Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = substrate competitive inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2445 KB  
Article
A Novel Small-Molecule GRP94 Modulator Increases PCSK9 Secretion and Promotes LDLR Degradation
by Wenjing Yan, Yongwang Zhong and Shengyun Fang
Life 2025, 15(8), 1321; https://doi.org/10.3390/life15081321 - 20 Aug 2025
Viewed by 189
Abstract
The endoplasmic reticulum (ER) maintains protein homeostasis through chaperone-mediated folding and ER-associated degradation (ERAD). Disruption of this quality control, particularly involving the ER chaperone GRP94, contributes to diseases such as hypercholesterolemia, cancer, and immune disorders, where defective GRP94-dependent folding and the trafficking of [...] Read more.
The endoplasmic reticulum (ER) maintains protein homeostasis through chaperone-mediated folding and ER-associated degradation (ERAD). Disruption of this quality control, particularly involving the ER chaperone GRP94, contributes to diseases such as hypercholesterolemia, cancer, and immune disorders, where defective GRP94-dependent folding and the trafficking of client proteins like PCSK9, integrins, and Toll-like receptors drive pathology. Here, we characterize NSC637153 (cp153), a small molecule identified in a drGFP-based ERAD dislocation screen, as a selective probe of GRP94-dependent processes. cp153 inhibits the dislocation of ERAD substrates, preferentially affecting luminal clients, increases PCSK9 secretion, and promotes LDLR degradation. Unlike ATP-competitive HSP90 inhibitors, cp153 does not induce HSP70 or destabilize AKT, suggesting that it perturbs GRP94 function by interfering with client interaction or folding. The identification of cp153 provides a useful tool to for probing GRP94’s role in protein folding, trafficking, ER quality control, and disease-relevant signaling pathways, and supports the development of client-selective GRP94-targeted therapies. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

29 pages, 6460 KB  
Article
Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation
by Amanda El Khoury and Christos Papaneophytou
Molecules 2025, 30(14), 2923; https://doi.org/10.3390/molecules30142923 - 10 Jul 2025
Viewed by 961
Abstract
Lactate dehydrogenase (LDH) catalyzes the reversible interconversion of pyruvate and lactate, coupled with the redox cycling of NADH and NAD+. While LDHA has been extensively studied as a therapeutic target, particularly in cancer, due to its role in the Warburg effect, [...] Read more.
Lactate dehydrogenase (LDH) catalyzes the reversible interconversion of pyruvate and lactate, coupled with the redox cycling of NADH and NAD+. While LDHA has been extensively studied as a therapeutic target, particularly in cancer, due to its role in the Warburg effect, LDHB remains underexplored, despite its involvement in the metabolic reprogramming of specific cancer types, including breast and lung cancers. Most known LDH inhibitors are designed against the LDHA isoform and act competitively at the active site. In contrast, LDHB exhibits distinct kinetic properties, substrate preferences, and structural features, warranting isoform-specific screening strategies. In this study, 115 natural compounds previously reported as LDHA inhibitors were systematically evaluated for LDHB inhibition using an integrated in silico and in vitro approach. Virtual screening identified 16 lead phytochemicals, among which luteolin and quercetin exhibited uncompetitive inhibition of LDHB, as demonstrated by enzyme kinetic assays. These findings were strongly supported by molecular docking analyses, which revealed that both compounds bind at an allosteric site located at the dimer interface, closely resembling the binding mode of the established LDHB uncompetitive inhibitor AXKO-0046. In contrast, comparative docking against LDHA confirmed their active-site binding and competitive inhibition, underscoring their isoform-specific behavior. Our findings highlight the necessity of assay conditions tailored to LDHB’s physiological role and demonstrate the application of a previously validated colorimetric assay for high-throughput screening. This work lays the foundation for the rational design of selective LDHB inhibitors from natural product libraries. Full article
Show Figures

Graphical abstract

24 pages, 8064 KB  
Article
Design and Synthesis of Novel 6-(Substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole Compounds as Tyrosinase Inhibitors: In Vitro and In Vivo Insights
by Hyeon Seo Park, Hee Jin Jung, Hye Soo Park, Hye Jin Kim, Sang Gyun Noh, Yujin Park, Pusoon Chun, Hae Young Chung and Hyung Ryong Moon
Molecules 2025, 30(7), 1535; https://doi.org/10.3390/molecules30071535 - 30 Mar 2025
Viewed by 781
Abstract
The 2,4-dihydroxyphenyl group is commonly present in the chemical structures of potent tyrosinase inhibitors. Based on this observation, a series of 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds 113 were designed and synthesized as potential tyrosinase inhibitors. Among these, compounds 5 and 9 [...] Read more.
The 2,4-dihydroxyphenyl group is commonly present in the chemical structures of potent tyrosinase inhibitors. Based on this observation, a series of 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds 113 were designed and synthesized as potential tyrosinase inhibitors. Among these, compounds 5 and 9 strongly inhibited mushroom tyrosinase activity. Particularly, compound 9 exhibited nanomolar IC50 values regardless of the substrate used, whereas kojic acid yielded IC50 values of 15.99–26.18 μM. Kinetic studies on mushroom tyrosinase revealed that compounds 5 and 9 competitively inhibited tyrosinase activity, findings further corroborated by in silico docking analysis. In B16F10 cell-based experiments, both compounds effectively inhibited the cellular tyrosinase activity and melanin formation. These inhibitory effects were confirmed through in situ cellular tyrosinase activity assays. Compound 9 exhibited strong antioxidant activity by scavenging radicals, suggesting that its ability to reduce melanin production may be attributed to a combination of its antioxidant and tyrosinase inhibitory properties. Additionally, five compounds, including compound 5, demonstrated effective depigmentation activity in vivo in zebrafish embryos, and their depigmentation efficacy was similar to that of kojic acid, even at concentrations hundreds of times lower. These findings suggest that 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds may be promising anti-melanogenic agents. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

20 pages, 3983 KB  
Article
Inhibition Mechanism of Lecithin-Dependent Hemolysin from Vibrio parahaemolyticus by Flavonoids: An Enzyme Kinetic and Structural Approach
by Francisco J. Vazquez-Armenta, Andres Alvarez-Armenta, Rocio Sugich-Miranda, Fernando Ayala-Zavala, Adriana Morales-Ortega, Aldo A. Arvizu-Flores and Alonso A. Lopez-Zavala
Catalysts 2025, 15(3), 257; https://doi.org/10.3390/catal15030257 - 7 Mar 2025
Viewed by 929
Abstract
Vibrio parahaemolyticus is a pathogenic bacterium that threatens food safety by infecting humans and marine organisms. Among its virulence factors, lecithin-dependent hemolysin (vpLDH) has been identified as a promising target for attenuating its pathogenicity. This study explores the inhibitory mechanisms of [...] Read more.
Vibrio parahaemolyticus is a pathogenic bacterium that threatens food safety by infecting humans and marine organisms. Among its virulence factors, lecithin-dependent hemolysin (vpLDH) has been identified as a promising target for attenuating its pathogenicity. This study explores the inhibitory mechanisms of three natural flavonoids—quercetin, morin, and EGCG—on LDH using enzyme kinetics, fluorescence quenching, and molecular dynamics simulations. The flavonoids quercetin, morin, and EGCG inhibited vpLDH phospholipase A2 activity via a competitive mechanism with inhibition constants of 17.1, 17.27, and 24.24 µM, respectively. Fluorescence quenching experiments confirmed that the evaluated flavonoids formed a stable, non-fluorescent complex (1:1 stoichiometry) with vpLDH. Also, via Stern–Volmer plots, the dissociation constant was calculated (Kd); quercetin showed the highest affinity, followed by morin and EGCG. Molecular dynamics simulations revealed that all evaluated ligands bind to the vpLDH active site vicinity with oscillations < 1.7 nm (100 ns), indicating that both the flavonoids and substrate vpLDH complexes are stable. These findings demonstrate that quercetin, morin, and EGCG are stable competitive inhibitors, highlighting their potential as natural anti-virulence agents against V. parahaemolyticus. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

27 pages, 5828 KB  
Article
Τhiazolidine-4-One Derivatives with Variable Modes of Inhibitory Action Against DPP4, a Drug Target with Multiple Activities and Established Role in Diabetes Mellitus Type II
by Dionysia Amanatidou, Phaedra Eleftheriou, Anthi Petrou, Athina Geronikaki and Theodoros Lialiaris
Pharmaceuticals 2025, 18(1), 52; https://doi.org/10.3390/ph18010052 - 4 Jan 2025
Cited by 1 | Viewed by 2690
Abstract
Background/Objectives: DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent [...] Read more.
Background/Objectives: DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues. Despite the research, a low number of uncompetitive and non-competitive inhibitors, which could be of worth for pharmaceutical and mechanism studies, was mentioned. Methods: In the present study sixteen 3-(benzo[d]thiazol-2-yl)-2-aryl thiazolidin-4-ones were selected for evaluation, based on structural characteristics and docking analysis and were tested in vitro for DPP4 inhibitory action using H-Gly-Pro-amidomethyl coumarin substrate. Their mode of inhibition was also in vitro explored. Results: Twelve compounds exhibited IC50 values at the nM range with the best showing IC50 = 12 ± 0.5 nM, better than sitagliptin. Most compounds exhibited a competitive mode of inhibition. Inhibition modes of uncompetitive, non-competitive, and mixed type were also identified. Docking analysis was in accordance with the in vitro results, with a linear correlation of logIC50 with a Probability of Binding Factor(PF) derived using docking analysis to a specific target box and to the whole enzyme. According to the docking results, two probable sites of binding for uncompetitive inhibitors were highlighted in the wider area of the active site and in the propeller loop. Conclusions: Potent inhibitors with IC50 at the nM range and competitive, non-competitive, uncompetitive, and mixed modes of action, one better than sitagliptin, were found. Docking analysis was used to estimate probable sites and ways of binding. However, crystallographic or NMR studies are needed to elucidate the exact way of binding especially for uncompetitive and non-competitive inhibitors. Full article
(This article belongs to the Special Issue Enzyme Inhibitors: Potential Therapeutic Approaches)
Show Figures

Graphical abstract

13 pages, 2429 KB  
Article
Non-Steroidal Anti-Inflammatory Drugs Are Inhibitors of the Intestinal Proton-Coupled Amino Acid Transporter (PAT1): Ibuprofen and Diclofenac Are Non-Translocated Inhibitors
by Carsten Uhd Nielsen, Sebastian Jakobsen and Maria L. Pedersen
Pharmaceutics 2025, 17(1), 49; https://doi.org/10.3390/pharmaceutics17010049 - 2 Jan 2025
Viewed by 1245
Abstract
Background/Objectives: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with [...] Read more.
Background/Objectives: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. Methods: The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in X. laevis oocytes injected with hPAT1 cRNA, measuring induced currents using the two-electrode voltage clamp technique. The molecular interaction between NSAIDs and hPAT1 was investigated using an AlphaFold2 model and molecular docking. Results: NSAIDs such as ibuprofen, diclofenac, and flurbiprofen inhibited proline uptake via hPAT1, with IC50 values of 954 (logIC50 2.98 ± 0.1) µM, 272 (logIC50 2.43 ± 0.1) µM, and 280 (logIC50 2.45 ± 0.1) µM, respectively. Ibuprofen acted as a non-competitive inhibitor of hPAT1-mediated proline transport. In hPAT1-expressing oocytes, ibuprofen and diclofenac did not induce inward currents, and inhibited inward currents caused by proline. Molecular modeling pointed to a binding mode involving an allosteric site. Conclusions: NSAIDs interact with hPAT1 as non-translocated non-competitive inhibitors, and molecular modeling points to a binding mode involving an allosteric site distinct from the substrate binding site. The present findings could be used as a starting point for developing specific hPAT1 inhibitors. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

19 pages, 11122 KB  
Article
Novel Selectable Marker Sesquiterpenoid Antibiotic Pentalenolactone
by Arina A. Nikandrova, Anna D. Petriakova, Anton R. Izzi, Garegin A. Petrosyan, Vadim N. Tashlitsky, Vera A. Alferova, Tatiana V. Panova, Maria G. Khrenova, Mikhail V. Biryukov, Yuliya V. Zakalyukina, Maria I. Zvereva, Dmitrii A. Lukianov and Petr V. Sergiev
Int. J. Mol. Sci. 2024, 25(24), 13328; https://doi.org/10.3390/ijms252413328 - 12 Dec 2024
Viewed by 1174
Abstract
Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the Actinomycetota phylum. The [...] Read more.
Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the Actinomycetota phylum. The actinobacterial strains isolated from habitats that have not been well studied are of great interest. Due to high resource competition, antibiotics are now considered a ‘trump card in the game of life’ due to their presence in natural substrates with limited nutrients. Potentially, strains isolated from such habitats can be producers of novel or poorly studied antibiotics. In the current research, we identified the strain Streptomyces sp. AP22 from the soils of the Akhshatyrsky Gorge, which is capable of producing pentalenolactone. This study describes the phenotypic and morphological characteristics of Streptomyces sp. AP22 and its biological activity. Pentalenolactone is a known inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important enzyme involved in glycolysis. We identified a previously unknown mutation in the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase that confers resistance to this antibiotic compound. This antibiotic is not used in clinical practice, so its application as a selectable marker will not lead to the creation of pathogens resistant to clinically relevant antibiotics. In this case, the selectable marker is based on a genetic construct containing the glyceraldehyde-3-phosphate dehydrogenase gene with a resistance mutation. The use of this selectable marker can be applied to various genetic and molecular techniques, such as cloning and transformation. This can help to facilitate genetic and molecular biology studies of strains resistant to standard selectable markers such as kanamycin or ampicillin. Full article
(This article belongs to the Special Issue Antimicrobial Agents and Resistance Mechanisms)
Show Figures

Figure 1

13 pages, 989 KB  
Article
Molecular Interactions of the Plant Steroid Hormone Epibrassinolide on Human Drug-Sensitive and Drug-Resistant Small-Cell Lung Carcinoma Cells
by David Sadava and Shiuan Chen
Cancers 2024, 16(22), 3812; https://doi.org/10.3390/cancers16223812 - 13 Nov 2024
Cited by 2 | Viewed by 1302
Abstract
Background: Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a [...] Read more.
Background: Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a GSK-mediated signaling pathway, similar to Wnt-β-catenin signaling in animal cells that is elevated in cancer cells. Methods: This mechanistic parallel prompted investigations of the molecular interactions of EB on drug-sensitive (H69) and multi-drug-resistant (VPA) SCLC cells. Cellular and molecular investigations were performed. Results: Pharmacologic interactions between EB and the Wnt signaling inhibitors IGC-011 and PRI-724 were determined by the combination index method and showed antagonism, indicating that EB acts on the same pathway as these inhibitors. Following incubation of drug-sensitive and drug-resistant SCLC cells with EB, there was a reduction in β-catenin (e.g., 3.8 to 0.7 pg/µg protein), accompanied by a reduction in β-catenin promoter activity, measured by firefly luciferase-coupled promoter element transfection. Cellular β-catenin concentration is regulated by the active form of GSK3β. In Wnt signaling, active GSK3β is converted to inactive pGSK3β, thereby increasing the concentration of β-catenin. After incubation of SCLC cells with EB, there was a reduction in the inactive form (pGSK3β) and a relative increase in the active form (GSK3β). In vitro enzyme assays showed that EB did not inhibit purified GSK3β, but there was non-competitive inhibition when SCLC cell extracts were used as the source of enzyme. This indirect inhibition by EB indicates that it may act on the Wnt pathway by blocking the phosphorylation of GSK3β. The protein levels of three SCLC tumor markers, namely, NSE, CAV1, and MYCL1, were elevated in drug-resistant SCLC cells. EB incubation led to a significant reduction in the levels of the three markers. Two major effects of EB on SCLC cells are the promotion of apoptosis and the reversal of drug resistance. Transcriptional analyses showed that after exposure of SCLC cells to EB, there were increases in the expression of genes encoding apoptotic inducers (e.g., BAX and FAS) and effectors (e.g., CASP3) and reductions in the expression of genes encoding apoptosis inhibitors (e.g., survivin). PGP1 and MRP1, two membrane efflux pumps expressed in SCLC cells, were elevated in drug-resistant cells, but EB incubation did not affect these protein levels. Cellular assays of drug efflux by PGP1 showed an increase in drug-resistant cells, but EB did not alter efflux activity. Following exposure to human liver microsomes, EB was metabolized by NADPH-dependent oxidation and UDPG-dependent glucuronidation, as evidenced by the elimination of EB cytotoxicity against SCLC cells. Conclusions: Taken together, these data indicate that EB, a steroid hormone in plants consumed in the human diet, is pharmacologically active in drug-sensitive and drug-resistant SCLC cells in the Wnt signaling pathway, alters apoptotic gene expression, and is a substrate for microsomal modifications. Full article
Show Figures

Figure 1

13 pages, 851 KB  
Article
Natural Inhibitors of the Polyphenol Oxidase Activity Isolated from Shredded Stored Iceberg Lettuce (Lactuca sativa L.)
by Małgorzata Sierocka and Michał Świeca
Appl. Sci. 2024, 14(21), 9980; https://doi.org/10.3390/app14219980 - 31 Oct 2024
Cited by 1 | Viewed by 3021
Abstract
Polyphenol oxidase (PPO) is the key enzyme responsible for enzymatic browning. To extend the shelf life of shredded lettuce, knowledge about biochemical PPO properties is required. The characterization of the enzyme from shredded, cold-stored lettuce was performed using pyrocatechol and the endogenous substrate [...] Read more.
Polyphenol oxidase (PPO) is the key enzyme responsible for enzymatic browning. To extend the shelf life of shredded lettuce, knowledge about biochemical PPO properties is required. The characterization of the enzyme from shredded, cold-stored lettuce was performed using pyrocatechol and the endogenous substrate (ES) (lettuce phenolics). The optimum pH and temperature for PPO activity were 5 and 50 °C, respectively. Natural infusions used as the PPO inhibitors (IC50) were ranked as follows: lovage (0.09%), marjoram (0.13%), orange peel (0.14%), oregano (0.15%), basil (0.22%), lemon peel (0.24%), parsley leaves (0.58%), and wheat bran (1.06%). Among well-recognized PPO inhibitors, kojic acid (0.00043%), ascorbic acid (0.00053%), and L-cysteine (0.00085%) were the most effective. Among the metal ions, MgCl2, FeCl2, and CaCl2 at 0.5 mM inhibited the PPO activity most effectively (by 28%, 27%, and 21%, respectively). The substrate used (pyrocatechol/ES) significantly influenced the enzyme inhibition. Using pyrocatechol, the lovage extract acted in a mixed mode (Kmi = 27.8 mM, Vmaxi = 2.03 mU), while the ES acted according to the non-competitive mode (Kmi= 0.57 mg GAE/mL, Vmax = 0.0046 U). The study confirms that natural extracts are more effective than L-cysteine when the ES is used. A pre-storage treatment with an infusion may be potentially used to improve the quality of shredded lettuce. Full article
Show Figures

Figure 1

29 pages, 4597 KB  
Review
From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides—Mechanisms and Applications
by Du-Min Jo, Fazlurrahman Khan, Seul-Ki Park, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Ji-Yul Kim, Gun-Woo Oh, Grace Choi, Dae-Sung Lee and Young-Mog Kim
Mar. Drugs 2024, 22(10), 449; https://doi.org/10.3390/md22100449 - 30 Sep 2024
Cited by 9 | Viewed by 5250
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives [...] Read more.
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs’ active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides’ interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases. Full article
(This article belongs to the Special Issue Marine Proteins and Enzymes: Bioactivities and Medicinal Applications)
Show Figures

Figure 1

20 pages, 7443 KB  
Article
Interactions between Inhibitors and 5-Lipoxygenase: Insights from Gaussian Accelerated Molecular Dynamics and Markov State Models
by Yuyang Liu, Kaiyu Wang, Fuyan Cao, Nan Gao and Wannan Li
Int. J. Mol. Sci. 2024, 25(15), 8295; https://doi.org/10.3390/ijms25158295 - 30 Jul 2024
Cited by 4 | Viewed by 2322
Abstract
Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-β-boswellic acid (AKBA) acts [...] Read more.
Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-β-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However, the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound in the protein’s active pocket, occupying the active site and inhibiting the catalytic activity of the 5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced significant changes at the distal active site, leading to a conformational shift of residues 168–173 from a loop to an α-helix and significant negative correlated motions between residues 285–290 and 375–400, reducing the distance between these segments. In the simulation, the volume of the active cavity in the stable conformation of the protein was reduced, hindering the substrate’s entry into the active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov state models (MSM) were used to identify and classify the metastable states of proteins, revealing the transition times between different conformational states. In summary, this study provides theoretical insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives for the development of novel inhibitors specifically targeting 5LOX, with potential implications for anti-inflammatory drug development. Full article
Show Figures

Figure 1

17 pages, 1742 KB  
Article
Human Neutrophil Elastase: Characterization of Intra- vs. Extracellular Inhibition
by Denise Birk, Erika Siepmann, Stefan Simon and Christian P. Sommerhoff
Int. J. Mol. Sci. 2024, 25(14), 7917; https://doi.org/10.3390/ijms25147917 - 19 Jul 2024
Cited by 1 | Viewed by 2335
Abstract
Neutrophil elastase (HNE), like other members of the so-called GASPIDs (Granule-Associated Serine Peptidases of Immune Defense), is activated during protein biosynthesis in myeloid precursors and stored enzymatically active in cytoplasmic granules of resting neutrophils until secreted at sites of host defense and inflammation. [...] Read more.
Neutrophil elastase (HNE), like other members of the so-called GASPIDs (Granule-Associated Serine Peptidases of Immune Defense), is activated during protein biosynthesis in myeloid precursors and stored enzymatically active in cytoplasmic granules of resting neutrophils until secreted at sites of host defense and inflammation. Inhibitors thus could bind to the fully formed active site of the protease intracellularly in immature progenitors, in circulating neutrophils, or to HNE secreted into the extracellular space. Here, we have compared the ability of a panel of diverse inhibitors to inhibit HNE in the U937 progenitor cell line, in human blood-derived neutrophils, and in solution. Most synthetic inhibitors and, surprisingly, even a small naturally occurring proteinaceous inhibitor inhibit HNE intracellularly, but the extent and dynamics differ markedly from classical enzyme kinetics describing extracellular inhibition. Intracellular inhibition of HNE potentially affects neutrophil functions and has side effects, but it avoids competition of inhibitors with extracellular substrates that limit its efficacy. As both intra- and extracellular inhibition have advantages and disadvantages, the quantification of intracellular inhibition, in addition to classical enzyme kinetics, will aid the design of novel, clinically applicable HNE inhibitors with targeted sites of action. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

13 pages, 2536 KB  
Article
Myricetin Acts as an Inhibitor of Type II NADH Dehydrogenase from Staphylococcus aureus
by Jia-Le Zhou, Hao-Han Chen, Jian Xu, Ming-Yu Huang, Jun-Feng Wang, Hao-Jie Shen, Sheng-Xiang Shen, Cheng-Xian Gao and Chao-Dong Qian
Molecules 2024, 29(10), 2354; https://doi.org/10.3390/molecules29102354 - 16 May 2024
Cited by 7 | Viewed by 1992
Abstract
Background: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from [...] Read more.
Background: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. Results: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 μM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 μg/mL. Time–kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. Conclusions: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin. Full article
Show Figures

Figure 1

13 pages, 3461 KB  
Article
Comparative Transcriptomic Analysis Revealing the Potential Mechanisms of Erythritol-Caused Mortality and Oviposition Inhibition in Drosophila melanogaster
by Lei Li, Hongrui Duo, Xiaoxi Zhang, Huiming Gong, Bo Li and Youjin Hao
Int. J. Mol. Sci. 2024, 25(7), 3738; https://doi.org/10.3390/ijms25073738 - 27 Mar 2024
Cited by 1 | Viewed by 1949
Abstract
Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol [...] Read more.
Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 965 KB  
Article
The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine
by Robert Schwarcz, Ann Foo, Korrapati V. Sathyasaikumar and Francesca M. Notarangelo
Int. J. Mol. Sci. 2024, 25(7), 3679; https://doi.org/10.3390/ijms25073679 - 26 Mar 2024
Cited by 11 | Viewed by 3112
Abstract
The gut–brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, [...] Read more.
The gut–brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank’s Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1–3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism. Full article
(This article belongs to the Special Issue Recent Research in Gut Microbiota–Gut–Brain Axis)
Show Figures

Graphical abstract

Back to TopTop