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Abstract: Erythritol has shown excellent insecticidal performance against a wide range of insect species,
but the molecular mechanism by which it causes insect mortality and sterility is not fully understood.
The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol
for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing.
Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene
(Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase
gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5)
were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including
Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly
down-regulated or even showed no expression. However, there were no significant differences in the
expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big
brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05).
We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and
enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing
death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality
of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and
sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical
basis for the application of erythritol as an environmentally friendly pesticide.
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1. Introduction

Pesticides play a crucial role in agricultural production by minimizing losses and
enhancing crop yield and quality [1]. While synthetic pesticides currently dominate the
market, only a mere 1% effectively targets pests on the intended plants [2]. The excessive
use of these chemicals results in a significant amount of residuals spreading to non-target
plants and environmental surroundings, eventually entering the food chain and posing
risks to human health [3,4]. This underscores the urgent global need for environmentally
friendly and efficient alternatives.

Polyol sweeteners have recently attracted significant interest as pesticides. Erythritol
is a four-carbon sugar alcohol produced by a variety of plants, fungi and microbes [5]. It
has been shown to be toxic to a wide variety of insects, including the fruit fly, termite, house
fly, stable fly, pear psylla, mosquito, and ant [6–11]. Drosophila melanogaster shows a dietary
preference for erythritol, which not only causes death in a concentration-dependent pattern
but also impairs their motility [12]. Donnell et al. reported that erythritol dramatically sup-
presses the egg production of female D. melanogaster, arrests larval development, prevents
them from reaching the pupa stage and eventually kills them [13]. Similarly, erythritol was
effective in reducing the survival and fecundity of Drosophila suzukii as well as affecting its
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physiological excretion [14]. Erythritol remarkably decreased the survival of ants (Solenopsis
invicta Buren, Tetramorium immigrans Santschi, Formica glacialis Wheeler, Camponotus subar-
batus Emery, and Camponotus chromaiodes Bolton) in a concentration-dependent manner [11].
Interestingly, worker ants bring erythritol to the colony and feed it to their members at
toxic doses, resulting in their death. Furthermore, erythritol could significantly impair D.
suzukii motility as well as the walking frequency and flight ability of Bactrocera dorsalis [15].

Although some studies have indicated that erythritol ingestion can induce insect
mortality and affect their reproductive capabilities, the precise molecular mechanisms un-
derlying these phenomena remain unresolved. Several hypotheses regarding the molecular
mechanisms have been proposed: (1) erythritol remains unhydrolyzed in the midgut but ac-
cumulates in the hemolymph, resulting in elevated osmolality and eventual mortality [16];
(2) erythritol impedes the absorption of other nutrients in the midgut, causing starvation
and death [12]; (3) erythritol decelerates food evacuation, inducing a sense of fullness in
insects and reducing feeding, ultimately resulting in death by starvation [17]; (4) ingestion
of erythritol triggers excessive reflux, resulting in dehydration and eventual demise [17];
and (5) erythritol induces alterations in the microbial community within the midgut [18].

In this study, transcriptome sequencing was performed on D. melanogaster (henceforth
referred to as the fly) fed a normal medium and erythritol medium. Through comparative
transcriptomic analysis, we found that the energy metabolic pathway was up-regulated
and genes related to egg synthesis were severely down-regulated in erythritol-fed flies.
Our findings elucidated that the cause of fly mortality was primarily attributed to energy
deficiency rather than a significant alteration in osmolality. Moreover, the energy deficiency
compelled the flies to allocate their limited energy towards basic survival rather than
reproductive processes.

2. Results
2.1. Effect of Erythritol on Fly Survival and Egg Production

The survival rate of flies fed with erythritol was significantly shorter than those in the
control group (Figure 1). Flies fed erythritol medium started to die on day two and had a
mortality rate of about 60% on day four, while flies fed normal medium had a mortality
rate of 60% on day fourteen. In addition, flies fed erythritol medium were significantly less
motile than flies fed normal medium and were unable to lay eggs, indicating that erythritol
significantly impaired the survival and egg production.
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2.2. Effect of Erythritol on Gene Expression

Erythritol-fed flies showed noticeably altered gene expression patterns. As shown in
Figure 2, for T72h (flies treated with erythritol for 72 h) vs. CK72h (CK72h: flies treated
without erythritol for 72 h), 1276 genes were down-regulated, while 581 genes were up-
regulated. As for T96h (flies treated with erythritol for 96 h) vs. CK96h (flies treated without
erythritol for 96 h), 1020 genes were down-regulated, whereas 599 genes were up-regulated.
It is well demonstrated that erythritol has a significant impact on gene expression in the fly,
potentially leading to impaired survival, motility, and egg laying. Key genes potentially
affected by erythritol are listed in Table 1.
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Figure 2. (A) Differentially expressed genes between erythritol-treated flies and control flies after
72 h based on a log2fold change >1.5 or <-1.5, and padj < 0.05. (B) Differentially expressed genes
between erythritol-treated flies and control flies after 96 h based on a log2fold change >1.5 or <-1.5,
and padj < 0.05.

Table 1. Detailed information of key differentially expressed genes.

Gene Enriched Tissue Category Functions Log2FC

Dilp2
head insulin-like peptide carbohydrates/lipids metabolism

−2.4↓
Dilp3 −1.8↓
Dilp5 −2.6↓
Akh body adipokinetic hormone carbohydrates/lipids metabolism 1.6↑

Mal-B1 trachea α-glucosidase carbohydrate metabolism 4.6↑
Mal-B2 fat body α-glucosidase carbohydrate metabolism 2.1↑
Bmm triglyceride lipase lipid/triglyceride metabolism 2.8↑

Amyrel

gut

α-amylase

carbohydrate metabolism

4.9↑
Mal-A1

α-glucosidase

3.0↑
Mal-A2 3.7↑
Mal-A3 4.3↑
Mal-A4 6.0↑
Mal-A6 2.7↑
Mal-A7 2.9↑
Mal-A8 2.3↑
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Table 1. Cont.

Gene Enriched Tissue Category Functions Log2FC

Dec-1

ovary

defective chorion eggshell assembly −8.21↓
Vm26Ab

vitelline membrane major early eggshell protein

−10.7↓
Vm26Ac −9.3↓
Vm26Aa −11.0↓
Vm34Ca −12.3↓
Vm32E −12.2↓

Psd act with the vitelline of eggshell −9.0↓
Cp7Fb

chorion protein egg protection

−6.5↓
Cp7Fc −6.6↓
Cp15 −4.9↓
Cp36 −4.0↓

fs(1)M3 −2.3↓
fs(1)N −2.2↓

CG1077

chorion containing eggshell formation

−5.0↓
CG4009 −5.5↓

CG14187 −6.4↓
CG13998 −5.5↓
CG11381

egg chorion
−6.1↓

CG15571 −2.5↓
CG15570 −5.4↓

2.3. GO Enrichment Results of Differentially Expressed Genes

GO enrichment results were ranked according to their p-values from smallest to largest.
The top 20 GO enrichment results were performed using Metascape (Figure 3). Entries
for body morphogenesis, humoral immune response, xenobiotic metabolism, hormone
metabolism, and pheromone response were enriched in the biological processes (BPs),
suggesting that erythritol induced a series of immune responses and affected fly growth.
Entries associated with extracellular space and eggshell production were grouped into cell
components (CCs). Oxidoreductase activity and hormone activity enriched in the molecule
function (MF) category may be related to the immune response in the BP. Triglyceride
lipase activity and maltase/α-glucosidase exhibited 45% and 90% of DEGs, indicating the
abnormal energy metabolism of the fly. Egg chorion exhibited 60% of DEGs and all of the
genes in the egg coat showed significant differential expression, indicating that the egg
formation of the fly was impeded.
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2.4. Enrichment Results of KEGG Pathways for Differentially Expressed Genes

As shown in Figure 4, enrichment of the Toll and Imd signaling pathway, drug
metabolism, and xenobiotics metabolism pathway imply that erythritol is recognized as
an exogenous substance, subsequently triggering a series of defense responses in the fly.
Nine genes (Amyrel, Mal-A1, Mal-A2, Mal-A3, Mal-A4, Mal-A7, Mal-A8, Mal-B1 and Mal-B2)
associated with the starch and sucrose metabolism pathway were highly up-regulated in
flies fed with erythritol. Genes related to the insect hormone pathway, folate biosynthesis,
and amino acid metabolic processes were also enriched.
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pathways to all genes in KEGG pathways, +: up-regulated pathway, −: down-regulated pathway.

2.5. Key Genes Associated with Carbohydrate Metabolism

Genes associated with carbohydrate metabolism were further analyzed to explore
the effects of erythritol on fly mortality. The differentially expressed gene Amyrel was
significantly up-regulated in flies exposed to erythritol. Amyrel possesses both hydrolytic
α-amylase and a 4-α-glucosyltransferase transglycosylation activity that hydrolyzes starch
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and related polysaccharides into maltose and maltotriose. It is noteworthy that eight DEGs
encoding maltase genes (Mal-A1, Mal-A2, Mal-A3, Mal-A4, Mal-A7, Mal-A8, Mal-B1 and
Mal-B2) were found. Maltase genes hydrolyze glucose and maltose to produce energy.
Up-regulated gene expression and activation of related metabolic pathways indicated an
abnormal energy state in flies fed with erythritol. PPI (protein–protein interaction) network
of maltase genes is shown in Figure 5.
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Figure 5. Interactions of key enzymes associated with starch and sucrose metabolism. The amylase
gene Amyrel is linked to all other maltase genes in the pathway and is a hub gene of the pathway.
Mal-A1, Mal-A2, Mal-A3, Mal-A4, Mal-A7, and Mal-A8 are all linked to each other.

2.6. Tissue-Specific Enrichment Results of Key Genes

To understand the roles of key genes involved in mortality and sterility, their tissue-
specific enrichment results were predicted (Figure 6). In statistical results from the Fly
Cell Atlas data and deconvolution results of RNA-Seq data, the amylase gene (Amyrel)
and six maltase genes (Mal-A1, Mal-A2, Mal-A3, Mal-A4, Mal-A7, and Mal-A8) were highly
expressed in the gut. Seventeen genes associated with eggshell assembly (Dec-1, Vm26Aa,
Vm26Ab, Vm26Ac, Vm34Ca, psd, Cp7Fb, Cp7Fc, Cp15, Vm32E, CG11381, CG15571, CG15570,
CG1077, CG4009, CG14187, and CG13998) were highly expressed in the ovary. The expres-
sion of insulin-like peptide gene Dilp2 was significantly increased in the head.
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Figure 6. Heatmap of RNA-Seq data deconvolution results. The expression values of the genes in the
17 tissues were normalized to a range of 1 to 0, with 1 indicating the largest expression value. Mal-A1,
Mal-A2, Mal-A3, Mal-A4, Mal-A7, Mal-A8, and Amyrel are highly expressed in the gut. Dilp2 is highly
expressed in the head. Other genes associated with egg laying are highly expressed in the ovary.

2.7. qRT-PCR Validation

To validate the reliability of DEGs identified in transcriptome analysis, the expression
profiles of ten key genes associated with starch metabolism (Amyrel, Mal-A2, Mal-A3,
Mal-A4, and Mal-B1) or egg formation (Vm26Ac, Vm26Ab, Vm26Aa, Vm34Ca, Dec-1) were
determined using qRT-PCR. Our results showed that gene expression levels in the RNA-seq
data were significantly correlated with their expression detected by qRT-PCR (Figure 7).
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3. Discussion

To gain a deeper insight into the molecular mechanisms underlying the impact of
erythritol on fly mortality and oviposition, transcriptome sequencing was conducted on
flies fed with or without erythritol. Subsequently, key genes were identified through RNA-
Seq and bioinformatic analysis. Our results showed that an amylase gene and eight maltase
genes were significantly upregulated in flies fed with erythritol medium. In addition,
expressions of seventeen genes associated with egg-shell assembly were dramatically
suppressed. It is notable that eleven genes proven to be involved in the regulation of
hemolymph osmolality were not affected by erythritol.

3.1. Variation of Hemolymph Osmolality Is Not Necessary for Fly Death

Our findings indicate that the lethality observed in flies was not attributed to an osmot-
ically driven effect. Several rational explanations support this conclusion: (1) flies possess
a robust osmoregulation ability, allowing them to adjust osmotic balance by modulating
the hemolymph volume during water deficit. Even when the hemolymph volume was
reduced to 25% or less, osmolality remained relatively stable during a short dehydration
period [19]. (2) Mortality resulting from significant osmolality variation may not occur, as
the observed osmolality changes were well within the fly’s regulatory capacity. (3) The
expression levels of three diuretic hormone genes (DH44, DH31, and CAPA) [20,21] and
eight aquaporin genes (Drip, Big brain, AQP, Eglp2, Eglp3, Prip, Eglp4, and Eglp1) [22]
did not differ significantly between the treatment and control groups. In conclusion, the
osmolality variations induced by erythritol fall within the fly’s regulatory capacity and are
not the primary cause of mortality.

3.2. Energy Deficiency Caused by Erythritol

α-glucosidases (EC 3.2.1.20) hydrolyze α-1,4-glycosidic bonds of starch, producing
many maltose molecules and then digested by maltases into α-D-glucose [23]. A previous
study showed that maltase genes (Mal-A2, Mal-A3, and Mal-A4) were responsible for
dietary carbohydrate changes and could increase the response capacities associated with
environmental variations [24]. As a competitive inhibitor, erythritol competitively binds
α-glucosidase with the substrates starch or maltose, resulting in ineffective hydrolysis of
substrates. In this scenario, even if the food is sufficient, it still leads to a low-energy state.
The low-energy signal induces the production of more hydrolytic enzymes attempting to
obtain sufficient energy, thus instigating a vicious cycle (Figure 8).
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3.3. Mortality Caused by Energy Deficiency

Studies showed that there are two lipolytic systems in the insect fat body: Akh/AkhR
signaling-dependent lipolysis [25] and Bmm-related lipolysis [26]. Akh is produced by
corpora cardiaca cells in the head and stored within secretory vacuoles until signaled
to release. Under acute starvation or increased metabolic demand, secretion of Akh into
the hemolymph stimulates lipolysis of triacylglycerols, and conversion of glycogen into
trehalose by Akh receptor (AkhR) [27] and consequently activating cAMP/PKA signaling
pathway in the fat body [28]. As the ortholog of mammalian adipose triglyceride lipase
(ATGL), Bmm catalyzes the initial step of triacylglycerol to diacylglycerol [26]. It must be
noted that the lipolytic events mediated by TGL and Bmm are activated at different times
by different metabolic signals. Furthermore, the Akh system functions in response to rapid
changes in lipid demands, whereas Bmm functions to maintain lipid levels for the metabolic
baseline [28].

The fly genome contains seven genes coding insulin-like peptides (Dilp1-7), which
are homologous to the mammalian insulin and insulin-like genes. Secreted Dilps bind
to the insulin-like receptor (InR) in the target tissues, activating the downstream compo-
nents sequentially, including Pi3K92E, AKT1, mTOR and FOXO. Finally, activated insulin
signaling exerts its effect on growth, development, metabolism, behavior, life span and
immunity [29–31]. However, the secretion of Dilps depends on the developmental stage,
type of tissue, and environmental factors [32]. Dilp2, 3 and 5 are produced in a cluster and
are believed to be particularly important in the regulation of metabolism in the fly. Dilp3 is
specifically dedicated to the systemic control of circulating sugars, while Dilp2 responds to
amino acid metabolism [33].

A rational mechanism has been proposed to explain the relationship between Dilps
and Akh in the fly. Dilps and Akh are two counter-regulatory molecules that regulate glucose
level in the fat body [34]. Starvation (or energy deficiency) can induce the expression of
Akh, promoting glycolysis. In addition, Akh can regulate the expression of Bmm, which
catabolizes lipids and maintains the energy balance. Therefore, the balance between Dilps
and Akh may be important for resource allocation into growth and reproduction. In this
study, competitive binding of erythritol and maltase to sucrose and/or maltose significantly
inhibited their hydrolysis, resulting in energy deprivation. The energy deprivation signal
triggered higher expression of FOXO, Akh and Bmm but suppressed the expression of Dilp2,
Dilp3 and Dilp5, indicating that stored lipids and glycogen were overused. The combined
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effects of the depletion of stored lipids and the failure of dietary sugars to provide sufficient
energy accelerated the mortality of the fly (Figure 8).

3.4. Molecular Mechanism of Non-Oviposition Caused by Erythritol

In the fly, the defective chorion-1 gene (Dec-1) encodes follicular cell proteins required
for normal eggshell assembly. Dec-1 encodes fc177 (177 kDa), fc125 (125 kDa), and fc106
(160 kDa) via selective splicing of RNA [35]. They are secreted by follicular cells and
localized in the yolk membrane layer, where they are further cleaved into at least five
different proteins [35,36]. Ultrastructural analysis of the Dec-1 mutant eggshell revealed
abnormalities in the endochorionic layer and endosperm [37]. The aggregation of chorionic
material beneath the vitelline membrane caused eggshell malformation. In this study, Dec-1
expression was reduced by approximately 296-fold in flies fed with erythritol, suggesting
that erythritol may cause female sterility by affecting eggshell assembly. Previous studies
have indicated that Vm26Ab, Vm26Ac, Vm26Aa, Vm34Ca, Vm32E, and Vml are essential
for vitelline membrane formation. The high expression of Vm26Aa, Vm26Ab, Vm26Ac,
Vm34Ca, Vm32E, and Vml in mated females significantly promotes oviposition [38]. Sv23,
encoded by VM26Ab, is expressed in follicle cells and yolk membranes, playing a role
in the formation of yolk membrane and chorion-containing eggshell [39]. Knockdown
experiment targeting Vm26Ab has shown a significant reduction in oocyte numbers [38].
Chorionic protein is synthesized by follicular cells and secreted into the extracellular space
between the follicle cells and the developing oocyte. There are several chorionic membrane
protein families in the fly, and each family is expressed at a specific stage of oogenesis [40].
Protein products of Cp7Fb, Cp7Fc, Cp7Fa, Cp36 and Cp15 are essential for a normal chorionic
membrane lining structure, and their deficiencies result in chorionic membrane fragility.
Cp7Fa, Cp7Fb and Cp7Fc were located in an amplified chorionic gene cluster including Cp36
and Cp38 [41]. Cp36 was proven to produce a major structural protein of the chorionic
membrane. It is synthesized in the early stages of oogenesis and initially deposited in the
vitelline membrane but later concentrated in the chorionic villous layer. Mutations in Cp36
resulted in defective cross-linking of vitreous and chorionic proteins [42]. A study revealed
that female sterile fs(1)M3 could be accumulated in the vitelline membrane together with
the female sterile fs(1)N and plays a role in vitelline integrity and activation of Torso
receptors [43]. Palisade (Psd) is required for the assembly and function of the protective
vitelline membrane in the fly ovary. After the knockdown of Psd by RNAi, the somatic
cells surrounding the oocyte showed structural disorders during the initial synthesis of
the vitelline membrane, including extensive size differences between precursor vitelline
bodies and disorganization of follicular cell microvilli [44]. The CG11381 gene encodes a
glutamine-rich protein with an expression pattern that temporally bridges with the major
follicular membrane and early intermediate chorionic membrane proteins [45]. In this
study, non-oviposition was caused by significant down-regulation or non-expression of
genes encoding vitelline membrane proteins and chorionic membrane proteins in flies fed
with erythritol. The fly prefers to survive rather than reproduce in the absence of energy.

4. Materials and Methods
4.1. Fly Rearing and Treatment

The fly rearing normal medium consisted of the following components: sucrose (62 g),
corn powder (82 g), agar (6.2 g), dry yeast (7 g), and propanoic acid (2 mL), and it was
fixed to 1000 mL with distilled water. The erythritol medium contained an extra 122 g
(1 mol/L) of erythritol. Newly emerged flies were transferred to culture flasks, with each
flask containing 30 flies.

A total of 120 flasks (3600 flies) were collected, with half designated for the exper-
imental group fed with erythritol medium and the other half for the control group fed
with normal medium. These flasks were then placed in an incubator at a temperature of
25 ± 1 ◦C, under a photoperiod of 12 h of light followed by 12 h of darkness. The relative
humidity was maintained at 70 ± 5%. Daily fly survival numbers were counted, and
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survival analysis was performed using the Kaplan–Meier method using the survival R
package version 3.5-7.

4.2. RNA Extraction, Library Construction and Sequencing

One hundred flies were collected on the third or fourth day with three biological
replicates after being fed with or without erythritol for RNA extraction. Total RNA was
extracted with the Trizol reagent and quantified using an Agilent 2100 bioanalyzer. RNA
sequencing libraries were constructed using the NEBNext® Ultra™ RNA Library Prep Kit
for Illumina® (New England Biolabs, Ipswich, MA, USA). mRNAs were enriched using
Oligo(dT) magnetic beads, followed by random fragmentation in NEB Fragmentation
Buffer. The first strand of cDNA was synthesized in the M-MuLV reverse transcriptase
system using fragmented mRNA as templates and random oligonucleotides as primers.
After RNA removal with RnaseH, the second strand of cDNA was synthesized using DNA
polymerase I. Purified dscDNA was end-repaired, an adapter was added, the PCR was
amplified, and then sequencing was carried out on the Illumina NovaSeq 6000 sequencing
platform (Novogene Bioinformatics Technology Co., Ltd., Beijing, China). The data can be
downloaded on GEO (accession number: GSE221267).

4.3. Data Quality Control and Reference Genome Alignment

To ensure data quality and reliability, sequencing adapters, N (unidentifiable base),
and low-quality reads (Qphred ≤ 20) were removed. The resulting clean reads were then
aligned to the reference genome (dmel_r6.37_FB2020_06) using HISAT2 version 2.2.0.

4.4. Bioinformatic Analysis
4.4.1. Identification of Differentially Expressed Genes and Enrichment of GO and KEGG

Differentially expressed genes (DEGs) were identified using the Deseq2 R package
version 1.40.2 in R based on count data [46]. The screening criteria were Padj < 0.05
and |log2FC| ≥ 1.5. GO and KEGG pathway enrichment were performed using the
online website Metascape [47] with the following parameters: min overlap = 3, p-value
cutoff ≤ 0.01 and min enrichment = 1.5. To gain insight into the state of a pathway
(activation or suppression), enriched KEGG pathways were scored using the GSVA R
package version 1.50.1 [48] with the following equation:

GSVA enrichment score = (X − Y)/Y

where X and Y are the GSVA scores for the treatment group and the control group, respectively.

4.4.2. Hub Genes Screening of KEGG Pathways

The PPI network of DEGs in enriched KEGG pathways was predicted using the
STRING tool version 11.5 [49] with the threshold of a combined score > 0.4. Cytoscape ver-
sion 3.10.1 [50] plug-in CentiScaPe version 2.2 [51] was then used to assess the centrality of
DEGs in the PPI network with three parameters: degree, betweenness and closeness. DEGs
with 3 parameters larger than reference values were defined as hub genes in this study.

4.4.3. Tissue-Specific Enrichment Analysis of Key Gene

To explore gene expression profiles in the specific-tissue type, the BayesPrism algo-
rithm was used to deconvolve bulk RNA-Seq data using scRNA-Seq data from 17 tissues
as references. scRNA-Seq data of 17 tissues of the fly were downloaded from FLY CELL
ATLAS [52], then gene expression matrices were extracted from scRNA-Seq data using the
Connect function in the SeuratDisk [53] R package. These 17 matrices were then integrated
and metadata for all cells were generated. The new.prism function in the BayesPrism version
2.1.1 [54] R package was used to create a prism object using the integrated scRNA-Seq
data, bulk RNA-Seq data and metadata as inputs. The parameter settings were as follows:
key = null, outlier.cut = 0.01, outlier.fraction = 0.1. Finally, the run.prism function was
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used with the created prism object as an input to deconvolve the bulk RNA-Seq data and
generate gene expression profiles for the 17 tissues.

4.5. Validation of the DEGs by Quantitative Real-Time PCR (qRT-PCR)

To validate the RNA-seq results, 10 DEGs involved in fly death or egg formation were
selected for qPCR analysis. Sequence-specific primer sets were designed using Primer
Premier 6 and are listed in Supplementary Material S1. Total RNA was extracted using AG
RNAex Pro RNA Extraction Reagent (Accurate Biology, Changsha, China) according to the
manufacturer’s instructions. cDNA was synthesized using the TransScript® All-in-One
First-Strand cDNA Synthesis SuperMix for qPCR (TransGen, Beijing, China) according to
the manufacturer’s instructions. Each 50 µL qPCR reaction mixture contained 2.5 µg RNA,
2.5 µL gDNA Remover, 10 µL 5× SuperMix, 35 µL ddH2O. PCR reactions were performed
using the BIO-RAD CFX96 system with the following parameters: 95 ◦C for 120 s, followed
by 40 cycles of 95 ◦C 10 s, 60 ◦C 15 s, and 72 ◦C 15 s. The Forkhead box K (FoxK) was used
as an internal reference gene [55]. The expression of each gene was conducted in three
biological replicates and three technical replicates. Relative transcription levels of target
genes were determined by employing the 2−∆∆Ct method [56].

5. Conclusions

In this study, RNA-seq and bioinformatic analysis were performed to clarify that the
cause of erythritol-induced death in the fly was energy depletion as opposed to a drastic
change in hemolymph osmolality. Energy depletion severely affected energy allocation.
Flies that ingested erythritol had to save energy for survival, but not for reproduction.
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