the spatial structure of the peptide. At the same time, succinylation significantly diminishes its bactericidal and cytotoxic potential. We demonstrate that the modification of the bacteriocin is an effect of non-enzymatic reaction with a highly reactive intracellular metabolite, i.e., succinyl-coenzyme A. The production of succinylated forms of the bacteriocin depends on environmental factors and on the access of bacteria to nutrients. Our study indicates that the production of succinylated forms of bacteriocin occurs in response to the changing environment, protects producer cells against the autotoxicity of the excreted peptide, and limits the pathogenicity of the strain. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

22 pages, 8065 KiB  
Article
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement
by Giacomo Lazzarino, Angela Maria Amorini, Stefano Signoretti, Giuseppe Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Francesco Saverio Pastore, Valentina Di Pietro, Barbara Tavazzi and Antonio Belli
Int. J. Mol. Sci. 2019, 20(22), 5774; https://doi.org/10.3390/ijms20225774 - 16 Nov 2019
Cited by 45 | Viewed by 5310
Abstract
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of [...] Read more.
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance. Full article
Show Figures

Figure 1

18 pages, 3937 KiB  
Article
Succinate Coenzyme A Ligase Beta-Like Protein from Trichinella spiralis Suppresses the Immune Functions of Rat PBMCs In Vitro and Inhibits the Secretions of Interleukin-17 In Vivo
by Xiaoke Sun, Yin Li, Muhammad Ali-ul-Husnain Naqvi, Sana Zahra Naqvi, Wen Chu, Lixin Xu, Xiaokai Song, Xiangrui Li and Ruofeng Yan
Vaccines 2019, 7(4), 167; https://doi.org/10.3390/vaccines7040167 - 2 Nov 2019
Cited by 7 | Viewed by 3112
Abstract
Succinate Coenzyme A ligase beta-like protein (SUCLA-β) is a subunit of Succinyl-coenzyme A synthetase, which is involved in substrate synergism, unusual kinetic reaction in which the presence of SUCLA-β for one partial reaction stimulates another partial reaction. Trichinella spiralis is a parasitic nematode, [...] Read more.
Succinate Coenzyme A ligase beta-like protein (SUCLA-β) is a subunit of Succinyl-coenzyme A synthetase, which is involved in substrate synergism, unusual kinetic reaction in which the presence of SUCLA-β for one partial reaction stimulates another partial reaction. Trichinella spiralis is a parasitic nematode, which may hinder the development of autoimmune diseases. Immunomodulatory effects of SUCLA-β from Trichinella spiralis in the parasite-host interaction are unidentified. In this study the gene encoding T. spiralis SUCLA-β was cloned and expressed. Binding activities of recombinant T. spiralis SUCLA-β (rTs-SUCLA-β) to rat peripheral blood mononuclear cells (PBMCs) were checked by immunofluorescence assay (IFA) and the immuno-regulatory effects of rTs-SUCLA-β on cell migration, cell proliferation, nitric oxide (NO) production and apoptosis were observed by co-incubation of rTs-SUCLA-β with rat PBMCs in vitro, while cytokine secretions in rTs-SUCLA-β treated rats were evaluated in vivo. Furthermore, phagocytosis of monocytes was detected by flow cytometry and effects of rTs-SUCLA-β-induced protective immunity on T. spiralis adult worms and muscle larva were evaluated in rats. The IFA results revealed that rTs-SUCLA-β could bind to rat PBMCs. Treatment of PBMCs with rTs-SUCLA-β significantly decreased the monocyte phagocytosis, cell migration and cell proliferation, while NO production and apoptosis of PBMCs were unaffected. Results of the in vivo study showed that the IL-17 secretion decreased significantly after rTs-SUCLA-β administration in rats, while no significant effects were observed on the secretions of IFN-γ, IL-9, TGF-β and IL-4. Moreover, significant reduction of T. spiralis muscle larvae burden and significant increase in anti-rTs-SUCLA-β immunoglobulin level of IgG, IgG1 and IgG2a was observed in rTs-SUCLA-β-administered rats. The results indicated that rTs-SUCLA-β may be a potential target for controlling T. spiralis infection by suppressing the immune functions of the rat PBMCs and by reducing the parasite burden. Additionally it may also contribute to the treatment of autoimmune diseases and graft rejection by suppressing IL-17 immune response in the host. Full article
Show Figures

Figure 1

19 pages, 2008 KiB  
Article
Mitochondrial Proteomics of Antimony and Miltefosine Resistant Leishmania infantum
by Isabel M. Vincent, Gina Racine, Danielle Légaré and Marc Ouellette
Proteomes 2015, 3(4), 328-346; https://doi.org/10.3390/proteomes3040328 - 21 Oct 2015
Cited by 29 | Viewed by 6082
Abstract
Antimony (SbIII) and miltefosine (MIL) are important drugs for the treatment of Leishmania parasite infections. The mitochondrion is likely to play a central role in SbIII and MIL induced cell death in this parasite. Enriched mitochondrial samples from Leishmania promastigotes selected step by [...] Read more.
Antimony (SbIII) and miltefosine (MIL) are important drugs for the treatment of Leishmania parasite infections. The mitochondrion is likely to play a central role in SbIII and MIL induced cell death in this parasite. Enriched mitochondrial samples from Leishmania promastigotes selected step by step for in vitro resistance to SbIII and MIL were subjected to differential proteomic analysis. A shared decrease in both mutants in the levels of pyruvate dehydrogenase, dihydrolipoamide dehydrogenase, and isocitrate dehydrogenase was observed, as well as a differential abundance in two calcium-binding proteins and the unique dynamin-1-like protein of the parasite. Both mutants presented a shared increase in the succinyl-CoA:3-ketoacid-coenzyme A transferase and the abundance of numerous hypothetical proteins was also altered in both mutants. In general, the proteomic changes observed in the MIL mutant were less pronounced than in the SbIII mutant, probably due to the early appearance of a mutation in the miltefosine transporter abrogating the need for a strong mitochondrial adaptation. This study is the first analysis of the Leishmania mitochondrial proteome and offers powerful insights into the adaptations to this organelle during SbIII and MIL drug resistance. Full article
Show Figures

Figure 1

20 pages, 269 KiB  
Review
Vitamin B12 Metabolism during Pregnancy and in Embryonic Mouse Models
by Maira A. Moreno-Garcia, David S. Rosenblatt and Loydie A. Jerome-Majewska
Nutrients 2013, 5(9), 3531-3550; https://doi.org/10.3390/nu5093531 - 10 Sep 2013
Cited by 18 | Viewed by 11612
Abstract
Vitamin B12 (cobalamin, Cbl) is required for cellular metabolism. It is an essential coenzyme in mammals for two reactions: the conversion of homocysteine to methionine by the enzyme methionine synthase and the conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme methylmalonyl-CoA mutase. [...] Read more.
Vitamin B12 (cobalamin, Cbl) is required for cellular metabolism. It is an essential coenzyme in mammals for two reactions: the conversion of homocysteine to methionine by the enzyme methionine synthase and the conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme methylmalonyl-CoA mutase. Symptoms of Cbl deficiency are hematological, neurological and cognitive, including megaloblastic anaemia, tingling and numbness of the extremities, gait abnormalities, visual disturbances, memory loss and dementia. During pregnancy Cbl is essential, presumably because of its role in DNA synthesis and methionine synthesis; however, there are conflicting studies regarding an association between early pregnancy loss and Cbl deficiency. We here review the literature about the requirement for Cbl during pregnancy, and summarized what is known of the expression pattern and function of genes required for Cbl metabolism in embryonic mouse models. Full article
(This article belongs to the Special Issue Vitamin B12 and Human Health)
Show Figures

Figure 1

Back to TopTop