Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = submillimeter wave applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3129 KB  
Review
A Review on Gas Pipeline Leak Detection: Acoustic-Based, OGI-Based, and Multimodal Fusion Methods
by Yankun Gong, Chao Bao, Zhengxi He, Yifan Jian, Xiaoye Wang, Haineng Huang and Xintai Song
Information 2025, 16(9), 731; https://doi.org/10.3390/info16090731 - 25 Aug 2025
Cited by 1 | Viewed by 1529
Abstract
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses [...] Read more.
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses detection principles, inherent challenges, mitigation strategies, and the state of the art (SOTA). Small leaks refer to low flow leakage originating from defects with apertures at millimeter or submillimeter scales, posing significant detection difficulties. Acoustic detection leverages the acoustic wave signals generated by gas leaks for non-contact monitoring, offering advantages such as rapid response and broad coverage. However, its susceptibility to environmental noise interference often triggers false alarms. This limitation can be mitigated through time-frequency analysis, multi-sensor fusion, and deep-learning algorithms—effectively enhancing leak signals, suppressing background noise, and thereby improving the system’s detection robustness and accuracy. OGI utilizes infrared imaging technology to visualize leakage gas and is applicable to the detection of various polar gases. Its primary limitations include low image resolution, low contrast, and interference from complex backgrounds. Mitigation techniques involve background subtraction, optical flow estimation, fully convolutional neural networks (FCNNs), and vision transformers (ViTs), which enhance image contrast and extract multi-scale features to boost detection precision. Multimodal fusion technology integrates data from diverse sensors, such as acoustic and optical devices. Key challenges lie in achieving spatiotemporal synchronization across multiple sensors and effectively fusing heterogeneous data streams. Current methodologies primarily utilize decision-level fusion and feature-level fusion techniques. Decision-level fusion offers high flexibility and ease of implementation but lacks inter-feature interaction; it is less effective than feature-level fusion when correlations exist between heterogeneous features. Feature-level fusion amalgamates data from different modalities during the feature extraction phase, generating a unified cross-modal representation that effectively resolves inter-modal heterogeneity. In conclusion, we posit that multimodal fusion holds significant potential for further enhancing detection accuracy beyond the capabilities of existing single-modality technologies and is poised to become a major focus of future research in this domain. Full article
Show Figures

Figure 1

28 pages, 3364 KB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 820
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 645 KB  
Article
Asymptotic Solution for Skin Heating by an Electromagnetic Beam at an Incident Angle
by Hongyun Wang, Shannon E. Foley and Hong Zhou
Electronics 2025, 14(15), 3061; https://doi.org/10.3390/electronics14153061 - 31 Jul 2025
Viewed by 374
Abstract
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in [...] Read more.
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in two aspects: (i) the beam spot projected onto the skin is elongated compared to the intrinsic beam spot in a perpendicular cross-section, resulting in a lower power per skin area; and (ii) inside the tissue, the beam propagates at the refracted angle relative to the depth direction. At millimeter-wavelength frequencies, the characteristic penetration depth is sub-millimeter, whereas the lateral extent of the beam spans at least several centimeters in applications. We explore the small ratio of the penetration depth to the lateral length scale in a nondimensional formulation and derive a leading-term asymptotic solution for the temperature distribution. This analysis does not rely on a small incident angle and is therefore applicable to arbitrary angles of incidence. Based on the asymptotic solution, we establish scaling laws for the three-dimensional skin temperature, the skin surface temperature, and the skin volume in which thermal nociceptors are activated. Full article
Show Figures

Figure 1

26 pages, 42046 KB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 600
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

16 pages, 7741 KB  
Article
Millimeter-Wave SAR Imaging for Sub-Millimeter Defect Detection with Non-Destructive Testing
by Bengisu Yalcinkaya, Elif Aydin and Ali Kara
Electronics 2025, 14(4), 689; https://doi.org/10.3390/electronics14040689 - 10 Feb 2025
Cited by 1 | Viewed by 2062
Abstract
This paper introduces a high-resolution 77–81 GHz mmWave Synthetic Aperture Radar (SAR) imaging methodology integrating low-cost hardware with modified radar signal characteristics specifically for NDT applications. The system is optimized to detect minimal defects in materials, including low-reflectivity ones. In contrast to the [...] Read more.
This paper introduces a high-resolution 77–81 GHz mmWave Synthetic Aperture Radar (SAR) imaging methodology integrating low-cost hardware with modified radar signal characteristics specifically for NDT applications. The system is optimized to detect minimal defects in materials, including low-reflectivity ones. In contrast to the existing studies, by optimizing key system parameters, including frequency slope, sampling interval, and scanning aperture, high-resolution SAR images are achieved with reduced computational complexity and storage requirements. The experiments demonstrate the effectiveness of the system in detecting optically undetectable minimal surface defects down to 0.4 mm, such as bonded adhesive lines on low-reflectivity materials with 2500 measurement points and sub-millimeter features on metallic targets at a distance of 30 cm. The results show that the proposed system achieves comparable or superior image quality to existing high-cost setups while requiring fewer data points and simpler signal processing. Low-cost, low-complexity, and easy-to-build mmWave SAR imaging is constructed for high-resolution SAR imagery of targets with a focus on detecting defects in low-reflectivity materials. This approach has significant potential for practical NDT applications with a unique emphasis on scalability, cost-effectiveness, and enhanced performance on low-reflectivity materials for industries such as manufacturing, civil engineering, and 3D printing. Full article
Show Figures

Figure 1

17 pages, 13145 KB  
Communication
Through-Wall Imaging Using Low-Cost Frequency-Modulated Continuous Wave Radar Sensors
by Mirel Paun
Remote Sens. 2024, 16(8), 1426; https://doi.org/10.3390/rs16081426 - 17 Apr 2024
Cited by 7 | Viewed by 4845
Abstract
Many fields of human activity benefit from the ability to create images of obscured objects placed behind walls and to map their displacement in a noninvasive way. Usually, imaging devices like Synthetic Aperture Radars (SARs) and Ground-Penetrating Radars (GPRs) use expensive dedicated electronics [...] Read more.
Many fields of human activity benefit from the ability to create images of obscured objects placed behind walls and to map their displacement in a noninvasive way. Usually, imaging devices like Synthetic Aperture Radars (SARs) and Ground-Penetrating Radars (GPRs) use expensive dedicated electronics which results in prohibitive prices. This paper presents the experimental implementation and the results obtained from an imaging system capable of performing SAR imaging and interferometric displacement mapping of targets located behind walls, as well as 3D GPR imaging using a low-cost general-purpose radar sensor. The proposed solution uses for the RF section of the system a K-band microwave radar sensor module implementing Frequency-Modulated Continuous Wave (FMCW) operation. The low-cost sensor was originally intended for simple presence detection and ranging for domestic applications. The proposed system was tested in several scenarios and proved to operate as intended for a fraction of the cost of a commercial imaging device. In one scenario, it was able to detect and locate a 15 cm-diameter fire-extinguisher located at a distance of 3.5 m from the scanning system and 1.6 m behind a 3 cm-thick MDF (medium-density fiberboard) wall with cm-level accuracy. In a second test, the proposed system was used to perform interferometric displacement measurements, and it was capable of determining the displacement of a metal case with sub-millimeter accuracy. In a third experiment, the system was used to construct a 3D image of the inside of a wood table with cm-level resolution. Full article
(This article belongs to the Special Issue Remote Sensing in Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 11193 KB  
Article
Detection of a Submillimeter Notch-Type Defect at Multiple Orientations by a Lamb Wave A0 Mode at 550 kHz for Long-Range Structural Health Monitoring Applications
by Lorenzo Capineri, Lorenzo Taddei and Eugenio Marino Merlo
Sensors 2024, 24(6), 1926; https://doi.org/10.3390/s24061926 - 17 Mar 2024
Cited by 2 | Viewed by 1699
Abstract
The early detection of small cracks in large metal structures is a crucial requirement for the implementation of a structural health monitoring (SHM) system with a low transducers density. This work tackles the challenging problem of the early detection of submillimeter notch-type defects [...] Read more.
The early detection of small cracks in large metal structures is a crucial requirement for the implementation of a structural health monitoring (SHM) system with a low transducers density. This work tackles the challenging problem of the early detection of submillimeter notch-type defects with a semielliptical shape and a groove at a constant width of 100 µm and 3 mm depth in a 4.1 mm thick aluminum plate. This defect is investigated with an ultrasonic guided wave (UGW) A0 mode at 550 kHz to investigate the long range in thick metal plates. The mode selection is obtained by interdigital transducers (IDTs) designed to operate with a 5 mm central wavelength. The novel contribution is the validation of the detection by pulse-echo and pitch and catch with UGW transducers to cover a distance up to 70 cm to reduce the transducers density. The analysis of scattering from this submillimeter defect at different orientations is carried out using simulations with a Finite Element Model (FEM). The detection of the defect is obtained by comparing the scattered signals from the defect with baseline signals of the pristine laminate. Finally, the paper shows that the simulated results are in good agreement with the experimental ones, demonstrating the possible implementation in an SHM system based on the efficient propagation of an antisymmetric mode by IDTs. Full article
Show Figures

Figure 1

12 pages, 2362 KB  
Article
Laser Remote Sensing of Seismic Wave with Sub-Millimeter Scale Amplitude Based on Doppler Characteristics Extracted from Wavefront Sensor
by Quan Luo, Hongsheng Luo, Guihan Wu, Xiang Ji, Jinshan Su and Wei Jiang
Photonics 2024, 11(3), 204; https://doi.org/10.3390/photonics11030204 - 24 Feb 2024
Cited by 4 | Viewed by 1699
Abstract
Laser remote sensing of earthquake waves has the potential to be used in many applications. This article shows a Doppler model for laser remote sensing of seismic waves based on a wavefront sensor. The longitudinal vibration wave is analyzed using remote sensing, guided [...] Read more.
Laser remote sensing of earthquake waves has the potential to be used in many applications. This article shows a Doppler model for laser remote sensing of seismic waves based on a wavefront sensor. The longitudinal vibration wave is analyzed using remote sensing, guided by theoretical principles. To determine the magnitude of ground vibration, we employ the method of wavefront phase change analysis, utilizing a continuous laser emitting light with a wavelength of 635 nm to illuminate the ground target. The ground vibration amplitude within the range of 0.12–1.18 mm was examined, confirming the reasonableness of the Doppler model. Simultaneously, the experimental findings indicate that the system exhibits a certain enhancement in detection accuracy compared to the conventional laser remote sensing detection technique. This approach can detect vibration signals at a sub-millimeter scale level, with an accuracy of 1% to 2%. The approach can fulfill the requirements for detecting seismic waves with low frequencies. Full article
(This article belongs to the Special Issue Optical Communication, Sensing and Network)
Show Figures

Figure 1

14 pages, 902 KB  
Article
Pulsed Four-Wave Mixing at Telecom Wavelengths in Si3N4 Waveguides Locally Covered by Graphene
by Pierre Demongodin, Houssein El Dirani, Sébastien Kerdilès, Jérémy Lhuillier, Thomas Wood, Corrado Sciancalepore and Christelle Monat
Nanomaterials 2023, 13(3), 451; https://doi.org/10.3390/nano13030451 - 22 Jan 2023
Cited by 4 | Viewed by 2159
Abstract
Recently, the nonlinear optical response of graphene has been widely investigated, as has the integration of this 2D material onto dielectric waveguides so as to enhance the various nonlinear phenomena that underpin all-optical signal processing applications at telecom wavelengths. However, a great disparity [...] Read more.
Recently, the nonlinear optical response of graphene has been widely investigated, as has the integration of this 2D material onto dielectric waveguides so as to enhance the various nonlinear phenomena that underpin all-optical signal processing applications at telecom wavelengths. However, a great disparity continues to exist from these experimental reports, depending on the used conditions or the hybrid devices under test. Most importantly, hybrid graphene-based waveguides were tested under relatively low powers, and/or combined with waveguide materials that already exhibited a nonnegligible nonlinear contribution, thereby limiting the practical use of graphene for nonlinear applications. Here, we experimentally investigate the nonlinear response of Si3N4 waveguides that are locally covered by submillimeter-long graphene patches by means of pulsed degenerate four-wave mixing at telecom wavelength under 7 W peak powers. Our measurements and comparison with simulations allow us to estimate a local change of the nonlinearity sign as well as a moderate increase of the nonlinear waveguide parameter (γ∼−10 m−1W−1) provided by graphene. Our analysis also clarifies the tradeoff associated with the loss penalty and nonlinear benefit afforded by graphene patches integrated onto passive photonic circuits, thereby providing some guidelines for the design of hybrid integrated nonlinear devices, coated with graphene, or, more generally, any other 2D material. Full article
(This article belongs to the Special Issue Nanophotonics and Integrated Optics Devices)
Show Figures

Figure 1

27 pages, 6488 KB  
Article
Deep Machine Learning for Acoustic Inspection of Metallic Medium
by Brittney Jarreau, Sanichiro Yoshida and Emily Laprime
Vibration 2022, 5(3), 530-556; https://doi.org/10.3390/vibration5030030 - 28 Aug 2022
Cited by 5 | Viewed by 2793
Abstract
Acoustic non-destructive testing is widely used to detect signs of damage. However, an experienced technician is typically responsible for interpreting the result, and often the evaluation varies depending on the technician’s opinion. The evaluation is especially challenging when the acoustic signal is analyzed [...] Read more.
Acoustic non-destructive testing is widely used to detect signs of damage. However, an experienced technician is typically responsible for interpreting the result, and often the evaluation varies depending on the technician’s opinion. The evaluation is especially challenging when the acoustic signal is analyzed in the near field as Fresnel range diffraction complicates the data. In this study, we propose a Convolutional Neural Network (CNN) algorithm to detect anomalies bearing in mind its future application to micro-scale specimens such as biomedical materials. Data are generated by emitting a continuous sound wave at a single frequency through a metal specimen with a sub-millimeter anomaly and collecting the transmitted signal at several lateral locations on the opposite side (the observation plane) of the specimen. The distance between the anomaly and the observation plane falls in the quasi Fresnel diffraction regime. The use of transmitted signals is essential to evaluate the phase shift due to the anomaly, which contains information about the substance in the anomaly. We have developed a seven-layered CNN to analyze the acoustic signal in the frequency domain. The CNN takes spectrograms representing the change in the amplitude and phase of the Fourier transform over the lateral position on the observation plane as input and classifies the anomaly into nine classes in association with the lateral location of the anomaly relative to the probing signal and the material of the anomaly. The CNN performed excellently demonstrating the validation accuracy as high as 99.9%. This result clearly demonstrates CNN’s ability to extract features in the input signal that are undetectable to humans. Full article
Show Figures

Figure 1

13 pages, 3884 KB  
Article
Generalized Radar Range Equation Applied to the Whole Field Region
by Luyin Xiao, Yongjun Xie, Shida Gao, Junbao Li and Peiyu Wu
Sensors 2022, 22(12), 4608; https://doi.org/10.3390/s22124608 - 18 Jun 2022
Cited by 17 | Viewed by 4066
Abstract
Most terahertz (THz) radar systems can only work in the near-field region, because the THz source power is limited and the size of the target scattered near field is up to tens of kilometers. Such conditions will result in the conventional radar range [...] Read more.
Most terahertz (THz) radar systems can only work in the near-field region, because the THz source power is limited and the size of the target scattered near field is up to tens of kilometers. Such conditions will result in the conventional radar range equation being unsuitable. Therefore, the near-field radar cross section (RCS) formula is given according to the numerical simulation on different targets. By modifying the parameters in the near field, including the gain of radar antennas and the RCS of targets, the generalized radar range equation is proposed. The THz radar working efficiency in the whole range and the simulation of the near-field RCS simulation model were employed to validate its effectiveness. Through comparison with the radar range equation, it can be concluded that the calculation results of the proposed equation are smaller in the near field, and the outcomes in the far field are identical. The proposed generalized radar range equation can be applied to the whole radiation area including the near field and the far field. Furthermore, more complicated real targets are calculated according to the generalized radar range equation and it can be extended from the submillimeter wave band to a much wider band range. Finally, the near-field radar theory is established, which shows its potential application to the radar cross section estimation in the extremely high frequency and fine design of THz radar systems. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 1989 KB  
Article
Experimental Assessment of Feature Extraction Techniques Applied to the Identification of Properties of Common Objects, Using a Radar System
by José Francisco Díez-Pastor, Pedro Latorre-Carmona, José Luis Garrido-Labrador, José Miguel Ramírez-Sanz and Juan J. Rodríguez
Appl. Sci. 2021, 11(15), 6745; https://doi.org/10.3390/app11156745 - 22 Jul 2021
Cited by 1 | Viewed by 2569
Abstract
Radar technology has evolved considerably in the last few decades. There are many areas where radar systems are applied, including air traffic control in airports, ocean surveillance, and research systems, to cite a few. Other types of sensors have recently appeared, which allow [...] Read more.
Radar technology has evolved considerably in the last few decades. There are many areas where radar systems are applied, including air traffic control in airports, ocean surveillance, and research systems, to cite a few. Other types of sensors have recently appeared, which allow tracking sub-millimeter motion with high speed and accuracy rates. These millimeter-wave radars are giving rise to myriad new applications, from the recognition of the material close objects are made, to the recognition of hand gestures. They have also been recently used to identify how a person interacts with digital devices through the physical environment (Tangible User Interfaces, TUIs). In this case, the radar is used to detect the orientation, movement, or distance from the objects to the user’s hands or the digital device. This paper presents a thoughtful comparative analysis of different feature extraction techniques and classification strategies applied on a series of datasets that cover problems such as the identification of materials, element counting, or determining the orientation and distance of objects to the sensor. The results outperform previous works using these datasets, especially when the accuracy was lowest, showing the benefits feature extraction techniques have on classification performance. Full article
(This article belongs to the Special Issue Advances in Applied Signal and Image Processing Technology)
Show Figures

Figure 1

14 pages, 5755 KB  
Article
LTCC and Bulk Zn4B6O13–Zn2SiO4 Composites for Submillimeter Wave Applications
by Dorota Szwagierczak, Beata Synkiewicz-Musialska, Jan Kulawik and Norbert Pałka
Materials 2021, 14(4), 1014; https://doi.org/10.3390/ma14041014 - 21 Feb 2021
Cited by 19 | Viewed by 2853
Abstract
New zinc metaborate Zn4B6O13–willemite Zn2SiO4 composites were investigated as promising materials for LTCC (low temperature cofired ceramics) substrates of microelectronic circuits for submillimeter wave applications. Composites were prepared as bulk ceramics and LTCC multilayer [...] Read more.
New zinc metaborate Zn4B6O13–willemite Zn2SiO4 composites were investigated as promising materials for LTCC (low temperature cofired ceramics) substrates of microelectronic circuits for submillimeter wave applications. Composites were prepared as bulk ceramics and LTCC multilayer structures with cofired conductive thick films. The phase composition, crystal structure, microstructure, sintering behavior, and dielectric properties were studied as a function of willemite content (0, 10, 13, 15, 20, 40, 50, 60, 100 wt %). The dielectric properties characterization performed by THz time domain spectroscopy proved the applicability of the composites at very high frequencies. For the 87% Zn4B6O13–13% Zn2SiO4 composite, the best characteristics were obtained, which are suitable for LTCC submillimeter wave applications. These were a low sintering temperature of 930 °C, compatibility with Ag-based conductors, a low dielectric constant (5.8 at 0.15–1.1 THz), a low dissipation factor (0.006 at 1 THz), and weak frequency and temperature dependences of dielectric constant. Full article
(This article belongs to the Special Issue Materials for LTCC Technology)
Show Figures

Graphical abstract

20 pages, 12177 KB  
Article
Performance Evaluation of Vibrational Measurements through mmWave Automotive Radars
by Gianluca Ciattaglia, Adelmo De Santis, Deivis Disha, Susanna Spinsante, Paolo Castellini and Ennio Gambi
Remote Sens. 2021, 13(1), 98; https://doi.org/10.3390/rs13010098 - 30 Dec 2020
Cited by 26 | Viewed by 5559
Abstract
Thanks to the availability of a significant amount of inexpensive commercial Frequency Modulated Continuous Wave Radar sensors, designed primarily for the automotive domain, it is interesting to understand if they can be used in alternative applications. It is well known that with a [...] Read more.
Thanks to the availability of a significant amount of inexpensive commercial Frequency Modulated Continuous Wave Radar sensors, designed primarily for the automotive domain, it is interesting to understand if they can be used in alternative applications. It is well known that with a radar system it is possible to identify the micro-Doppler feature of a target, to detect the nature of the target itself (what the target is) or how it is vibrating. In fact, thanks to their high transmission frequency, large bandwidth and very short chirp signals, radars designed for automotive applications are able to provide sub-millimeter resolution and a large detection bandwidth, to the point that it is here proposed to exploit them in the vibrational analysis of a target. The aim is to evaluate what information on the vibrations can be extracted, and what are the performance obtainable. In the present work, the use of a commercial Frequency Modulated Continuous Wave radar is described, and the performances achieved in terms of displacement and vibration frequency measurement of the target are compared with the measurement results obtained through a laser vibrometer, considered as the reference instrument. The attained experimental results show that the radar under test and the reference laser vibrometer achieve comparable outcomes, even in a cluttered scenario. Full article
Show Figures

Graphical abstract

12 pages, 4746 KB  
Article
Detection of Internal Holes in Additive Manufactured Ti-6Al-4V Part Using Laser Ultrasonic Testing
by Jie Yu, Dongqi Zhang, Hui Li, Changhui Song, Xin Zhou, Shengnan Shen, Guoqing Zhang, Yongqiang Yang and Hongze Wang
Appl. Sci. 2020, 10(1), 365; https://doi.org/10.3390/app10010365 - 3 Jan 2020
Cited by 55 | Viewed by 6421
Abstract
For a non-contact, non-destructive quality evaluation, laser ultrasonic testing (LUT) has received increasing attention in complex manufacturing processes, such as additive manufacturing (AM). This work assessed the LUT method for the inspection of internal hole defects in additive manufactured Ti-6Al-4V part. A Q-switched [...] Read more.
For a non-contact, non-destructive quality evaluation, laser ultrasonic testing (LUT) has received increasing attention in complex manufacturing processes, such as additive manufacturing (AM). This work assessed the LUT method for the inspection of internal hole defects in additive manufactured Ti-6Al-4V part. A Q-switched pulsed laser was utilized to generate ultrasound waves on the top surface of a Ti-6Al-4V alloy part, and a laser Doppler vibrometer (LDV) was utilized to detect the ultrasound waves. Sub-millimeter (0.8 mm diameter) internal hole defect was successfully detected by using the established LUT system in pulse-echo mode. The method achieved a relatively high resolution, suggesting significant application prospects in the non-destructive evaluation of AM part. The relationship between the diameter of the hole defects and the amplitude of the laser-generated Rayleigh waves was studied. X-ray computed tomography (XCT) was conducted to validate the results obtained from the LUT system. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Graphical abstract

Back to TopTop