Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = submarine topography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 19537 KiB  
Article
Submarine Topography Classification Using ConDenseNet with Label Smoothing Regularization
by Jingyan Zhang, Kongwen Zhang and Jiangtao Liu
Remote Sens. 2025, 17(15), 2686; https://doi.org/10.3390/rs17152686 - 3 Aug 2025
Viewed by 64
Abstract
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not [...] Read more.
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not only inefficient and subjective but also lack the precision required for high-accuracy classification. While many machine learning and deep learning models have achieved promising results in image classification, limited work has been performed on integrating backscatter and bathymetric data for multi-source processing. Existing approaches often suffer from high computational costs and excessive hyperparameter demands. In this study, we propose a novel approach that integrates pruning-enhanced ConDenseNet with label smoothing regularization to reduce misclassification, strengthen the cross-entropy loss function, and significantly lower model complexity. Our method improves classification accuracy by 2% to 10%, reduces the number of hyperparameters by 50% to 96%, and cuts computation time by 50% to 85.5% compared to state-of-the-art models, including AlexNet, VGG, ResNet, and Vision Transformer. These results demonstrate the effectiveness and efficiency of our model for multi-source submarine topography classification. Full article
Show Figures

Figure 1

19 pages, 28456 KiB  
Article
YOLO-SG: Seafloor Topography Unit Recognition and Segmentation Algorithm Based on Lightweight Upsampling Operator and Attention Mechanisms
by Yifan Jiang, Ziyin Wu, Fanlin Yang, Dineng Zhao, Xiaoming Qin, Mingwei Wang and Qiang Wang
J. Mar. Sci. Eng. 2025, 13(3), 583; https://doi.org/10.3390/jmse13030583 - 16 Mar 2025
Cited by 1 | Viewed by 781
Abstract
The recognition and segmentation of seafloor topography play a crucial role in marine science research and engineering applications. However, traditional methods for seafloor topography recognition and segmentation face several issues, such as poor capability in analyzing complex terrains and limited generalization ability. To [...] Read more.
The recognition and segmentation of seafloor topography play a crucial role in marine science research and engineering applications. However, traditional methods for seafloor topography recognition and segmentation face several issues, such as poor capability in analyzing complex terrains and limited generalization ability. To address these challenges, this study introduces the SG-MKD dataset (Submarine Geomorphology Dataset—Seamounts, Sea Knolls, Submarine Depressions) and proposes YOLO-SG (You Only Look Once—Submarine Geomorphology), an algorithm for seafloor topographic unit recognition and segmentation that leverages a lightweight upsampling operator and attention mechanisms. The SG-MKD dataset provides instance segmentation annotations for three types of seafloor topographic units—seamounts, sea knolls, and submarine depressions—across a total of 419 images. YOLO-SG is an optimized version of the YOLOv8l-Segment model, incorporating a convolutional block attention module in the backbone network to enhance feature extraction. Additionally, it integrates a lightweight, general upsampling operator to create a new feature fusion network, thereby improving the model’s ability to fuse and represent features. Experimental results demonstrate that YOLO-SG significantly outperforms the original YOLOv8l-Segment, with a 14.7% increase in mean average precision. Furthermore, inference experiments conducted across various research areas highlight the model’s strong generalization capability. Full article
Show Figures

Figure 1

18 pages, 28824 KiB  
Article
Multifactorial Controls on the Dongdaobei Submarine Canyon System, Xisha Sea, South China Sea
by Meijing Sun, Hongjun Chen, Chupeng Yang, Xiaosan Hu and Jie Liu
J. Mar. Sci. Eng. 2025, 13(3), 564; https://doi.org/10.3390/jmse13030564 - 14 Mar 2025
Viewed by 545
Abstract
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north [...] Read more.
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north of Dongdao island is studied at the eastern Xisha area of the South China Sea. The Dongdaobei submarine canyon is distributed in water depths between 1000 and 3150 m. The main source area in the upper course of the canyon originates from the northwest of Dongdao platform and the Yongxing platform. The sediments from the source area are transported to the main canyon in the form of various gravity flows. Landslides on the slope significantly impact canyon evolution by delivering sediment to the canyon head and causing channel deflection through substrate failure and flow-path reorganization. A large number of pockmarks are distributed around the north slope of the main canyon. The small-scale channels, which are formed as a result of the continuous erosion of the pockmark chains, are connected to the canyon sidewalls. The seamounts are distributed along the south bank of the canyon, exerting a controlling influence on the directional changes in the main canyon’s downstream segment. The formation and evolution of the Dongdaobei submarine canyon are primarily influenced by several factors, including tectonic activity and inherited negative topography, erosion by sedimentary gravity flows, sediment instability, and the shielding effect of seamounts. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

18 pages, 53722 KiB  
Article
Analysis of Characteristics and Main Controlling Factors of Shallow Geological Hazards in the Zhongsha Islands Region of the South China Sea
by Rui Wang, Yang Wang, Qunfang Ye and Yunzhong Zhang
J. Mar. Sci. Eng. 2024, 12(12), 2236; https://doi.org/10.3390/jmse12122236 - 5 Dec 2024
Cited by 1 | Viewed by 946
Abstract
This study utilized single-channel seismic, multi-channel seismic, and multibeam bathymetric data to examine the distribution and geomorphological background of geological hazards in the Zhongsha Islands region of the South China Sea. We elucidate the regional geological structure and its evolution while focusing on [...] Read more.
This study utilized single-channel seismic, multi-channel seismic, and multibeam bathymetric data to examine the distribution and geomorphological background of geological hazards in the Zhongsha Islands region of the South China Sea. We elucidate the regional geological structure and its evolution while focusing on the types and characteristics of submarine hazards since the Quaternary Period. By integrating geomorphological, tectonic, and sedimentary factors, we analyzed the primary drivers of shallow geological hazards in the region. Our findings reveal that seabed topography, tectonic activity, and sedimentary processes critically influence hazard formation, particularly in geomorphic units prone to disasters, such as submarine slopes and canyons. Igneous rocks in the region display medium-acid to medium-basic compositions, with notable developmental stages during the Himalayan and Yanshan periods. From the Paleogene to the Middle Miocene, tectonic activity intensified, significantly thinning the lithosphere. By the Middle Miocene, the crust stabilized into its present configuration, marking the formation of key tectonic units in the region. Multiple phases of sedimentary evolution, influenced by the Cenozoic tectonic movements, further contribute to the region’s susceptibility to geological hazards. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

19 pages, 16335 KiB  
Article
The Controlling Factors and Prediction of Deep-Water Mass Transport Deposits in the Pliocene Qiongdongnan Basin, South China Sea
by Jiawang Ge, Xiaoming Zhao, Qi Fan, Weixin Pang, Chong Yue and Yueyao Chen
J. Mar. Sci. Eng. 2024, 12(12), 2115; https://doi.org/10.3390/jmse12122115 - 21 Nov 2024
Viewed by 888
Abstract
Large-scaled submarine slides or mass transport deposits (MTDs) widely occurred in the Pliocene Qiongdongnan Basin, South China Sea. The good seismic mapping and distinctive topography, as well as the along-striking variation in sediment supply, make it an ideal object to explore the linkage [...] Read more.
Large-scaled submarine slides or mass transport deposits (MTDs) widely occurred in the Pliocene Qiongdongnan Basin, South China Sea. The good seismic mapping and distinctive topography, as well as the along-striking variation in sediment supply, make it an ideal object to explore the linkage of controlling factors and MTD distribution. The evaluation of the main controlling factors of mass transport deposits utilizes the analysis of terrestrial catastrophes as a reference based on the GIS-10.2 software. The steepened topography is assumed to be an external influence on triggering MTDs; therefore, the MTDs are mapped to the bottom interface of the corresponding topography strata. Based on detailed seismic and well-based observations from multiple phases of MTDs in the Pliocene Qiongdongnan Basin (QDNB), the interpreted controlling factors are summarized. Topographic, sedimentary, and climatic factors are assigned to the smallest grid cell of this study. Detailed procedures, including correlation analysis, significance check, and recursive feature elimination, are conducted. A random forest artificial intelligence algorithm was established. The mean value of the squared residuals of the model was 0.043, and the fitting degree was 82.52. To test the stability and accuracy of this model, the training model was used to calibrate the test set, and five times 2-fold cross-validation was performed. The area under the curve mean value is 0.9849, indicating that the model was effective and stable. The most related factors are correlated to the elevation, flow direction, and slope gradient. The predicted results were consistent with the seismic interpretation results. Our study indicates that a random forest artificial intelligence algorithm could be useful in predicting the susceptibility of deep-water MTDs and can be applied to other study areas to predict and avoid submarine disasters caused by wasting processes. Full article
Show Figures

Figure 1

16 pages, 2383 KiB  
Article
Risk Identification and Safety Evaluation of Offshore Wind Power Submarine Cable Construction
by Hui Huang, Qiang Zhang, Hao Xu, Zhenming Li, Xinjiao Tian, Shuhao Fang, Juan Zheng, Enna Zhang and Dingding Yang
J. Mar. Sci. Eng. 2024, 12(10), 1718; https://doi.org/10.3390/jmse12101718 - 30 Sep 2024
Viewed by 1660
Abstract
To mitigate accidents in submarine cable construction within the rapidly expanding offshore wind power sector, this study employed the analytic hierarchy process (AHP) and risk matrix method (LS) to assess the risks associated with identified factors. Based on project research and expert consultations, [...] Read more.
To mitigate accidents in submarine cable construction within the rapidly expanding offshore wind power sector, this study employed the analytic hierarchy process (AHP) and risk matrix method (LS) to assess the risks associated with identified factors. Based on project research and expert consultations, five primary and twenty-two secondary risk factors were identified. AHP was utilized to rank the primary risk factors by severity, probability, and detection difficulty, with the highest risk being the environmental impact, followed by third-party destruction and worker error. LS was applied to rank the secondary risk factors by likelihood and severity, with the highest risks being complex submarine topography, low underwater visibility, and fishing operations. The study proposes risk reduction measures based on these evaluations and offers methodological guidance for improving construction safety in similar enterprises. Full article
Show Figures

Figure 1

16 pages, 24109 KiB  
Article
The Effects of Controlling Gas Escape and Bottom Current Activity on the Evolution of Pockmarks in the Northwest of the Xisha Uplift, South China Sea
by Xuelin Li, Xudong Guo, Fei Tian and Xiaochen Fang
J. Mar. Sci. Eng. 2024, 12(9), 1505; https://doi.org/10.3390/jmse12091505 - 1 Sep 2024
Cited by 4 | Viewed by 1097
Abstract
Submarine pockmarks are typical indicators of submarine gas escape activity. The deep strata of the Xisha Uplift are rich in biogenic and thermogenic gas, accompanied by strong bottom current activity. Investigating the effects of controlling submarine gas escape and bottom current activity on [...] Read more.
Submarine pockmarks are typical indicators of submarine gas escape activity. The deep strata of the Xisha Uplift are rich in biogenic and thermogenic gas, accompanied by strong bottom current activity. Investigating the effects of controlling submarine gas escape and bottom current activity on the formation and development of pockmarks in the Xisha Uplift is significant for understanding the evolution of submarine topography and geomorphology. This study utilized high-resolution multibeam data to identify 261 submarine pockmarks in the northwest of the Xisha Uplift. These pockmarks were categorized based on their morphology into circular, elliptical, elongated, crescent-shaped, and irregular types. The diameters of pockmarks in the study area range from 0.21 to 4.96 km, with maximum depths reaching 30.88 m. Using high-resolution multi-channel seismic data, we conducted a detailed analysis of the subsurface strata characteristics of the pockmarks, identifying chaotic weak reflections, bright spots, and high-angle reflectors. We believe that deep gas in the northwest of the Xisha Uplift escapes to the seafloor through migration pathways, such as faults, fractures, and gas chimneys, resulting in the formation of submarine pockmarks. Bottom current activity has a significant impact on already-formed pockmarks. Crescent-shaped and elongated pockmarks in the Xisha Uplift are largely the result of bottom current modifications of pre-existing pockmarks. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrate Exploration and Discovery)
Show Figures

Figure 1

22 pages, 38794 KiB  
Article
Inception of Constructional Submarine Conduit by Asymmetry Generated by Turbidity Current
by Daniel Bayer da Silva, Eduardo Puhl, Rafael Manica, Ana Luiza de Oliveira Borges and Adriano Roessler Viana
J. Mar. Sci. Eng. 2024, 12(9), 1476; https://doi.org/10.3390/jmse12091476 - 24 Aug 2024
Cited by 1 | Viewed by 1039
Abstract
Submarine conduits are features responsible for transporting clastic debris from continents to the deep ocean. While the architecture of conduits has been extensively studied, the process of their inception remains unclear. This study highlights the possibility that some conduits are initiated by depositional [...] Read more.
Submarine conduits are features responsible for transporting clastic debris from continents to the deep ocean. While the architecture of conduits has been extensively studied, the process of their inception remains unclear. This study highlights the possibility that some conduits are initiated by depositional processes involving turbidity currents. Here, we present the results of eight experiments where gravity currents were allowed to develop their own pathways. The simulation tank represented natural scales of continental shelves, slopes, and basins. The initial experiments involved sediment-laden flows with low density (1–10% in volume). In first experiment runs (Series I), sediment deposition occurred primarily on the shelf and slope, resulting in an asymmetric transverse profile. This asymmetry facilitated subsequent conservative currents (1034 to 1070 kg/m3 due to salt dissolution) flowing alongside during the second series, resulting in the formation of a constructive submarine conduit. This feature is analogous to gully formations observed in various locations. This study correlates these findings with gully-like features and proposes a model where non-confined density flows can evolve into confined flows through the construction of asymmetric topography. An evolutionary model is proposed to explain the mechanism, which potentially elucidates the formation of many submarine conduits. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

13 pages, 7781 KiB  
Article
Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island
by Gregory P. Asner, Nicholas R. Vaughn and Joseph Heckler
Oceans 2024, 5(3), 547-559; https://doi.org/10.3390/oceans5030031 - 5 Aug 2024
Cited by 2 | Viewed by 2151
Abstract
Submarine groundwater discharge (SGD) is a recognized contributor to the hydrological and biogeochemical functioning of coral reef ecosystems located along coastlines. However, the distribution, size, and thermal properties of SGD remain poorly understood at most land–reef margins. We developed, deployed, and demonstrated an [...] Read more.
Submarine groundwater discharge (SGD) is a recognized contributor to the hydrological and biogeochemical functioning of coral reef ecosystems located along coastlines. However, the distribution, size, and thermal properties of SGD remain poorly understood at most land–reef margins. We developed, deployed, and demonstrated an operational method for airborne detection and mapping of SGD using the 200 km coastline of western Hawai‘i Island as a testing and analysis environment. Airborne high spatial resolution (1 m) thermal imaging produced relative sea surface temperature (SST) maps that aligned geospatially with boat-based transects of SGD presence–absence. Boat-based SST anomaly measurements were highly correlated with airborne SST anomaly measurements (R2 = 0.85; RMSE = 0.04 °C). Resulting maps of the relative difference in SST inside and outside of SGD plumes, called delta-SST, revealed 749 SGD plumes in 200 km of coastline, with nearly half of the SGD plumes smaller than 0.1 ha in size. Only 9% of SGD plumes were ≥1 ha in size, and just 1% were larger than 10 ha. Our findings indicate that small SGD is omnipresent in the nearshore environment. Furthermore, we found that the infrequent, large SGD plumes (>10 ha) displayed the weakest delta-SST values, suggesting that large discharge plumes are not likely to provide cooling refugia to warming coral reefs. Our operational approach can be applied frequently over time to generate SGD information relative to terrestrial substrate, topography, and pollutants. This operational approach will yield new insights into the role that land-to-reef interactions have on the composition and condition of coral reefs along coastlines. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

23 pages, 28193 KiB  
Article
Using Ground-Penetrating Radar (GPR) to Investigate the Exceptionally Thick Deposits from the Storegga Tsunami in Northeastern Scotland
by Charlie S. Bristow, Lucy K. Buck and Rishi Shah
Remote Sens. 2024, 16(11), 2042; https://doi.org/10.3390/rs16112042 - 6 Jun 2024
Viewed by 2004
Abstract
A submarine landslide on the edge of the Norwegian shelf that occurred around 8150 ± 30 cal. years BP triggered a major ocean-wide tsunami, the deposits of which are recorded around the North Atlantic, including Scotland. Ground-penetrating radar (GPR) was used here to [...] Read more.
A submarine landslide on the edge of the Norwegian shelf that occurred around 8150 ± 30 cal. years BP triggered a major ocean-wide tsunami, the deposits of which are recorded around the North Atlantic, including Scotland. Ground-penetrating radar (GPR) was used here to investigate tsunami sediments within estuaries on the coast of northeastern Scotland where the tsunami waves were funnelled inland. Around the Dornoch Firth, the tsunami deposits are up to 1.6 m thickness, which is exceptionally thick for tsunami deposits and about twice the thickness of the 2004 IOT or 2011 Tohoku-oki tsunami deposits. The exceptional thickness is attributed to a high sediment supply within the Dornoch Firth. At Ardmore, the tsunami appears to have overtopped a beach ridge with a thick sand layer deposited inland at Dounie and partly infilled a valley. Later, fluvial activity eroded the tsunami sediments locally, removing the sand layer. At Creich, on the north side of the Dornoch Firth, the sand layer varies in thickness; mapping of the sand layer with GPR shows lateral thickness changes of over 1 m attributed to a combination of infilling an underlying topography, differential compaction, and later reworking by tidal inlets. Interpretation of the GPR profiles at Wick suggests that there has been a miscorrelation of Holocene stratigraphy based on boreholes. Changes in the stratigraphy of spits at Ardmore are attributed to the balance between sediment supply and sea-level change with washovers dominating a spit formed during the early Holocene transgression, while spits formed during the subsequent mid-Holocene high-stand are dominated by progradation. Full article
(This article belongs to the Collection Feature Papers for Section Environmental Remote Sensing)
Show Figures

Graphical abstract

11 pages, 25015 KiB  
Article
Study on the Mechanism of Natural Gas Hydrate Decomposition and Seabed Seepage Triggered by Mass Transport Deposits
by Pengqi Liu, Wei Zhang, Shuang Mao, Pibo Su, Huaizhen Chen and Liguo Hu
J. Mar. Sci. Eng. 2024, 12(4), 646; https://doi.org/10.3390/jmse12040646 - 12 Apr 2024
Cited by 1 | Viewed by 1433
Abstract
Previous studies indicate that mass transport deposits are related to the dynamic accumulation of natural gas hydrates and gas leakage. This research aims to elucidate the causal mechanism of seabed seepage in the western region of the southeastern Qiongdongnan Basin through the application [...] Read more.
Previous studies indicate that mass transport deposits are related to the dynamic accumulation of natural gas hydrates and gas leakage. This research aims to elucidate the causal mechanism of seabed seepage in the western region of the southeastern Qiongdongnan Basin through the application of seismic interpretation and attribute fusion techniques. The mass transport deposits, bottom simulating reflector, submarine mounds, and other phenomena were identified through seismic interpretation techniques. Faults and fractures were identified by utilizing variance attribute analysis. Gas chimneys were identified using instantaneous frequency attribute analysis. Free gas and paleo-seepage points were identified using sweetness attributes, enabling the analysis of fluid seepage pathways and the establishment of a seepage evolution model. Research has shown that in areas where the mass transport deposits develop thicker layers, there is a greater uplift of the bottom boundary of the gas hydrate stability zone, which can significantly alter the seafloor topography. Conversely, the opposite is true. The research indicates that the upward migration of the gas hydrate stability zone, induced by the mass transport deposits in the study area, can result in the rapid decomposition of gas hydrates. The gas generated from the decomposition of gas hydrates is identified as the principal factor responsible for inducing seabed seepage. Moderate- and low-speed natural gas seepage can create spiny seamounts and domed seamounts, respectively. Full article
Show Figures

Figure 1

34 pages, 51108 KiB  
Article
Seafloor and Ocean Crust Structure of the Kerguelen Plateau from Marine Geophysical and Satellite Altimetry Datasets
by Polina Lemenkova
Geomatics 2023, 3(3), 393-426; https://doi.org/10.3390/geomatics3030022 - 10 Aug 2023
Cited by 3 | Viewed by 3574
Abstract
The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus. Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau is notable for a complex tectonic origin and geologic formation related to the [...] Read more.
The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus. Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau is notable for a complex tectonic origin and geologic formation related to the Cretaceous history of the continents. This is reflected in the varying age of the oceanic crust adjacent to the plateau and the highly heterogeneous bathymetry of the Kerguelen Plateau, with seafloor structure differing for the southern and northern segments. Remote sensing data derived from marine gravity and satellite radar altimetry surveys serve as an important source of information for mapping complex seafloor features. This study incorporates geospatial information from NOAA, EMAG2, WDMAM, ETOPO1, and EGM96 datasets to refine the extent and distribution of the extracted seafloor features. The cartographic joint analysis of topography, magnetic anomalies, tectonic and gravity grids is based on the integrated mapping performed using the Generic Mapping Tools (GMT) programming suite. Mapping of the submerged features (Broken Ridge, Crozet Islands, seafloor fabric, orientation, and frequency of magnetic anomalies) enables analysis of their correspondence with free-air gravity and magnetic anomalies, geodynamic setting, and seabed structure in the southwest Indian Ocean. The results show that integrating the datasets using advanced cartographic scripting language improves identification and visualization of the seabed objects. The results include 11 new maps of the region covering the Kerguelen Plateau and southwest Indian Ocean. This study contributes to increasing the knowledge of the seafloor structure in the French Southern and Antarctic Lands. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Nautical Cartography)
Show Figures

Figure 1

13 pages, 5712 KiB  
Article
Numerical Simulation-Based Analysis of Seafloor Hydrothermal Plumes: A Case Study of the Wocan-1 Hydrothermal Field, Carlsberg Ridge, Northwest Indian Ocean
by Kanghao Wang, Xiqiu Han, Yejian Wang, Yiyang Cai, Zhongyan Qiu and Xiaoquan Zheng
J. Mar. Sci. Eng. 2023, 11(5), 1070; https://doi.org/10.3390/jmse11051070 - 18 May 2023
Cited by 4 | Viewed by 2264
Abstract
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of [...] Read more.
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of the deep-sea hydrothermal plume is established based on the topography and long-term current monitoring data of the Wocan-1 hydrothermal field (WHF-1), Carlsberg Ridge, Northwest Indian Ocean. The model allows for a reconstruction of the hydrothermal plume in terms of its structure, velocity field, and temperature field. The relationships between the maximum height of the rising plume and the background current velocity, and between the height of the neutral-buoyancy layer and the background current velocity are established, respectively. The transport patterns of the hydrothermal particles and their controlling factors are revealed. Using hydrothermal particles with a density of ~5000 kg/m3 (i.e., pyrite grains) as an example, it is found that pyrite larger than 1 mm can only be found near the venting site. Those in the size 0.3–0.5 mm can only be found within 137–240 m from the venting site, while those smaller than 0.2 mm can be transported over long distances of more than 1 km. Using the vertical temperature profiling data of WHF-1 obtained during the Jiaolong submersible diving cruise in March 2017, we reconstruct the past current velocity of 10 cm/s, similar to the current data retrieved from the observational mooring system. Our model and the findings contribute to a better understanding of the hydrothermal system of WHF-1, and provide useful information for tracing the hydrothermal vents, prospecting the submarine polymetallic sulfide resources, designing the long-term observation networks, and relevant studies on element cycling and energy budget. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography II)
Show Figures

Figure 1

16 pages, 5690 KiB  
Article
Mathematical Model of Surface Topography of Corroded Steel Foundation in Submarine Soil Environment
by Wei Wang, Yuan Wang, Jingqi Huang and Lunbo Luo
Coatings 2022, 12(8), 1078; https://doi.org/10.3390/coatings12081078 - 30 Jul 2022
Viewed by 1965
Abstract
For the corrosion risk of steel structures in the marine environment, the topography characteristics of corroded steel surfaces were paid little attention to, which has a significant effect on the mechanical properties of the interface between steel foundation and soil medium. An effective [...] Read more.
For the corrosion risk of steel structures in the marine environment, the topography characteristics of corroded steel surfaces were paid little attention to, which has a significant effect on the mechanical properties of the interface between steel foundation and soil medium. An effective mathematical model for reconstructing the topography of corroded steel surface is very helpful for numerically or experimentally studying the soil-corroded steel interaction properties. In this study, an electrolytic accelerated corrosion experiment is conducted first to obtain corroded steel samples, which are exposed to submarine soil and suffer different corrosion degrees. Then, the surface height data of these corroded steel samples are scanned and analyzed. It is found that the height of surface two-dimensional contour curves under different corrosion degrees obeys the Gaussian distribution. Based on the spectral representation method, a mathematical model is developed for the profile height of the corroded steel surface. By comparing the standard deviation, arithmetic mean height and maximum height of reconstructed samples with those of experimental samples, the reliability of the developed mathematical model is proved. The proposed mathematical model can be adapted to reconstruct the surface topography of steel with different corrosion degrees for the following research on the shearing behavior of soil-corroded steel interface. Full article
Show Figures

Figure 1

16 pages, 6987 KiB  
Article
Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography
by Xuying Liu, Xiao Cheng, Qi Liang, Teng Li, Fukai Peng, Zhaohui Chi and Jiaying He
Remote Sens. 2022, 14(1), 154; https://doi.org/10.3390/rs14010154 - 30 Dec 2021
Cited by 5 | Viewed by 4134
Abstract
Iceberg D28, a giant tabular iceberg that calved from Amery Ice Shelf in September 2019, grounded off Kemp Coast, East Antarctica, from August to September of 2020. The motion of the iceberg is characterized herein by time-series images captured by synthetic aperture radar [...] Read more.
Iceberg D28, a giant tabular iceberg that calved from Amery Ice Shelf in September 2019, grounded off Kemp Coast, East Antarctica, from August to September of 2020. The motion of the iceberg is characterized herein by time-series images captured by synthetic aperture radar (SAR) on Sentinel-1 and the moderate resolution imaging spectroradiometer (MODIS) boarded on Terra from 6 August to 15 September 2020. The thickness of iceberg D28 was estimated by utilizing data from altimeters on Cryosat-2, Sentinel-3, and ICESat-2. By using the iceberg draft and grounding point locations inferred from its motion, the maximum water depths at grounding points were determined, varying from 221.72 ± 21.77 m to 269.42 ± 25.66 m. The largest disagreements in seabed elevation inferred from the grounded iceberg and terrain models from the Bedmap2 and BedMachine datasets were over 570 m and 350 m, respectively, indicating a more complicated submarine topography in the study area than that presented by the existing seabed terrain models. Wind and sea water velocities from reanalysis products imply that the driving force from sea water is a more dominant factor than the wind in propelling iceberg D28 during its grounding, which is consistent with previous findings on iceberg dynamics. Full article
(This article belongs to the Special Issue The Cryosphere Observations Based on Using Remote Sensing Techniques)
Show Figures

Graphical abstract

Back to TopTop